4,823 Matching Annotations
  1. Oct 2025
    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):  

      Summary:

      The manuscript by Cupollilo et al describes the development, characterization, and application of a novel activity labeling system; fast labelling of engram neurons (FLEN). Several such systems already exist but this study adds additional capability by leveraging an activity marker that is destabilized (and thus temporally active) as well as being driven by the full-length promoter of cFos. The authors demonstrate the activity-dependent induction and time course of expression, first in cultured neurons and then in vivo in hippocampal CA3 neurons after one trial of contextual fear conditioning. In a series of ex vivo experiments, the authors perform patch clamp analysis of labeled neurons to determine if these putative engram neurons differ from non-labelled neurons using both the FLEN system as well as the previously characterized RAM system. Interestingly the early labelled neurons at 3 h post CFC (FLEN+) demonstrated no differences in excitability whereas the RAMlabelled neurons at 24h after CFC had increased excitability. Examination of synaptic properties demonstrated an increase in sEPCS and mEPSC frequencies as well as those for sIPSCs and mIPSCs which was not due to a change in the mossy fiber input to these neurons.

      Strengths:

      Overall the data is of high quality and the study introduces a new tool while also reassessing some principles of circuit plasticity in the CA3 that have been the focus of prior studies.

      Weaknesses:

      No major weaknesses were noted.

      Reviewer #2 (Public review): 

      Summary: 

      Cupollilo et al. investigate the properties of hippocampal CA3 neurons that express the immediate early gene cFos in response to a single foot shock. They compare ex-vivo the electrophysiological properties of these "engram neurons" labeled with two different cFos promoter-driven green markers: Their new tool FLEN labels neurons 2-6 h after activity, while RAM contains additional enhancers and peaks considerably later (>24 h). Since the fraction of labeled CA3 cells is comparable with both constructs, it is assumed (but not tested) that they label the same population of activated neurons at different time points. Both FLEN+ and RAM+ neurons in CA3 receive more synaptic inputs compared to non-expressing control neurons, which could be a causal factor for cFos activation, or a very early consequence thereof. Frequency facilitation and E/I ratio of mossy fiber inputs were also tested, but are not different in both cFos+ groups of neurons. One day after foot shock, RAM+ neurons are more excitable than RAM- neurons, suggesting a slow increase in excitability as a major consequence of cFos activation.

      Strengths: 

      The study is conducted to high standards and contributes significantly to our understanding of memory formation and consolidation in the hippocampus. Modifications of intrinsic neuronal properties seem to be more salient than overall changes in the total number of (excitatory and inhibitory) inputs, although a switch in the source of the synaptic inputs would not have been detected by the methods employed in this study

      Weaknesses: 

      With regard to the new viral tool, a direct comparison between the new tool FLEN and existing cFos reporters is missing. 

      Reviewer #1 (Recommendations for the authors):

      I have only minor suggestions for the authors to consider. 

      (1) In the in vitro characterization, the percentage of labelled neurons seems very low after a powerful and prolonged activation. It was somewhat surprising and raised the question of how accurately the FLEN construct reflects endogenous cFOS activity. Could the authors speak to this?

      The reviewer is correct that the level of FLEN positive neurons, as compared to mCherry positive neurons, is low as compared to studies using viral infection with RAM vectors in neuronal cultures (Sorensen et al, 2016, Sun et al, 2020), which is around 70-80% following chemical stimulation. The authors do not provide evidence however for a comparison with endogenous c-Fos activity in cell cultures. The reason for a discrepancy in the effect of chemical stimulation of cultured neurons is not clear, but may depend on culture conditions which may vary between labs. 

      FLEN was constructed using a mouse c-Fos promoter (-355 to +109) (Cen et al, 2003). To answer the reviewer’s question we performed an additional experiment in cultured neurons in which we found that 77.1 % of FLEN positive neurons were also c-fos positive neurons (using immunocytochemistry).

      (2) The authors compare the two labelling strategies and interpret their data with the presumption that both label a similar set of active neurons. This is particularly relevant when they suggest there might be a progressive increase in the excitability of active neurons with time. This is certainly a possibility, but the authors should also consider other possibilities that the two markers might label different populations of neurons. For example, if they require different thresholds for activation, it is possible that one is more sensitive to activity than the other. As these are unknown variables the authors should temper the interpretation accordingly.

      Indeed, the reviewer is correct that this limitation should be discussed. We have added this as a point of discussion in the text (line 355-358). In the article describing the RAM strategy (Sorensen et al, 2016) the authors use RAM to label DG neurons activated during an experience in a context A (Figure 4). Exploiting the fact that engram cells are re-activated when the animal is re-exposed to the same environment of training (memory recall), they performed c-Fos staining 90 minutes following either context A or context B re-exposure. The RAM-c-Fos overlap percentage was higher in A-A rather than A-B (A-A was a bit more than 20%). This means that RAM has captured a group of cells during training that, at least in part, were re-activated during recall. This could in part support the assumption that RAM and c-Fos share a certain overlap. Of course, this was done in DG, while we worked in CA3. In addition, both strategies label in their great majority c-Fos+ neurons (see above answer to point #1). This can not completely rule out the possibility that FLEN and RAM label partly distinct population of activated cells. 

      (3) An increase in the frequency of synaptic events is observed in neurons labelled with both markers. The authors propose that this may be due to an increase in synaptic contacts based on prior studies. However, as this is the first functional assessment why not consider changes in release probability as a mechanism for this finding? 

      We have added this as a possibility in the text (line 362-363).

      (4) It would be useful to include plots of the average frequency of m/sEPSCs and m/sIPSCs in Figures 4 and 5. These figures could also be combined into a single figure.

      We agree with the reviewer that figure 4 and 5 could be merged into a single figure. In the revised version, figure 5A becomes panel C in figure 4. Text and figure descriptions were adjusted accordingly.

      Reviewer #2 (Recommendations for the authors): 

      (1) Abstract, line 24: "In contrast, FLEN+ CA3 neurons show an increased number of excitatory inputs." RAM+ neurons also show an increased number of excitatory inputs, so this is not "in contrast". Also, not just excitatory, but also inhibitory synaptic inputs are more numerous in cFos+ neurons. Please improve the summary of your findings.

      “In contrast” referred to the fact that FLEN+ neurons do not show differences in excitability as compared to FLEN- neurons, as mentioned in the previous sentence. We now provide a more explicit sentence to explain this point: “On the other hand, like RAM+ neurons, FLEN+ CA3 neurons show an increased number of excitatory inputs.”

      (2) Novel tool: Destabilized cFos reporters were introduced 23 years ago and are also part of the TetTag mouse. I am not sure that changing the green fluorescent protein to a different version merits a new acronym (FLEN). To convince the readers that this is more than a branding exercise, the authors should compare the properties (brightness, folding time, stability) of FLEN to e.g. the d2EGFP reporter introduced by Bi et al. 2002 (J Biotechnol. 93(3):231) and show significant improvements.

      We thank the reviewer for this comment which compelled us to evaluate the features of other tools used to label neurons activated following contextual fear conditioing. The key properties of FLEN as compared to other tools used to label engrams is that: (i) it is a viral tool, as opposed to transgenic mice, (ii) a c-fos promoter drives the expression of a brightly fluorescent protein allowing their identification ex vivo for functional analysis, (iii) the fluorescent protein is rapidly destabilized, providing the possibility to label neurons only a few hours after their activation by a behavioural task.

      We did not find any viral tools providing the possibility to label c-fos activated neurons for functional assesment. We have not been able to find references for the use of the d2EGFP reporter introduced by Bi et al. 2002 in a behavioural context. One of the major difference and improvement is certainly the brightness of ZsGreen. In cell cultures, ZsGreen1 showed a 8.6-fold increase in fluorescence intensity as compared with EGFP (Bell et al, 2007).

      Amongst tools with comparable properties, eSARE was developed based on a synthetic Arc promoter driving the expression of a destabilized GFP (dEGFP) (Kawashima et al 2013). We initially used ESARE–dGFP but unfortunately, in our experimental conditions we found that the signal to noise ratio was not satisfactory (number of cells label in the home cage vs. following contextual fear conditining).

      We developed a viral tool to avoid the use of transgenic reporter lines which require laborious breeding and is experimentally less flexible. Nevertheless, many transgenic mice based on the expression of fluorescent proteins under the control of IEG promoters have been developed and used. Some of these mice show a time course of expression of the transgene which is comparable to FLEN. For instance, in organotypic slices from Tet-Tag mice, the time course of expression of EGFP slices follows with a small delay endogenous cFOS expression, and starts decaying after 4 hours (Lamothe-Molina et al, 2022). However, the fluorescence was too weak to visualize neurons in the slice (Christine Gee, personal communication), and imaging is perfomed after immunocytochemistry against GFP. 

      Therefore, we feel that the name given to the FLEN strategy is legitimate. The features of the FLEN strategy were summarized in the discussion (Lines 318-322).

      (3) Line 214: "...FLEN+ CA3 PNs do not show differences in [...] patterns of bursting activity as compared to control neurons." It looks quite different to me (Figure 3E). Just because low n precludes meaningful statistical analysis, I would not conclude there is no difference.

      We agree with the reviewer that the data in Figure 3E are not conclusive due to small sample size, which limits the reliability of statistical comparison. Additionally, the classification of bursting neurons is highly dependent on the specific criteria used, which vary considerably across the literature. To avoid overinterpretation or misleading conclusions, we decided to remove the panel E of Figure 3 showing the fraction of bursting neurons. Nevertheless, we draw the attention to the more robust and interpretable results: RAM⁺ neurons exhibit an increase in firing frequency and a distinct action potential discharge pattern, data which we believe are informative of altered excitability.

      (4) Line 304: Remove the time stamp.

      This was done.

      (5) Line 334: "...results may be explained by an overall increased activity of CA1 neurons..." I don't understand - isn't CA1 downstream of CA3? 

      The reviewer is correct that the sentence was misleading. We removed the reference to CA1, as it was more of a general principle about neuronal activity.

      (6) Line 381: "resolutive", better use "sensitive". 

      This was changed.

      (7) Figure S3: Fear-conditioned animals were 3 days off Dox, controls only 2 days. As RAM expression accumulates over time off Dox, this is not a fair comparison.

      We thank the reviewer for pointing out the incorrect reporting of the experimental design in Figure S3 panel A (bottom), which could lead to misinterpretation of results. In fact, the two groups of mice (CFC vs. HC) underwent all experimental steps in parallel. Specifically, both groups were maintained on and off Doxycycline for the same duration and received viral injection on the same day. 48 hours after Dox withdrawal, the CFC group was trained for contextual conditioning, while the HC group remained in the home cage in the holding room. All animals were thus sacrificed 72 hours after Dox removal. We have corrected the figure to accurately reflect this timeline.

      (8) Please provide sequence information for c-cFos-ZsGreen1-DR. Which regulatory elements of the cFos promoter are included, is the 5' NTR included? This information is very important.

      The information is now provided in the Methods section.

      (9) Please provide the temperature during pharmacological treatments (TTX etc.) before fixation.

      The pharmacological treatment was performed in the incubator at 37°C, this is now indicated in the methods.

    1. Author response:

      The following is the authors’ response to the original reviews

      Reviewer #1 (Public review):

      Shigella flexneri is a bacterial pathogen that is an important globally significant cause of diarrhea. Shigella pathogenesis remains poorly understood. In their manuscript, Saavedra-Sanchez et al report their discovery that a secreted E3 ligase effector of Shigella, called IpaH1.4, mediates the degradation of a host E3 ligase called RNF213. RNF213 was previously described to mediate ubiquitylation of intracellular bacteria, an initial step in their targeting of xenophagosomes. Thus, Shigella IpaH1.4 appears to be an important factor in permitting evasion of RNF213-mediated host defense.

      Strengths:

      The work is focused, convincing, well-performed, and important. The manuscript is well-written.

      We would like to thank the reviewer for their time evaluating our manuscript and the positive assessment of the novelty and importance of our study. We provide a comprehensive response to each of the reviewer’s specific recommendations below and highlight any changes made to the manuscript in response to those recommendations.

      Reviewer #1 (Recommendations for the authors):

      (1) In the abstract (and similarly on p.10), the authors claim to have shown "IpaH1.4 protein as a direct inhibitor of mammalian RNF213". However, they do not show the interaction is direct. This, in my opinion, would require demonstrating an interaction between purified recombinant proteins. I presume that the authors are relying on their UBAIT data to support the direct interaction, but this is a fairly artificial scenario that might be prone to indirect substrates. I would therefore prefer that the 'direct' statement be modified (or better supported with additional data). Similarly, on p.7, the section heading states "S. flexneri virulence factors IpaH1.4 and IpaH2.5 are sufficient to induce RNF213 degradation". The corresponding experiment is to show sufficiency in a 293T cell, but this leaves open the participation of additional 293T-expressed factors. So I would remove "are sufficient to", or alternatively add "...in 293T cells".

      We agree with the reviewer and made the recommended changes to the text in the abstract, in the results section on page 7, and in the Discussion on page 11. During the revision of our manuscript two additional studies were published that provide convincing biochemical evidence for the direct interaction between IpaH1.4 and RNF213 (PMID: 40205224; PMID: 40164614). These studies address the reviewer’s concern extensively and are now briefly discussed and cited in our revised MS.

      (2) In the abstract the authors state "Linear (M1-) and lysine-linked ubiquitin is conjugated to bacteria by RNF213 independent of the linear ubiquitin chain assembly complex (LUBAC)." However, it is not shown that RNF213 is able to directly perform M1-ubiquitylation. It is shown that RNF213 is required for M1-linked ubiquitylation in IpaH1.4 or MxiE mutants, this is different than showing conjugation is done by RNF213 itself. This should be reworded.

      We agree and edited the text accordingly

      (3) Introduction: one of the main points of the paper is that RNF213 conjugates linear ubiquitin to the surface of bacteria in a manner independent of the previously characterized linear ubiquitin conjugation (LUBAC) complex. This is indeed an interesting result, but the introduction does not put this discovery in much context. I would suggest adding some discussion of what was known, if anything, about the type of Ub chain formed by RNF213, and specifically whether linear Ub had previously been observed or not.

      We now provide context in the Introduction on page 3 and briefly discuss previous work that had implicated LUBAC in the ubiquitylation of cytosolic bacteria. We emphasize that LUBAC specifically generates linear (M1-linked) ubiquitin chains, while the types of ubiquitin linkages deposited on bacteria through RNF213-dependent pathways had remained unidentified.

      (4) Figure 3C: is the difference in 7KR-Ub between WT and HOIP KO cells significant? If so, the authors may wish to acknowledge the possibility that HOIP partially contributes to M1-Ub of MxiE mutant Shigella

      The frequencies at which bacteria are decorated with 7KR-Ub is not statistically different between WT and HOIP KO cells. We have included this information in the panel description of Figure 3.

      (5) On page 11, the authors state that "...we observed that LUBAC is dispensable for M1-linked ubiquitylation of cytosolic S. flexneri ∆ipaH1.4. We found that lysine-less internally tagged ubiquitin or an M1-specific antibody bound to S. flexneri ∆ipaH1.4 in cells lacking LUBAC (HOIL-1KO or HOIPKO) but failed to bind bacteria in RNF213-deficient cells". In fact, what is shown is that M1-ubiquitylation in ∆ipaH1.4 infection is RNF213-dependent (5E), but the work with lysine mutants, HOIP or HOIL-1 KOs are all with ∆mxiE, not ∆ipaH1.4 (3B) in this version of the manuscript. Ideally, the data with ∆ipaH1.4 could be added, but alternatively, the conclusion could be re-worded.

      We now include the data demonstrating that staining of ∆ipaH1.4 with an M1-specific antibody is unchanged from WT cells in HOIL-1 KO and HOIP KO cells. These data are shown in supplementary data (Fig. S3E) and referred to on page 9 of the revised manuscript.

      (6) The UBAIT experiment should be explained in a bit more detail in the text. The approach is not necessarily familiar to all readers, and the rationale for using Salmonella-infected ceca/colons is not well explained (and seems odd). Some appropriate caution about interpreting these data might also be welcome. Did HOIP or HOIL show up in the UBAIT? This perhaps also deserves some discussion.

      As expected, HOIP (listed under its official gene name Rnf31 in the table of Fig.S2B) was identified as a candidate IpaH1.4 interaction partner as the third most abundant hit from the UBAIT screen. Remarkably, Rnf213 was the hit with the highest abundance in the IpaH1.4 UBAIT screen. To address the reviewer’s comments, we now explain the UBAIT approach in more detail and provide the rational for using intestinal protein lysates from Salmonella infected mice. The text on page 8 reads as follows: “To investigate potential physical interactions between IpaH1.4 and IpaH2.5, we reanalyzed a previously generated dataset that employed a method known as ubiquitin-activated interaction traps (UBAITs) (32). As shown in Fig. S2A, the human ubiquitin gene was fused to the 3′ end of IpaH2.5, producing a C-terminal IpaH2.5-ubiquitin fusion protein. When incubated with ATP, ubiquitin-activating enzyme E1, and ubiquitin-conjugating enzyme E2, the IpaH2.5-ubiquitin "bait" protein is capable of binding to and ubiquitylating target substrates. This ubiquitylation creates an iso-peptide bond between the IpaH2.5 bait and its substrate, thereby enabling purification via a Strep affinity tag incorporated into the fusion construct (32). IpaH2.5-ubiquitin bait and IpaH3-ubiquitin control proteins were incubated with lysates from murine intestinal tissue. To detect interaction partners in a physiologically relevant setting, we used intestinal lysates derived from mice infected with Salmonella, which in contrast to Shigella causes pronounced inflammation in WT mice and therefore better simulates human Shigellosis in an animal model. Using UBAIT we identified HOIP (Rnf31) as a likely IpaH2.5 binding partner (Fig. S2B), thus confirming previous observations (28) and validating the effectiveness our approach. Strikingly, we identified mouse Rnf213 as the most abundant interaction partner of the IpaH2.5-ubiquitin bait protein (Fig. S2B). Collectively, our data and concurrent reports showing direct interactions between IpaH1.4 and human RNF213 (36, 37) indicate that the virulence factors IpaH1.4 and IpaH2.5 directly bind and degrade mouse as well as human RNF213.”

      (7) It would be helpful if the authors discussed their results in the context of the prior work showing IpaH1.4/2.5 mediate the degradation of HOIP. Do the authors see HOIP degradation? If indeed HOIP and RNF213 are both degraded by IpaH1.4 and IpaH2.5, are there conserved domains between RNF213 and HOIP being targeted? Or is only one the direct target? A HOIP-RNF213 interaction has previously been shown (https://doi.org/10.1038/s41467-024-47289-2). Since they interact, is it possible one is degraded indirectly? To help clarify this, a simple experiment would be to test if RNF213 degraded in HOIP KO cells (or vice-versa)?

      We appreciate the reviewer’s suggestions. We conducted the proposed experiments and found that WT S. flexneri infections result in RNF213 degradation in both WT and HOIP KO cells. Similarly, we found that HOIP degradation was independent of RNF213. We have included these data in Figs. 5A and S3B of our revised submission. A study published during revisions of our paper demonstrates that the LRR of IpaH1.4 binds to the RING domains of both RNF213 and LUBAC (PMID: 40205224). We refer to this work in our revised manuscript.

      Reviewer #2 (Public review):

      Summary:

      The authors find that the bacterial pathogen Shigella flexneri uses the T3SS effector IpaH1.4 to induce degradation of the IFNg-induced protein RNF213. They show that in the absence of IpaH1.4, cytosolic Shigella is bound by RNF213. Furthermore, RNF213 conjugates linear and lysine-linked ubiquitin to Shigella independently of LUBAC. Intriguingly, they find that Shigella lacking ipaH1.4 or mxiE, which regulates the expression of some T3SS effectors, are not killed even when ubiquitylated by RNF213 and that these mutants are still able to replicate within the cytosol, suggesting that Shigella encodes additional effectors to escape from host defenses mediated by RNF213-driven ubiquitylation.

      Strengths:

      The authors take a variety of approaches, including host and bacterial genetics, gain-of-function and loss-of-function assays, cell biology, and biochemistry. Overall, the experiments are elegantly designed, rigorous, and convincing.

      Weaknesses:

      The authors find that ipaH1.4 mutant S. flexneri no longer degrades RNF213 and recruits RNF213 to the bacterial surface. The authors should perform genetic complementation of this mutant with WT ipaH1.4 and the catalytically inactive ipaH1.4 to confirm that ipaH1.4 catalytic activity is indeed responsible for the observed phenotype.

      We would like to thank the reviewer for their time evaluating our manuscript and the positive assessment of our work, especially its scientific rigor. We conducted the experiment suggested by the reviewer and included the new data in the revised manuscript. As expected, complementation of the ∆ipaH1.4 with WT IpaH1.4 but not with the catalytically dead C338S mutant restored the ability of Shigella to efficiently escape from recognition by RNF213 (Figs. 5C-D).

      Reviewer #2 (Recommendations for the authors):

      The authors should perform genetic complementation of the ipaH1.4 mutant with WT ipaH1.4 and the catalytically inactive ipaH1.4 to confirm that ipaH1.4 catalytic activity is indeed responsible for the observed phenotype.

      We performed the suggested experiment and show in Figs. 5C-D that complementation of the ∆ipaH1.4 mutant with WT IpaH1.4 but not with the catalytically dead C338S mutant restored the ability of Shigella to efficiently escape from recognition by RNF213. These data demonstrate that the catalytic activity of IpaH1.4 is required for evasion of RNF213 binding to the bacteria.

      Reviewer #3 (Public review):

      Summary:

      In this study, the authors set out to investigate whether and how Shigella avoids cell-autonomous immunity initiated through M1-linked ubiquitin and the immune sensor and E3 ligase RNF213. The key findings are that the Shigella flexneri T3SS effector, IpaH1.4 induces degradation of RNF213. Without IpaH1.4, the bacteria are marked with RNF213 and ubiquitin following stimulation with IFNg. Interestingly, this is not sufficient to initiate the destruction of the bacteria, leading the authors to conclude that Shigella deploys additional virulence factors to avoid this host immune response. The second key finding of this paper is the suggestion that M1 chains decorate the mxiE/ipaH Shigella mutant independent of LUBAC, which is, by and large, considered the only enzyme capable of generating M1-linked ubiquitin chains.

      Strengths:

      The data is for the most part well controlled and clearly presented with appropriate methodology. The authors convincingly demonstrate that IpaH1.4 is the effector responsible for the degradation of RNF213 via the proteasome, although the site of modification is not identified.

      Weaknesses:

      (1)The work builds on prior work from the same laboratory that suggests that M1 ubiquitin chains can be formed independently of LUBAC (in the prior publication this related to Chlamydia inclusions). In this study, two pieces of evidence support this statement -fluorescence microscopy-based images and accompanying quantification in Hoip and Hoil knockout cells for association of M1-ub, using an antibody, to Shigella mutants and the use of an internally tagged Ub-K7R mutant, which is unable to be incorporated into ubiquitin chains via its lysine residues. Given that clones of the M1-specific antibody are not always specific for M1 chains, and because it remains formally possible that the Int-K7R Ub can be added to the end of the chain as a chain terminator or as mono-ub, the authors should strengthen these findings relating to the claim that another E3 ligase can generate M1 chains de novo.

      (2) The main weakness relating to the infection work is that no bacterial protein loading control is assayed in the western blots of infected cells, leaving the reader unable to determine if changes in RNF213 protein levels are the result of the absent bacterial protein (e.g. IpaH1.4) or altered infection levels.

      (3)The importance of IFNgamma priming for RNF213 association to the mxiE or ipaH1.4 strain could have been investigated further as it is unclear if RNF213 coating is enhanced due to increased protein expression of RNF213 or another factor. This is of interest as IFNgamma priming does not seem to be needed for RNF213 to detect and coat cytosolic Salmonella.<br /> Overall, the findings are important for the host-pathogen field, cell-autonomous/innate immune signaling fields, and microbial pathogenesis fields. If further evidence for LUBAC independent M1 ubiquitylation is achieved this would represent a significant finding.

      We would like to thank the reviewer for their time evaluating our manuscript and the positive assessment of our work and its significance. We provide a comprehensive response to the main three critiques listed under ‘weaknesses’ and also have responded to each of the reviewer’s specific recommendations below. We highlight any changes made to the manuscript in response to those recommendations.

      (1) As the reviewer correctly pointed out, 7KR ubiquitin cannot only be used for linear ubiquitylation but can also function as a donor ubiquitin and can be attached as mono-ubiquitin to a substrate or to an existing ubiquitin chain as a chain terminator. To distinguish between 7KR INT-Ub signals originating from linear versus mono-ubiquitylation, we followed the reviewer’s advice and generated a N-terminally tagged 7KR INT-Ub variant. The N-terminal tag prevents linear ubiquitylation but still allows 7KR INT-Ub to be attached as a mono-ubiquitin. We found that the addition of this N-terminal tag significantly reduced but not completely abolished the number of Δ_mxiE_ bacteria decorated with 7KR INT-Ub. These data are shown in a new Fig. S1 and indicate that 7KR lacking the N-terminal tag is attached to bacteria both in the form of linear (M1-linked) ubiquitin and as donor ubiquitin, possibly as a chain terminator. While we cannot rule out that the anti-M1 antibodies used here cross-react with other ubiquitin linkages, we reason that the 7KR data strongly argues that linear ubiquitin is part of the ubiquitin coat encasing IpaH1.4-deficient cytosolic Shigella. Collectively, our data show that both linear and lysine-linked (especially K27 and K63) ubiquitin chains are part of the RNF213-dependent ubiquitin coat on the surface of IpaH1.4 mutants. And furthermore, our data strongly indicate that this ubiquitylation of IpaH1.4 mutants is independent of LUBAC.

      (2) We used GFP-expressing strains of S. flexneri for our infection studies and were therefore able to use GFP expression as a loading control. We have incorporated these data into our revised figures. These new data (Figs. 4A, 5A, and S3B) show that bacterial infection levels were comparable between WT and mutant infections and that therefore the degradation of RNF213 (or HOIP – see new data in Fig. S3B) is not due to differences in infection efficiency.

      (3) We agree with the reviewer that the mechanism by which RNF213 binds to bacteria is an important unanswered question. Similarly, whether other ISGs have auxiliary functions in this process or whether binding efficiencies vary between different bacterial species are important questions in the field. However, these questions go far beyond the scope of this study and were therefore not addressed in our revisions.

      Reviewer #3 (Recommendations for the authors):

      (1) An N-terminally tagged K7R-ub should be used as a control to test whether the signal found around the mutant shigella is being added via the N terminal Met into chains. As it is known that certain batches of the M1-specific antibodies are in fact not specific and able to detect other chain types, the authors should test the specificity of the antibody used in this study (eg against different di-Ub linkage types) and include this data in the manuscript.

      We agree with the reviewer in principle. The anti-linear ubiquitin (anti-M1) monoclonal antibody, clone 1E3, prominently used in this study was tested by the manufacturer (Sigma) by Western blotting analysis and according to the manufacturer “this antibody detected ubiquitin in linear Ub, but not Ub K11, Ub K48, Ub K63.” However, this analysis did not include all possible Ub linkage types and thus the reviewer is correct that the anti-M1 antibody could theoretically also detect some other linkage types. To address this concern, we added new data during revisions demonstrating that 7KR INT-Ub targeting to S. flexneri is largely dependent on the N-terminus (M1) of ubiquitin. Our combined observations therefore overwhelmingly support the conclusion that linear (M1-linked) as well as K-linked ubiquitin is being attached to the surface of IpH1.4 S. flexneri bacteria in an RNF213-dependent and LUBAC-independent manner.

      (2) The M1 signal detected on bacteria with the antibody is still present in either Hoip or Hoil KO’s but due to the potential non-specificity of the antibody, the authors should test whether K7R ub is detected on bacteria in the Hoil ko (in addition to Hoip KO). This would strengthen the authors’ data on LUBAC-independent M1 and is important because Hoil can catalyse non-canonical ubiquitylation.

      The specific linear ubiquitin-ligating activity of LUBAC is enacted by HOIP. We show that linear ubiquitylation of susceptible S. flexneri mutants as assessed by anti-M1 ubiquitin staining or 7KR INT-Ub recruitment occurs in HOIPKO cells at WT levels (Figs. 3B, 3C, S3E [new data]). In our view , these data unequivocally show that the observed linear ubiquitylation of cytosolic S. flexneri ipaH1.4 and mxiE mutants is independent of LUBAC.

      (3) For Figure 4A, do mxiE bacteria show similar invasion - authors should include a bacterial protein control to show levels of bacteria in WT and mxiE infected conditions. A similar control should be included in Figure 5A.

      We used GFP-expressing strains of S. flexneri for our infection studies and were therefore able to use GFP expression as a loading control. We have incorporated these data into our revised figures. These new data (Figs. 4A, 5A, and S3B) show that bacterial infection levels were comparable between WT and mutant infections and that therefore the degradation of RNF213 (or HOIP – see new data in Fig. S3B) is not due to differences in infection efficiency.

      (4) Can the authors speculate why IFNg priming is needed for the coating of Shigella mxiE mutant but not in the case of Salmonella or Burkholderia? Is this just amounts of RNF213 or something else?

      In our studies we did not directly compare ubiquitylation rates of cytosolic Shigella, Burkholderia, and Salmonella bacteria with each other under the same experimental conditions. However, such a direct comparison is needed to determine whether IFNgamma priming is required for RNF213-dependent bacterial ubiquitylation of some but not other pathogens. Two papers published during the revisions of our manuscript (PMID: 40164614, PMID: 40205224) reports robust RNF213 targeting to IpaH1.4 Shigella mutants in unprimed cells HeLa cells (whereas we used A549 and HT29 cells). Therefore, differences in reagents, cell lines, and/or other experimental conditions may determine whether IFNgamma priming is necessary to observe substantial RNF213 translocation to cytosolic bacteria.

      (5) Typos - there are several, but this is hard to annotate with line numbers so the authors should proofread again carefully.

      We proofread the manuscript and corrected the small number of typos we identified

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      The manuscript by Raices et al., provides novel insights into the role and interactions between SPO-11 accessory proteins in C. elegans. The authors propose a model of meiotic DSBs regulation, critical to our understanding of DSB formation and ultimately crossover regulation and accurate chromosome segregation. The work also emphasizes the commonalities and species-specific aspects of DSB regulation.

      Strengths:

      This study capitalizes on the strengths of the C. elegans system to uncover genetic interactions between a large number of SPO-11 accessory proteins. In combination with physical interactions, the authors synthesize their findings into a model, which will serve as the basis for future work, to determine mechanisms of DSB regulation.

      Weaknesses:

      The methodology, although standard, lacks quantification. This includes the mass spectrometry data , along with the cytology. The work would also benefit from clarifying the role of the DSB machinery on the X chromosome versus the autosomes.

      • We have uploaded the MS data and added a summary table with the number of peptides and coverage.

      • We have added statistics to the comparisons of DAPI body counts.

      • We have provided additional images of the change in HIM-5 localization

      • We have quantified the overlap (or lack thereof) between XND-1 and HIM-17 and the DNA axis

      Reviewer #2 (Public Review):

      Summary:

      Meiotic recombination initiates with the formation of DNA double-strand break (DSB) formation, catalyzed by the conserved topoisomerase-like enzyme Spo11. Spo11 requires accessory factors that are poorly conserved across eukaryotes. Previous genetic studies have identified several proteins required for DSB formation in C. elegans to varying degrees; however, how these proteins interact with each other to recruit the DSB-forming machinery to chromosome axes remains unclear.

      In this study, Raices et al. characterized the biochemical and genetic interactions among proteins that are known to promote DSB formation during C. elegans meiosis. The authors examined pairwise interactions using yeast two-hybrid (Y2H) and co-immunoprecipitation and revealed an interaction between a chromatin-associated protein HIM-17 and a transcription factor XND-1. They further confirmed the previously known interaction between DSB-1 and SPO-11 and showed that DSB-1 also interacts with a nematodespecific HIM-5, which is essential for DSB formation on the X chromosome. They also assessed genetic interactions among these proteins, categorizing them into four epistasis groups by comparing phenotypes in double vs. single mutants. Combining these results, the authors proposed a model of how these proteins interact with chromatin loops and are recruited to chromosome axes, offering insights into the process in C. elegans compared to other organisms.

      Weaknesses:

      This work relies heavily on Y2H, which is notorious for having high rates of false positives and false negatives. Although the interactions between HIM-17 and XND-1 and between DSB-1 and HIM-5 were validated by co-IP, the significance of these interactions was not tested, and cataloging Y2H interactions does not yield much more insight.

      We appreciate that the reviewer recognized the value of our IP data, but we beg to differ that we rely too heavily on the Y2H. We also provide genetic analysis on bivalent formation to support the physical interaction data. We do acknowledge that there are caveats with Y2H, however, including that a subset of the interactions can only be examined with proteins in one orientation due to auto-activation. While we acknowledge that it would be nice to have IP data for all of the proteins using CRISPR-tagged, functional alleles, these strains are not all feasible (e.g. no functional rec-1 tag has been made) and are beyond the scope of the current work.

      Moreover, most experiments lack rigor, which raises serious concerns about whether the data convincingly supports the conclusions of this paper. For instance, the XND-1 antibody appears to detect a band in the control IP; however, there was no mention of the specificity of this antibody.

      We previously showed the specificity of this antibody in its original publication showing lack of staining in the xnd-1 mutant by IF (Wagner et al., 2010). To further address this, however, we have now included a new supplementary figure (Figure S1) demonstrating the specificity of the XND-1 antibody by Western blot. The antibody detects a distinct band in extracts from wild-type (N2) worms, but this band is absent in two independent xnd-1 mutant strains. This confirms that the antibody specifically recognizes XND-1, supporting the validity of the IP results shown in the main figures.

      Additionally, epistasis analysis of various genetic mutants is based on the quantification of DAPI bodies in diakinesis oocytes, but the comparisons were made without statistical analyses.

      We have added statistical analysis to all datasets where quantification was possible, strengthening the rigor and interpretation of our findings.

      For cytological data, a single representative nucleus was shown without quantification and rigorous analysis. The rationale for some experiments is also questionable (e.g. the rescue by dsb-2 mutants by him-5 transgenes in Figure 2), making the interpretation of the data unclear. Overall, while this paper claims to present "the first comprehensive model of DSB regulation in a metazoan", cataloging Y2H and genetic interactions did not yield any new insights into DSB formation without rigorous testing of their significance in vivo. The model proposed in Figure 4 is also highly speculative.

      Regarding the cytology, we provide new images and quantification of HIM-17 and XND-1 overlap with the DNA axes. We also added full germ line images showing HIM-5 localization in wild type and dsb-1 mutants, to provide a more complete and representative view of the observed phenotype. To further support our findings, we’ve also included images demonstrating that this phenotype is consistently observed with both in live worm with the the him-5::GFP transgene and in fixed worms with an endogenously tagged version of HIM-5.

      Reviewer #3 (Public Review):

      During meiosis in sexually reproducing organisms, double-strand breaks are induced by a topoisomerase-related enzyme, Spo11, which is essential for homologous recombination, which in turn is required for accurate chromosome segregation. Additional factors control the number and genome-wide distribution of breaks, but the mechanisms that determine both the frequency and preferred location of meiotic DSBs remain only partially understood in any organism.

      The manuscript presents a variety of different analyses that include variable subsets of putative DSB factors. It would be much easier to follow if the analyses had been more systematically applied. It is perplexing that several factors known to be essential for DSB formation (e.g., cohesins, HORMA proteins) are excluded from this analysis, while it includes several others that probably do not directly contribute to DSB formation (XND-1, HIM-17, CEP-1, and PARG-1).

      We respectfully disagree with the reviewer’s statement regarding the selection of factors included in our analysis. In this work, our focus was specifically on SPO-11 accessory factors — proteins that directly interact with or regulate SPO-11 activity during doublestrand break formation. Cohesins and chromosome axis proteins (such as the HORMA domain proteins) are essential for establishing the correct chromosome architecture that supports DSB formation, but there is no evidence that they are direct accessory factors of SPO-11. Therefore, they were intentionally excluded from this study to maintain a clear and focused scope on proteins that more directly modulate SPO-11 function.

      Conversely, XND-1, HIM-17, CEP-1, and PARG-1 have all been implicated in regulating aspects of SPO-11-mediated DSB formation or its immediate environment. Although their contributions mayinvolve broader chromatin or DNA damage response regulation, prior literature supports their inclusion as relevant modulators of SPO-11 activity, justifying their analysis within the context of this work.

      The strongest claims seem to be that "HIM-5 is the determinant of X-chromosome-specific crossovers" and "HIM-5 coordinates the actions of the different accessory factors subgroups." Prior work had already shown that mutations in him-5 preferentially reduce meiotic DSBs on the X chromosome. While it is possible that HIM-5 plays a direct role in DSB induction on the X chromosome, the evidence presented here does not strongly support this conclusion. It is also difficult to reconcile this idea with evidence from prior studies that him-5 mutations predominantly prevent DSB formation on the sex chromosomes, while the protein localizes to autosomes.

      HIM-5 is not the only protein that is autosomally enriched but preferentially affects the X chromosome: MES-4 and MRG-1 are both autosomally-enriched but influence silencing of the X chromosome. While HIM-5 appears autosomally-enriched, it does not appear to be autosomal-exclusive. While we would ideally perform ChIP to determine its localization on chromatin, this method for assaying DSB sites is likely insufficient to identify DSB sites which differ in each nucleus and for which there are no known hotspots in the worm.

      him-5 mutants confer an ~50% reduction in total number of breaks and a very profound change in break dynamics (seen by RAD-51 foci (Meneely et al., 2012)). Since the autosomes receives sufficient breaks in this context to attain a crossover in >98% of nuclei, this indicates that the autosomes are much less profoundly impacted by loss of DSB functions than is the X chromosome. Indeed, prior data from co-author, Monica Colaiacovo, showed that fewer breaks occur on the X (Gao, 2015) likely resulting from differences in the chromatin composition of the X and autosome resulting from X chromosome silencing.

      The conclusion that HIM-5 must be required for breaks on the X comes from the examination of DSB levels and their localization in different mutants that impair but do not completely abrogate breaks. In any situation where HIM-5 protein expression is affected (xnd-1, him-17, and him-5 null alleles), breaks on the X are reduced/ eliminated. By contrast, in dsb-2 mutants, where HIM-5 expression is unaffected, both X and autosomal breaks are impacted equally. As discussed above, in the absence of HIM-5 function, there are ~15 breaks/ nucleus. The Ppie1::him-5 transgene is expressed to lower levels than Phim-5::him-5, but in the best case, the ectopic expression of this protein should give a maximum of ~15 breaks (the total # of breaks is thought to be ~30/nucleus). By these estimates, Ppie-1::him-5; him-17 and him-5 null mutants have the same number of breaks. Yet, in the former case, breaks occur on the X; whereas in the latter they do not. The best explanation for this discrepancy is that HIM-5 is sufficient to recruits the DSB machinery to the X chromosome.

      The one experiment that seems to elicit the conclusion that HIM-5 expression is sufficient for breaks on the X chromosome is flawed (see below). The conclusion that HIM-5 "coordinates the activities of the different accessory sub-groups" is not supported by data presented here or elsewhere.

      We have reorganized the discussion to more directly address the reviewers’ concerns. We raise the possibility that HIM-5 has an important role in bringing together the SPO-11 and its interacting components (DSB-1/2/3) with the other DSB inducing factors, including those factors that regulating DSB timing (XND-1), coordination with the cell cycle (REC-1), association with the chromosome axis (PARG-1, MRE-11), and coupling to downstream resection and repair (MRE-11, CEP-1).  

      This raises a natural question: if HIM-5 has such a central role, why are the phenotypes of HIM-5 so mild? We propose that while the loss of DSBs on the X appears mild, more profound effects are seen in the total number, timing, and placement of the DSBs across the genome- all of which are diminished or altered in the absence of HIM-5. The phenotypes of him-5 loss reminiscent of those observed in Prdm9-/- in mice where breaks are relocated to transcriptional start sites and show significant delay in formation. As with PRDM9, the comparatively subtle phenotypes of HIM-5 loss do not diminish its critical role in promoting proper DSB formation in most mammals.

      Like most other studies that have examined DSB formation in C. elegans, this work relies on indirect assays, here limited to the cytological appearance of RAD-51 foci and bivalent chromosomes, as evidence of break formation or lack thereof. Unfortunately, neither of these assays has the power to reveal the genome-wide distribution or number of breaks. These assays have additional caveats, due to the fact that RAD-51 association with recombination intermediates and successful crossover formation both require multiple steps downstream of DSB induction, some of which are likely impaired in some of the mutants analyzed here. This severely limits the conclusions that can be drawn. Given that the goal of the work is to understand the effects of individual factors on DSB induction, direct physical assays for DSBs should be applied; many such assays have been developed and used successfully in other organisms.

      We appreciate the reviewer’s thoughtful comments. We agree that RAD-51 foci are an indirect readout of DSB formation and that their dynamics can be influenced by defects in downstream repair processes. However, in C. elegans, the available methods for directly detecting DSBs are limited. Unlike other organisms, C. elegans lacks γH2AX, eliminating the possibility of using γH2AX as a DSB marker. TUNEL assays, while conceptually appealing, have proven unreliable and poorly reproducible in the germline context. Similarly, RPA foci do not consistently correlate with the number of DSBs and are influenced by additional processing steps.

      Given these limitations, RAD-51 foci remain the most widely accepted surrogate for monitoring DSB formation in C. elegans. While we fully acknowledge the caveats associated with this approach — particularly the potential effects of downstream repair defects — RAD-51 analysis continues to provide valuable insight into DSB dynamics and regulation, especially when interpreted in combination with other phenotypic assessments.

      Throughout the manuscript, the writing conflates the roles played by different factors that affect DSB formation in very different ways. XND-1 and HIM-17 have previously been shown to be transcription factors that promote the expression of many germline genes, including genes encoding proteins that directly promote DSBs. Mutations in either xnd-1 or him-17 result in dysregulation of germline gene expression and pleiotropic defects in meiosis and fertility, including changes in chromatin structure, dysregulation of meiotic progression, and (for xnd-1) progressive loss of germline immortality. It is thus misleading to refer to HIM-17 and XND-1 as DSB "accessory factors" or to lump their activities with those of other proteins that are likely to play more direct roles in DSB induction.

      It is clear that we will not reach agreement about the direct vs indirect roles here of chromatin remodelers/transcription factors in break formation. In yeast, there is a precedent for SPP1 and in mouse for Prdm9, both of which could be described as transcription factors as well, as having roles in break formation by creating an open chromatin environment for the break machinery. We envision that these proteins function in the same fashion. The changes in histone acetylation in the xnd-1 mutants supports such a claim.

      We do not know what the reviewer is referring to in statement that “XND-1 and HIM-17 have previously been shown to be transcription factors that promote the expression of many germline genes.” While the Carelli et al paper indeed shows a role for HIM-17 in expression of many germline genes, there is only one reference to XND-1 in this manuscript (Figure S3A) which shows that half of XND-1 binding sites overlap with the co-opted germline promoters. There is no transcriptional data at all on xnd-1 mutants, save our studies (referenced herein) that XND-1 regulates him-5 expression.

      For example, statements such as the following sentence in the Introduction should be omitted or explained more clearly: "xnd-1 is also unique among the accessory factors in influencing the timing of DSBs; in the absence of xnd-1, there is precocious and rapid accumulation of DSBs as monitored by the accumulation of the HR strand-exchange protein RAD-51.

      We are not sure what is confusing here. The distribution of RAD-51 foci is significantly altered in xnd-1 mutants and peak levels of breaks are achieved as nuclei leave the transition zone (Wagner et al., 2010; McClendon et al., 2016). There is no other mutation that causes this type of change in RAD-51 distribution.

      "The evidence that HIM-17 promotes the expression of him-5 presented here corroborates data from other publications, notably the recent work of Carelli et al. (2022), but this conclusion should not be presented as novel here.

      We have clarified this in the text. We note that this paper showed alterations in him-5 levels by RNA-Seq but they did not validate these results with quantitative RT-PCR. Thus, our studies do provide an important validation of their prior results.

      The other factors also fall into several different functional classes, some of which are relatively well understood, based largely on studies in other organisms. The roles of RAD50 and MRE-11 in DSB induction have been investigated in yeast and other organisms as well as in several prior studies in C. elegans. DSB-1, DSB-2, and DSB-3 are homologs of relatively well-studied meiotic proteins in other organisms (Rec114 and Mei4) that directly promote the activity of Spo11, although the mechanism by which they do so is still unclear.

      Whilst we agree that we understand some of the functions of the homologs, there are clearly examples in other processes of conserved proteins adopting unique regulatory function. We should not presume evolutionary conservation until proven. Indeed the comparison between the Mer2 proteins becomes particularly relevant here. For example, the RMM complex in plants does not contain PRD3, although this protein is thought to have function in DSB formation and repair (Lambing et al, 2022; Vrielynck et al., 2021; Thangavel et al., 2023). In Sordaria, as well, the Mer2 homolog has distinct functions (Tesse et al., 2017).  

      Mutations in PARG-1 (a Poly-ADP ribose glycohydrolase) likely affect the regulation of polyADP-ribose addition and removal at sites of DSBs, which in turn are thought to regulate chromatin structure and recruitment of repair factors; however, there is no convincing evidence that PARG-1 directly affects break formation.

      Our prior collaborative studies on PARG-1 showed that is has a non-catalytic function that promote DSBs that is independent of accumulation of PAR (Janisiw et al., 2020; Trivedi et al., 2022)

      CEP-1 is a homolog of p53 and is involved in the DNA damage response in the germline, but again is unlikely to directly contribute to DSB induction.

      We respectfully disagree with the reviewer’s statement. While CEP-1 is indeed a homolog of p53 and plays a major role in the DNA damage response, prior work from Brent Derry’s lab and from our group (Mateo et al., 2016) demonstrated that specific cep-1 separationof-function alleles affect DSB induction and/or repair pathway choice independently of canonical DNA damage checkpoint activation. In particular, defects in DSB formation observed in certain cep-1 mutants can be rescued by exogenous irradiation, supporting a direct or closely linked role in promoting DSB formation rather than merely responding to damage. Thus, based on these functional data, we considered CEP-1 a relevant factor to include in our analysis. We have now clarified this rationale in the revised manuscript.

      HIM-5 and REC-1 do not have apparent homologs in other organisms and play poorly understood roles in promoting DSB induction. A mechanistic understanding of their functions would be of value to the field, but the current work does not shed light on this. A previous paper (Chung et al. G&D 2015) concluded that HIM-5 and REC-1 are paralogs arising from a recent gene duplication, based on genetic evidence for a partially overlapping role in DSB induction, as well as an argument based on the genomic location of these genes in different species; however, these proteins lack any detectable sequence homology and their predicted structures are also dissimilar (both are largely unstructured but REC-1 contains a predicted helical bundle lacking in HIM-5). Moreover, the data presented here do not reveal overlapping sets of genetic or physical interactions for the two genes/proteins. Thus, this earlier conclusion was likely incorrect, and this idea should not be restated uncritically here or used as a basis to interpret phenotypes.

      Actually, there is quite good bioinformatic analysis that the rec-1 and him-5 loci evolved from a gene duplication and that each share features of the ancestral protein (Chung et al., 2015). We are sorry if the reviewer casts aspersions on the prior literature and analyses. The homology between these genes with the ancestral protein is near the same degree as dsb-1, dsb-2, or dsb-3 to their ancestral homologs (<17%).

      DSB-1 was previously reported to be strictly required for all DSB and CO formation in C. elegans. Here the authors test whether the expression of HIM-5 from the pie-1 promoter can rescue DSB formation in dsb-1 mutants, and claim to see some rescue, based on an increase in the number of nuclei with one apparent bivalent (Figure 2C). This result seems to be the basis for the claim that HIM-5 coordinates the activities of other DSB proteins. However, this assay is not informative, and the conclusion is almost certainly incorrect. Notably, a substantial number of nuclei in the dsb-1 mutant (without Ppie-1::him-5) are reported as displaying a single bivalent (11 DAPI staining bodies) despite prior evidence that DSBs are absent in dsb-1 mutants; this suggests that the way the assay was performed resulted in false positives (bivalents that are not actually bivalents), likely due to inclusion of nuclei in which univalents could not be unambiguously resolved in the microscope. A slightly higher level of nuclei with a single unresolved pair of chromosomes in the dsb-1; Ppie-1::him-5 strain is thus not convincing evidence for rescue of DSBs/CO formation, and no evidence is presented that these putative COs are X-specific. The authors should provide additional experimental evidence - e.g., detection of RAD-51 and/or COSA-1 foci or genetic evidence of recombination - or remove this claim. The evidence that expression of Ppie-1::him-5 may partially rescue DSB abundance in dsb-2 mutants is hard to interpret since it is currently unknown why C. elegans expresses 2 paralogs of Rec114 (DSB-1 and DSB-2), and the age-dependent reduction of DSBs in dsb-2 mutants is not understood.

      We have removed this claim in part because we have been unable to create the triple mutants strains to analyze COSA-1 foci.

      To the point about 11 vs 12 DAPI bodies: the literature is actually replete with examples of 11 DAPI bodies vs 12 in mutants with no breaks:

      Hinman al., 2021: null allele of dsb-3 has an average of 11.6 +/- 0.6 breaks;

      Stamper et al, 2013, show just over 60% of dsb-1 nuclei with 12 DAPI bodies and 5-10% with 10 DAPI bodies. (Figure 1);

      In addition, we also previously showed (Machovina et al., 2016) that a subset of meiotic nuclei have a single RAD-51 focus and can achieve a crossover. RAD-51 foci in spo-11 were also reported in Colaiacovo et al., 2003.

      Several of the factors analyzed here, including XND-1, HIM-17, HIM-5, DSB-1, DSB-2, and DSB-3, have been shown to localize broadly to chromatin in meiotic cells. Coimmunoprecipitation of pairs of these factors, even following benzonase digestion, is not strong evidence to support a direct physical interaction between proteins.

      Similarly, the super-resolution analysis of XND-1 and HIM-17 (Figure 1EF) does not reveal whether these proteins physically interact with each other, and does not add to our understanding of these proteins functions, since they are already known to bind to many of the same promoters. Promoters are also likely to be located in chromatin loops away from the chromosome axis, so in this respect, the localization data are also confirmatory rather than novel.

      While the binding to promoters would be expected to be on DNA loops, that has not been definitively shown in the worm germ line. The supplemental data of the Carelli paper suggests that there are ~250 binding sites for each protein at these coopted promoters. This could not account for crossover map seen in C. elegans.

      The reviewer states correct that we do not reveal that these proteins interact, but we have shown that the two proteins co-IP and have a Y2H interaction. This interaction is supporedt by a recent publication (Blazickova et al., 2025) corroborating this conclusion and identifies XND-1 in HIM-17 co-IPs also in the presence of benzonase. We do now show, however, by immuno-localization that the two proteins appear to be adjacent, but nonoverlapping. As now described in the text, AlphaFold 3 modeling and structural analysis suggests that the two proteins do interact directly and that the tagged 5’ end of HIM-17 used in our studies is likely to be at least 200nm from the putative XND-1 binding interface, a distance that is consistent with our confocal images showing frequent juxtaposition of the two proteins.

      The phenotypic analysis of double mutant combinations does not seem informative. A major problem is that these different strains were only assayed for bivalent formation, which (as mentioned above) requires several steps downstream of DSB induction. Additionally, the basis for many of the single mutant phenotypes is not well understood, making it particularly challenging to interpret the effects of double mutants. Further, some of the interactions described as "synergistic" appear to be additive, not synergistic. While additive effects can be used as evidence that two genes work in different pathways, this can also be very misleading, especially when the function of individual proteins is unknown. I find that the classification of genes into "epistastasis groups" based on this analysis does not shed light on their functions and indeed seems in some cases to contradict what is known about their functions. ‘

      As described above, each of the proteins analyzed is thought to have a direct role in regulating meiotic DSB formation and single mutant phenotypes are consistent with this interpretation. In almost all-if not all- of these cases, IR induced breaks suppress univalent phenotypes (or uncover a downstream repair defect (e.g. in mre-11)) supporting this conclusion. We have changed the terminology from “epistasis groups” since this is not strict epistasis, but rather, “functional groups”.  

      The yeast two-hybrid (Y2H) data are only presented as a single colony. While it is understandable to use a 'representative' colony, it is ideal to include a dilution series for the various interactions, which is how Y2H data are typically shown.

      The Y2H data are presented as spots on a plate and are from three to four individual transformants per interaction tested, and are not individual colonies. The experiment was repeated in triplicate from different transformations. We have now made this clearer in the materials and methods section. This approach has been successfully used to examine protein interactions in our prior manuscripts of yeast and human proteins [Gaines et al (2015) Nat. Comms 6:7834; Kondrashova et al (2017) Cancer Discovery 7:984; Garcin et al (2019) PLoS Genetics 15:e1008355; Bonilla et al (2021) eLife 1: e68080) Prakash et al (2022) PNAS 119: e2202727119, etc]

      Additional (relatively minor) concerns about these data:

      (1) Several interactions reported here seem to be detected in only one direction - e.g., MRE-11-AD/HIM-5-BD, REC-1-AD/XND-1-BD, and XND-1-AD/HIM-17-BD - while no interactions are seen with the reciprocal pairs of fusion proteins. I'm not sure if some of this is due to pasting "positive" colony images into the wrong position in the grid, but this should be addressed.

      The asymmetry in the interactions observed is due to the well-known phenomenon in yeast two-hybrid (Y2H) assays where certain plasmids exhibit self-activation when fused in one orientation, making interpretation of reciprocal interactions challenging. In our experiment, some of the plasmids indeed showed self-activation in one direction, which likely accounts for the lack of interaction seen with the reciprocal pairs of fusion proteins. We have clarified this point in the Methods.

      (2) DSB-3 was only assayed in pairwise combinations with a subset of other proteins; this should be explained; it is also unclear why the interaction grids are not symmetrical about the diagonal.

      We have now completed the analysis by adding the interactions of DSB-3 with the remaining proteins that were missing from the initial set.

      (3) I don't understand why the graphic summaries of Y2H data are split among 3 different figures (1, 2, and 3).

      We chose to split the graphic summaries of the Y2H data across Figures 1, 2, and 3 because we felt this organization better aligns with the flow of the results presented in each figure. Each set of interactions is shown in the context of the specific experiments and findings discussed in those sections, which we believe helps provide a clearer and more logical presentation of the data.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      Figure 1: B) The IP is difficult to interpret - there is a band of the corresponding size to XND-1 in the control lane calling into question the specificity of the IP/Western.

      We added a supplemental figure with the specificity of the antibody showing that there is a background non-specific band.

      C) More information about the mass spectrometry should be included. No indication of the number of times a peptide was identified, or the overall coverage of the identified proteins.

      Done

      This is important as in the results section (line 114) the authors indicate that there was "strong" interaction yet there is no way to assess this.

      D) Why wasn't hatching measured in the him-5p::him-5; him-17(ok424) strain?

      Great question. I guess we need to do this while back out for review. If anyone has suggestions of what to say here. Clearly we overlooked this point but do have the strain.

      E) Quantification of the cytology should be included.

      We have now quantified overlap between XND-1 and HIM-17

      Figure 2: C) Statistics should be included.

      Done

      E) Quantification should be included for the cytology. I recommend changing the eals15 to HIM-5.

      We included better images showing whole gonads instead of one or two nuclei. We were not sure what the reviewers want us to quantify here since the relocalization of the protein to the cytoplasm is very clear.

      I have a general issue with the use of the term epistasis - this is used to order gene function based on different mutant phenotypes, usually with null alleles. While I think the authors have valid points with how they group the different SPO-11 accessory proteins, I do not think they should use the word epistasis, but rather genetic interactions.

      We appreciate the reviewers thoughts on this matter and have removed the term epistasis and use functional groups or genetic interactions throughout the text.

      Figure 4 and the nature of the X chromosome: First, I think it would help the non-C. elegans reader to include a little more information on the X chromosome with respect to its differences compared to the autosomes. I also think that, if possible, it would be beneficial to include a model of the X in Figure 4.

      We have added more about X/autosome differences in the intro and during the discussion of HIM-5 function and have added a figure showing difference in the behavior of the X/autosomes during DSB/crossover formation.

      Minor points:

      Abstract: Given the findings of Silva and Smolikove on SPO-11 breaks, I recommend removing "early" from line 28 in the Abstract.

      Done

      Introduction (line 93): I think "biochemical studies" is a stretch here - I recommend "interaction studies".

      Done

      Results: (lines 160-161): mutations are not required for breaks. Line 172, there is a problem with the sentence.

      Corrected

      Reviewer #2 (Recommendations For The Authors):

      Major comments:

      (1) Figure 1B- The signal for XND-1 seems to appear both in the control and him-17::HA IP. Do the authors have tested the specificity of the XND-1 antibody?

      We included a supplementary figure demonstrating the specificity of the XND-1 antibody by Western blot. This was also previously published (Wagner et al., 2010)

      (2) Figure 1D - can the authors provide an explanation why the him-5p::him-5 transgene that drives a higher expression than pie-1p::him-5 fails to suppress the Him phenotype seen in him-17? What are the HIM-5 levels like in these two strains compared to N2 and him-17 null mutants? Can this information provide explanation for the differential effect of the him-5 transgenes?

      We previously reported that him-5p::him-5 drives higher expression than pie-1p::him-5 (McClendon et al, 2016).

      The reason that him-5p::him-5 does not rescue, despite higher wild type expression is that HIM-17 directly regulates expression of him-5. Since HIM-17 does not regulate the pie-1 promoter, the pie-1p::him-5 construct can at least partially suppress the him-17 mutation.

      We have (hopefully) explained this better in the text.  

      (3) Line 102- the subheading "HIM-5 is the essential factor for meiotic breaks in the Xchromosome" may not be appropriate for this section. This is what has previously been known. However, the results in Figure 1 demonstrate that a him-5 transgene can partially rescue the him-17 and ¬xnd-1 phenotype, but not that it is essential for meiotic DSB formation on X chromosomes.

      We think some of the concern here is sematic and have changed the phraseology to say that HIM-5 is SUFFICIENT for DSBs on the X… which had not previously been shown.

      Vis-à-vis the X chromosome, in all genetic backgrounds examined, the absence of HIM-5 consistently results in a complete lack of DSBs on the X. For instance, in dsb-2 mutants— where HIM-5 is still expressed—DSBs are reduced genome-wide, but the X chromosome occasionally retains breaks. In contrast, even a weak allele of him-17 results specifically in the loss of X chromosome breaks, underscoring a unique requirement for HIM-5 in promoting DSBs on the X. While Figure 1 shows that a him-5 transgene can partially rescue him-17 and xnd-1 phenotypes, the consistent observation that X breaks are absent without HIM-5 supports its classification as sufficient for DSB formation on the X chromosome.

      (4) Figure 1E - please consider enlarging the images and showing multiple examples.

      Done.

      I also suggest that the authors perform a more rigorous analysis to support the conclusion that XND-1 and HIM-17 localize away from the axis by quantifying multiple images and doing line-scan analysis.

      Provided. New images are provided in both, the main and supplemental figures, and quantification is included. There is no detectable overlap of the two protein with one another or the DNA axes (see quantification of overlap in Fig. 1).

      (5) Line 162 - This is the first mention of DSB-1, DSB-2, and DSB-3 in the paper. DSB-1 and DSB-2 are Rec114 homologs in C. elegans (Tesse et al., 2017), while DSB-3 is a homolog of Mei4 (Hinman et al., 2021). These proteins should be properly introduced in the introduction with appropriate citations.

      Done. We appreciate the reviewer pointing out that this was the first reference to these genes.

      (6) Line 169 - the rationale for this experiment is unclear. Why did the Y2H interaction between HIM-5 and DSB-1 prompt the authors to test the rescue of dsb-1 or dsb-2 phenotypes by the ectopic expression of him-5? Do the authors have evidence that HIM-5 level is reduced in dsb-1 or dsb-2 mutants?

      We have reorganized this section to better explain the motivation for looking at these interactions. We did see a difference in the localization in HIM-5 in the dsb-1 mutant animals and we did have a sense that HIM-5 was critical for breaks on the X. We reasoned that it could have independent functions in promoting breaks that were not yet appreciated so wanted to do this experiment.

      (7) Line 172 - "very slightly reduced". This claim requires statistical analysis.

      We added statistical analysis, but we also removed this claim.

      (8) Figures 2C and 2D - Can the authors provide an explanation why the pie-1p::him-5 transgene fails to suppress the phenotypes in dsb-1, while the him-5p::him-5 trasgene can? Again, the rationale for these experiments is unclear. Because of this, the interpretation is also unclear.

      The difference in rescue between the pie-1p::him-5 and him-5p::him-5 transgenes likely reflects differences in expression levels. As previously shown (McClendon et al., 2016), the him-5p::him-5 construct results in significantly higher expression of HIM-5 protein compared to pie-1p::him-5. This elevated expression likely explains its ability to partially rescue the dsb-1 phenotype. In contrast, the lower expression driven by the pie-1 promoter is insufficient to compensate for the absence of dsb-1 function. We have clarified the rationale and interpretation of these experiments in the revised manuscript to better reflect this point.

      (9) Lines 184-185 - the data for endogenously tagged HIM-5::3xHA are not shown anywhere in the paper. This must be shown.

      We have added this in the supplemental figures.

      (10) Figure 2D and 2E - what does the localization of pie-1p::him-5::GFP (eaIs15) and him5p::him-5::GFP (eaIs4) look like in wild-type and dsb-1 mutants? Are the cytoplasmic aggregates caused by increased levels of HIM-5 expression? Can the differential behavior of him-5 transgenes provide explanation for differential rescues?

      We now show both live and fixed images of Phim-5::him-5::gfp transgenes, as well as the localization of the endogenously HA-tagged HIM-5 locus (Figure 2 and S3). In all cases, the protein is initially nuclear and then absent from meiotic nuclei with similar timing. The Ppie1::him-5 transgene was very difficult to image due to low expression (even in wild type) so it not shown here. We presume it is the slightly elevated level of expression of the Phim5::him-5::gfp that can explain the differential rescue.

      (11) Lines 221-222, where are the results shown? Please refer to Figure S3.

      Done

      (12) Figure S3 - these need statistical analyses.

      Done

      (13) Lines 230-231 - what about the rec-1; parg-1; cep-1 triple mutant?

      This is an excellent suggestion and not one we have not yet pursued. Given the lack of strong phenotypes in all combination of double mutants, we prioritized other experiments . However, we agree that examining the rec-1; parg-1; cep-1 triple mutant would provide a valuable test of whether these factors act in the same pathway, and we appreciate the reviewer highlighting this potential future direction.

      (14) Line 298 - I suggest the authors take a look at the Alphafold prediction of DSB-1/DSB-2/DSB-3 and the comparison to human and budding yeast Rec114/Mei4 complex in Guo et al., 2022 eLife, which could provide insights into the Y2H results.

      We thank the reviewer for these comments and have indeed used these interactions and predicted homologies to zero in a region of interaction between these proteins that resembles what is seen in humans and yeast with a dimer of REC114 like proteins wraps stabilizing a central Mei4 helix . This is now shown in Figure 3H, I. Satisfyingly, this modeling predicts that a trimer comprised of 2 DSB-1 proteins with DSB-3 is more stable than a DSB1-DSB-2-DSB-3 trimer. This might explain why DSB-2 is not required in young adults and only becomes essential as DSB-1 levels drop in older animals (Rosu et al., 2013)

      (15) Can the authors introduce mutations within the DSB-1 interfaces that disrupt the interaction to either SPO-11 or DSB-2?

      We have begun to address this question by introducing targeted mutations within DSB-1. As shown in Figure 3E and 3F, mutations in the C-terminal region of DSB-1—which includes a core of four α-helices—disrupt its interaction with DSB-2 and DSB-3, but not with SPO-11. These findings suggest that the C-terminus mediates interactions specifically with DSB2 and DSB-3

      (16) Line 323 - The him-5 phenotypes are too weak to support the idea that it serves as the linchpin for the whole DSB complex. Do the authors have an explanation for why him-5 mutants exhibit X-chromosome-specific DSB defects?

      In response to the reviewer, above, and in the text, we have included a more detailed explanation of why we think HIM-5 has a key role in coordinating meiotic break formation. Although, identified for its role on the X, the phenotypes associated with DSB formation in the mutant are really quite pleiotropic and severe.

      (17) Line 436 - C. elegans lacks DSB hotspots.

      Removed

      Minor comments:

      (1) Figure 1A - please show the raw data for the yeast two-hybrid.

      We show representative yeast colonies in Figure S3.

      (2) It looks like the labeling for Figure 1B and 1C are switched.

      Fixed.

      (3) Figure 1B - what does the red box indicate? Please explain it in the legend.

      It indicates the XND-1 band. We added that information in the legend.

      (4) Figure 1C - in the legend, it was noted that the results are from GFP pulldowns of HIM17::GFP. However, the method for Figure 1B and the method section noted that HIM-17 was tagged with 3xHA, and the pull-down was performed using anti-HA affinity matrix. Please reconcile this discrepancy.

      That’s because they were done in two different sets of experiments. For the IPs we used a HIM-17::HA strain and for the MS, a HIM-17::GFP strain.

      (5) Also in Figure 1C - please call Table S2 in the main text when discussing the mass spec results. Also, it is not clear what HIM-17 and GFP indicate in the table. What makes CKU80 different from the other proteins listed under GFP? Please explain more clearly in the legend.

      We have move the table to supplemental data where we have included all of the peptide counts and gene coverage. We have included in the revised method rationale for inclusion in this table which explains why CKU-80 differs.

      (6) Line 527 - it is unclear what experiment was done for HIM-17. Please revise it to indicate that this is for "HIM-17 immunoprecipitation". Also please indicate the strain used for HIM17 pull-down (AV280?).

      (7) Line 113- please be specific about how the HIM-17 IP was performed. Which epitope and strains are used for pull-downs?

      This indeed was AV280. This has been added to the text and methods.

      (8) Figure 1D- What does ND mean? In the text, it was stated that there was only a minor suppression of hatching rates. The hatching rate for him-5p::him-5; him-17 must have been measured, and the data must be presented.

      ND does mean not determined. We have removed the statement about “minor suppression”. We only tested the overall population dynamics in the Phim-5::him-5;him17(ok424) and the DAPI body counts. The failure to suppress the latter suggests there would be no enect on hatching rates, although we did not test this directly. Since we had done this for the Ppie-1::him-5;him-17 strain, we provided this information to further support the claims of genetic rescue by ectopic expression.

      (9) Line 151 - please specify that STED was used.

      We have removed the STED images, and just show the confocal images with Lightning Processing.

      (10) Figure 1E- the authors suggested that HIM-17 and XND-1 mainly localize to autosomes but not the X chromosome. However, there is not enough evidence that the chromosome excluded from HIM-17 staining is indeed an X chromosome.

      (11) Figure 1E (Line 154) - what are the active chromatin markers examined? Where are the data?

      We have previously shown that the chromosome lacking XND-1 staining is the X (Wagner et al., 2010). The X is heterochromatic and chromatin marks associated with active transcription, including H3K4me3 and HTZ-1 (a variant H2A), preferentially localize to autosomes, effectively anti-marking the X chromosome. As shown in the new Figure 1E, a single chromosome has very little XND-1 and HIM-17 associated proteins. This is the X chromosome.

      (12) Line 172 - It should be a comma instead of the period after "In dsb-1 mutants".

      Fixed

      (13) Figure S3H-K - I suggest the authors indicate the alleles of mre-11 (null vs. iow1) on the graph, similarly to him-5(e1490) to avoid confusion.

      Done

      (14) Lines 294 and 600 - Guo et al. 2022 is now published in eLife. The authors must cite the published paper, not the preprint.

      Fixed

      (15) Line 407 - the reference Carelli et al., 2022 is missing.

      Added

      (16) Line 766 - please remove "is" before nuclear.

      Done

      Reviewer #3 (Recommendations For The Authors):

      Major issues:

      In my view, the most interesting mechanistic finding in the paper is the evidence that HIM-5 may not bind to chromatin in the absence of DSB-1. If validated, this would suggest that HIM-5 is likely to be directly involved in a process that promotes break formation, in contrast to factors such as HIM-17 and XND-1. It does not, however, support the idea that HIM-5 is at the top of a hierarchy of DSB factors, as it is interpreted here. More importantly, the data supporting this claim are unconvincing; only a single image of an unfixed gonad from an animal expressing HIM-5::GFP is shown. Immunofluorescence should be performed and the results must be quantified.

      We have provided additional images of the HIM-5 relocalization to show that we observed this in both fixed and live worms with two different tagged strains. The exclusion from the nucleus is seen in all scenarios. Whether the protein now accumulates exclusively in the cytoplasm/ is destabilized is challenging to address with the fixed images due to the arbitrariness of defining “background” staining.

      More generally, this type of analysis, looking at the interdependence of different factors for their association with chromosomes, is much more informative than the genetic interaction data presented in the paper, which does not seem to provide any mechanistic insights into the functions of the factors analyzed. The paper could potentially be greatly improved through a more extensive, systematic analysis of the interdependence of DSBpromoting factors for their localization to chromosomes.

      We have at least added this for XND-1 and HIM-17 and show they are not interdependent for chromosome association. We also provide for the first time data on the localization of HIM-5 in the dsb-1 mutant. Many of the other interactions have already been shown in the literature and/or were not warranted base on the lack of genetic interaction we present here.

      Minor issues:

      The title is vague and inconclusive. A more concrete title summarizing the major findings would help readers to assess whether the work is of interest.

      We have discussed the title extensively with all authors and all would like to keep the current title.

      The authors claim that the expression of HIM-5 from a different promoter (Ppie-1::him-5) but not its endogenous promoter (Phim-5::him-5) can partially rescue the DSB defect in him-17 mutants. To support this claim, they should really quantify the germline expression of HIM-5 in wild-type, him-17, him-17; Ppie-1::him-5, and Phim-5::him-5; him-17.

      We had previously reported the expression in the N2 background of both transgenes (McClendon et al., 2016)

      Panel O appears to be missing from Figure S3.

      Fixed

      The evidence for chromosome fusions in cep-1; mre-11 mutants shown in S4D is not convincing and the claim should be removed unless stronger evidence can be obtained.

      A clearer image has been added

      The basis of the following statement is unclear: "Furthermore, rec-1;him-5 double mutants give an age-dependent severe loss of DSBs (like dsb-2 mutants) suggesting that the ancestral function of the protein may have a more profound effect on break formation." The manuscript does not seem to include data regarding age-dependent loss of DSBs and no other publication is cited to support this claim. The interpretation is also perplexing; I think that it may be predicated on the idea that REC-1 and HIM-5 are paralogs, but as stated above, this claim is not well supported and is likely specious.

      We have added the reference. This was shown in Chung et al., 2013 – the paper that presented the cloning of the rec-1 locus.

  2. Sep 2025
    1. Reviewer #3 (Public review):

      Summary:

      Knoerzer-Suckow et al. explore the mechanisms of organelle inheritance during endodyogeny in Toxoplasma gondii using an innovative dual-labeling approach to track the distribution of maternal organelles into daughter parasites. They can clearly distinguish between maternal and daughter-derived organelles using their dual-labeling Halo Tag approach. They reveal that different organelles are trafficked to daughter parasites in three broad patterns, which they have binned into groups. Their findings reveal a role for MyoF in the inheritance of micronemes and rhoptries, and notably, they observe that the inner membrane complex (IMC) is not recycled. Instead, the IMC undergoes a pronounced relocalization to the posterior of the maternal cell, where it is likely targeted for degradation.

      Strengths:

      The data surrounding their MyoF knockdown experiments, IMC degradation, and trafficking of MIC2 after auxin washout are compelling. These data add to the knowledge of how organelle inheritance occurs in T. gondii, increasing the field's understanding of endodyogeny.

      Weaknesses:

      (1) The evidence provided to support the claim that microneme and rhoptry inheritance specifically traffics through the residual body does not sufficiently substantiate the claim. The temporal resolution of the imaging is inadequate to precisely trace the path of microneme and rhoptry inheritance. From the data shown in the manuscript, it can be concluded that at least some of the micronemes and rhoptries might be recycled through the residual body, but it is unclear whether many or most of these organelles do so.

      (2) The absence of specific markers for the residual body brings into question whether microneme inheritance occurs through a discrete residual body or simply via the basal end of the maternal parasite. The authors need a robust way to visualize and define the residual body to claim that micronemes and rhoptries are specifically transported through this structure.

    1. Reviewer #1 (Public review):

      Summary:

      The extent to which P. falciparum liver stage parasites export proteins into the host cell is unclear. Most blood-stage exported proteins tested in liver stages were not exported. An exception is LISP2, which is exported in P. berghei but not P. falciparum liver stages. While the machinery for export is present in liver stages, efforts to demonstrate export have so far been mostly unsuccessful. Parasite proteins exported during the liver stage could be presented by MHC and thereby become the target of immune control, an incentive to study liver stage export and identify proteins exported during this stage. However, particularly for P. falciparum, it is very difficult to study liver stages.

      This work studies LSA3 in P. falciparum blood and liver stages. The authors show that this protein is exported into the host cell in blood stages, but in liver stages, no or only very little export was detected. A disruption of LSA3 reduced liver stage load in a humanized mouse model, indicating this protein contributes to efficient development of the parasites in the liver.

      The paper also studies the localization of LSA3 in blood stages and uses a known inhibitor to show that it is processed by plasmepsin 5, a protease important for protein trafficking. The work also shows that LSA3 is not needed for passage through the mosquito.

      Strengths:

      The main strength of this work is the use of the humanized mouse model to study liver stages of P. falciparum, which is technically challenging and requires specialized facilities. The biochemical analysis of LSA3 localization and processing by plasmepsin 5 is thorough and mostly overcame adverse issues such as a cross-reactive antibody and the negative influence of the GFP-tag on LSA3 trafficking. The mosquito stage analysis is also notable, as these kinds of studies are difficult with P. falciparum. However, there was no evidence for a function of LSA3 in mosquito stages.

      Weaknesses:

      The cross-reactivity of the antibody, together with the co-infection strategy, prevents reliable assessment of LSA3 localization in liver stages. Despite this, it seems LSA3 is not exported in liver stages, and the paper does not bring us closer to the original goal of finding an exported liver stage protein.

      While the localization analysis in blood stages is well done and thorough, the advance is somewhat limited. LSA3 may be in structures like J dots, but this hypothesis was not tested. Although parasites with a disrupted LSA3 were generated, the function of this protein was not explored. Given that a previous publication found some inhibitory effect of LSA3 antibodies on blood stage growth, a comparison of the growth of the LSA3 disruption clones with the parent would have been very welcome and easy to do. At this point, LSA3 is one more of many proteins exported in blood stages for which the function remains unclear.

      It might be possible to refine some of the conclusions. The impact on liver stage development is interesting, but which phase of the liver stage is affected, and the phenotype remains largely unknown. The co-infection (WT together with LSA3 mutant) has the advantage of a direct comparison of the mutant with the control in the same liver, but complicates phenotypic analysis if the LSA3 antibody is also cross-reactive in liver stages. This issue adds a question mark to the shown localization and precludes phenotypic comparisons. The authors write that they do not know if the cross-reactive protein is expressed at that stage. But this should be immediately evident from the mixed WT/mutant infection. If all cells are positive for LSA3, there is a cross-reaction. If about half of the cells are negative, there isn't. In the latter case, the localization shown in the paper is indeed LSA3, and morphological differences between WT and LSA3 disruption could be assessed without additional experiments.

      Significance:

      The conclusion from the paper that "our study presents just the second PEXEL protein so far identified as important for normal P. falciparum liver-stage development and confirms the hypothesized potential of exported proteins as malaria vaccine candidates" is partially misleading. Neither LISP2 nor LSA3 seems to be exported in P. falciparum liver stages, and we can't confirm the potential of vaccines with proteins exported in this stage. LSA3 is still important and may still be the target of the immune response, but based on this work, probably not due to export in liver stages.

    1. (Try it out: Download Links to an external site. and install the Hypothesis extension to view an annotation on this page! By default, annotations will be public, so be mindful of that.)

      Isn't it cool to have this extra layer of discussion? I could tag my annotation, share a link with further resources, and more.

    1. (Try it out: Download Links to an external site. and install the Hypothesis extension to view an annotation on this page! By default, annotations will be public, so be mindful of that.)

      Isn't it cool to have this extra layer of discussion? I could tag my annotation, share a link with further resources, and more.

    1. Author response:

      The following is the authors’ response to the previous reviews

      Reviewer #1 (Public review): 

      Summary: 

      The study by Klug et al. investigated the pathway specificity of corticostriatal projections, focusing on two cortical regions. Using a G-deleted rabies system in D1-Cre and A2a-Cre mice to retrogradely deliver channelrhodopsin to cortical inputs, the authors found that M1 and MCC inputs to direct and indirect pathway spiny projection neurons (SPNs) are both partially segregated and asymmetrically overlapping. In general, corticostriatal inputs that target indirect pathway SPNs are likely to also target direct pathway SPNs, while inputs targeting direct pathway SPNs are less likely to also target indirect pathway SPNs. Such asymmetric overlap of corticostriatal inputs has important implications for how the cortex itself may determine striatal output. Indeed, the authors provide behavioral evidence that optogenetic activation of M1 or MCC cortical neurons that send axons to either direct or indirect pathway SPNs can have opposite effects on locomotion and different effects on action sequence execution. The conclusions of this study add to our understanding of how cortical activity may influence striatal output and offer important new clues about basal ganglia function. 

      The conceptual conclusions of the manuscript are supported by the data, but the details of the magnitude of afferent overlap and causal role of asymmetric corticostriatal inputs on some behavioral outcomes may be a bit overstated given technical limitations of the experiments. 

      For example, after virally labeling either direct pathway (D1) or indirect pathway (D2) SPNs to optogenetically tag pathway-specific cortical inputs, the authors report that a much larger number of "non-starter" D2-SPNs from D2-SPN labeled mice responded to optogenetic stimulation in slices than "non-starter" D1 SPNs from D1-SPN labeled mice did. Without knowing the relative number of D1 or D2 SPN starters used to label cortical inputs, it is difficult to interpret the exact meaning of the lower number of responsive D2-SPNs in D1 labeled mice (where only ~63% of D1-SPNs themselves respond) compared to the relatively higher number of responsive D1-SPNs (and D2-SPNs) in D2 labeled mice. While relative differences in connectivity certainly suggest that some amount of asymmetric overlap of inputs exists, differences in infection efficiency and ensuing differences in detection sensitivity in slice experiments make determining the degree of asymmetry problematic. 

      It is also unclear if retrograde labeling of D1-SPN- vs D2-SPN- targeting afferents labels the same densities of cortical neurons. This gets to the point of specificity in some of the behavioral experiments. If the target-based labeling strategies used to introduce channelrhodopsin into specific SPN afferents label significantly different numbers of cortical neurons, might the difference in the relative numbers of optogenetically activated cortical neurons itself lead to behavioral differences? 

      We thank the reviewer for the comments and for raising additional interpretations of our results. We agree that determining the relative number of D1- versus D2-SPN starter cells would allow a more accurate estimate of connectivity. However, due to current technical limitations, achieving this level of precision remains challenging. As the reviewer also noted, differences in the number of cortical neurons targeting D1- versus D2-SPNs could introduce additional complexity to the functional effects observed in the behavioral experiments. Moreover, functional heterogeneity is likely to exist not only among cortical neurons projecting to striatal D1- or D2-SPNs, but also within the striatal D1- and D2-SPN populations themselves. Addressing these questions at the single-neuron level will require more refined viral tools in combination with improved recording and manipulation techniques. Despite these limitations, our results suggest that a subpopulation of cortical neurons selectively targets striatal D1-SPNs, supporting a functional dichotomy of pathway-specific corticostriatal subcircuits in the control of behavior.   

      Reviewer #2 (Public review): 

      Summary: 

      Klug et al. use monosynaptic rabies tracing of inputs to D1- vs D2-SPNs in the striatum to study how separate populations of cortical neurons project to D1- and D2-SPNs. They use rabies to express ChR2, then patch D1-or D2-SPNs to measure synaptic input. They report that cortical neurons labeled as D1-SPN-projecting preferentially project to D1-SPNs over D2-SPNs. In contrast, cortical neurons labeled as D2-SPN-projecting project equally to D1- and D2-SPNs. They go on to conduct pathway-specific behavioral stimulation experiments. They compare direct optogenetic stimulation of D1- or D2-SPNs to stimulation of MCC inputs to DMS and M1 inputs to DLS. In three different behavioral assays (open field, intra-cranial self-stimulation, and a fixed ratio 8 task), they show that stimulating MCC or M1 cortical inputs to D1-SPNs is similar to D1-SPN stimulation, but that stimulating MCC or M1 cortical inputs to D2-SPNs does not recapitulate the effects of D2-SPN stimulation (presumably because both D1- and D2-SPNs are being activated by these cortical inputs). 

      Strengths: 

      Showing these same effects in three distinct behaviors is strong. Overall, the functional verification of the consequences of the anatomy is very nice to see. It is a good choice to patch only from mCherry-negative non-starter cells in the striatum. This study adds to our understanding of the logic of corticostriatal connections, suggesting a previously unappreciated structure. 

      Weaknesses: 

      One limitation is that all inputs to SPNs are expressing ChR2, so they cannot distinguish between different cortical subregions during patching experiments. Their results could arise because the same innervation patterns are repeated in many cortical subregions or because some subregions have preferential D1-SPN input while others do not. 

      Thank you for raising this thoughtful concern. It is indeed not feasible to restrict ChR2 expression to a specific cortical region using the first-generation rabies-ChR2 system alone. A more refined approach would involve injecting Cre-dependent TVA and RG into the striatum of D1- or A2A-Cre mice, followed by rabies-Flp infection. Subsequently, a Flp-dependent ChR2 virus could be injected into the MCC or M1 to selectively label D1- or D2-projecting cortical neurons. This strategy would allow for more precise targeting and address many of the current limitations.

      However, a significant challenge lies in the cytotoxicity associated with rabies virus infection. Neuronal health begins to deteriorate substantially around 10 days post-infection, which provides an insufficient window for robust Flp-dependent ChR2 expression. We have tested several new rabies virus variants with extended survival times (Chatterjee et al., 2018; Jin et al., 2024), but unfortunately, they did not perform effectively or suitably in the corticostriatal systems we examined.

      In our experimental design, the aim is to delineate the connectivity probabilities to D1 or D2-SPNs from cortical neurons. Our hypothesis considered includes the possibility that similar innervation patterns could occur across multiple cortical subregions, or that some subregions might show preferential input to D1-SPNs while others do not, or a combination of both scenarios. This leads us to perform a series behavior test that using optogenetic activation of the D1- or D2-projecting cortical populations to see which could be the case.

      In the cortical areas we examined, MCC and M1, during behavioral testing, there is consistency with our electrophysiological results. Specifically, when we stimulated the D1-projecting cortical neurons either in MCC or in M1, mice exhibited facilitated local motion in open field test, which is the same to the activation of D1 SPNs in the striatum along (MCC: Fig 3C & D vs. I; M1: Fig 3F & G vs. L). Conversely, stimulation of D2-projecting MCC or M1 cortical neurons resulted in behavioral effects that appeared to combine characteristics of both D1- and D2-SPNs activation in the striatum (MCC: Fig 3C & D vs. J; M1: Fig 3F & G vs. M). The similar results were observed in the ICSS test. Our interpretation of these results is that the activation of D1-projecting neurons in the cortex induces behavior changes akin to D1 neuron activation, while activation of D2-projecting neurons in the cortex leads to a combined effect of both D1 and D2 neuron activation. This suggests that at least some cortical regions, the ones we tested, follow the hypothesis we proposed.

      There are also some caveats with respect to the efficacy of rabies tracing. Although they only patch non-starter cells in the striatum, only 63% of D1-SPNs receive input from D1-SPN-projecting cortical neurons. It's hard to say whether this is "high" or "low," but one question is how far from the starter cell region they are patching. Without this spatial indication of where the cells that are being patched are relative to the starter population, it is difficult to interpret if the cells being patched are receiving cortical inputs from the same neurons that are projecting to the starter population. The authors indicate they are patching from mCherry-negative neurons within the region of the mCherry-positive neurons, but since the mCherry population will include both true starter cells and monosynaptically connected cells, this is not perfectly precise. Convergence of cortical inputs onto SPNs may vary with distance from the starter cell region quite dramatically, as other mapping studies of corticostriatal inputs have shown specialized local input regions can be defined based on cortical input patterns (Hintiryan et al., Nat Neurosci, 2016, Hunnicutt et al., eLife 2016, Peters et al., Nature, 2021). 

      This is a valid concern regarding anatomical studies. Investigating cortico-striatal connectivity at the single-cell level remains technically challenging due to current methodological limitations. At present, we rely on rabies virus-mediated trans-synaptic retrograde tracing to identify D1- or D2-projecting cortical populations. This anatomical approach is coupled with ex vivo slice electrophysiology to assess the functional connectivity between these projection-defined cortical neurons and striatal SPNs. This enables us to quantify connection ratios, for example, the proportion of D1-projecting cortical neurons that functionally synapse onto non-starter D1-SPNs.

      To ensure the robustness of our conclusions, it is essential that both the starter cells and the recorded non-starter SPNs receive comparable topographical input from the cortex and other brain regions. Therefore, we carefully designed our experiments so that all recorded cells were located within the injection site, were mCherry-negative (i.e., non-starter cells), and were surrounded by ChR2-mCherry-positive neurons. This configuration ensured that the distance between recorded and starter cells did not exceed 100 µm, maintaining close anatomical proximity and thereby preserving the likelihood of shared cortical innervation within the examined circuitry.

      These methodological details are also described in the section on ex vivo brain slice electrophysiology, specifically in the Methods section, lines 453–459:

      “D1-SPNs (eGFP-positive in D1-eGFP mice, or eGFP-negative in D2-eGFP mice) or D2-SPNs (eGFP-positive in D2-eGFP mice, or eGFP-negative in D1-eGFP mice) that were ChR2-mCherry-negative, but in the injection site and surrounded by cells expressing ChR2-mCherry were targeted for recording. This configuration ensured that the distance between recorded and starter cells did not exceed 100 µm, maintaining close anatomical proximity and thereby preserving the likelihood of shared cortical innervation within the examined circuitry.”

      This experimental strategy was implemented to control for potential spatial biases and to enhance the interpretability of our connectivity measurements.

      A caveat for the optogenetic behavioral experiments is that these optogenetic experiments did not include fluorophore-only controls, although a different control (with light delivered in M1) is provided in Supplementary Figure 3. Another point of confusion is that other studies (Cui et al, J Neurosci, 2021) have reported that stimulation of D1-SPNs in DLS inhibits rather than promotes movement. This study may have given different results due to subtly different experimental parameters, including fiber optic placement and NA.

      We appreciate the reviewer’s thoughtful evaluation and comments. We have added a short discussion of Cui et al.’s study on optogenetic stimulation of D1-SPNs in the DLS (lines 341-343), which reports findings that contrast with ours and those of other studies.

      Reviewer #3 (Public review): 

      Review of resubmission: The authors provided a response to the reviews from myself and other reviewers. While some points were made satisfactorily, particularly in clarification of the innervation of cortex to striatum and the effects of input stimulation, many of my points remain unaddressed. In several cases, the authors chose to explain their rationale rather than address the issues at hand. A number of these issues (in fact, the majority) could be addressed simply by toning done the confidence in conclusions, so it was disappointing to see that the authors by and large did not do this. I repeat my concerns below and note whether I find them to have been satisfactorily addressed or not. 

      In the manuscript by Klug and colleagues, the investigators use a rabies virus-based methodology to explore potential differences in connectivity from cortical inputs to the dorsal striatum. They report that the connectivity from cortical inputs onto D1 and D2 MSNs differs in terms of their projections onto the opposing cell type, and use these data to infer that there are differences in cross-talk between cortical cells that project to D1 vs. D2 MSNs. Overall, this manuscript adds to the overall body of work indicating that there are differential functions of different striatal pathways which likely arise at least in part by differences in connectivity that have been difficult to resolve due to difficulty in isolating pathways within striatal connectivity, and several interesting and provocative observations were reported. Several different methodologies are used, with partially convergent results, to support their main points. 

      However, I have significant technical concerns about the manuscript as presented that make it difficult for me to interpret the results of the experiments. My comments are below. 

      Major: 

      There is generally a large caveat to the rabies studies performed here, which is that both TVA and the ChR2-expressing rabies virus have the same fluorophore. It is thus essentially impossible to determine how many starter cells there are, what the efficiency of tracing is, and which part of the striatum is being sampled in any given experiment. This is a major caveat given the spatial topography of the cortico-striatal projections. Furthermore, the authors make a point in the introduction about previous studies not having explored absolute numbers of inputs, yet this is not at all controlled in this study. It could be that their rabies virus simply replicates better in D1-MSNs than D2-MSNs. No quantifications are done, and these possibilities do not appear to have been considered. Without a greater standardization of the rabies experiments across conditions, it is difficult to interpret the results. 

      This is still an issue. The authors point out why they chose various vectors. I can understand why the authors chose the fluorophores etc. that they did, yet the issues I raised previously are still valid. The discussion should mention that this is a potential issue. It does not necessarily invalidate results, but it is an issue. Furthermore, it is possible (in all systems) that rabies replicates better/more efficiently in some cells than others. This is one possible interpretation that has not really been explored in any study. I don't suggest the authors attempt to do that, but it should be raised as a potential interpretation. If the rabies results could mean several different things, the authors owe it to the readership to state all possible interpretations of data.

      We thank the reviewer for the comments and suggestions. Because the same fluorophore (mCherry) was used in both TVA- and ChR2-expressing viruses, it was not possible to distinguish true starter SPNs from TVA-only SPNs or monosynaptically labeled SPNs. This limitation makes it difficult to precisely assess the efficiency of rabies labeling and retrograde tracing in our experimental setup. Moreover, differences in rabies replication efficiency between D1- and D2-SPNs could potentially lead to an apparent lower connection probability from D1-projecting cortical neurons to D2-SPNs than from D2-projecting cortical neurons to D1-SPNs. We have added this clarification to the Discussion (lines 280-297).

      The authors claim using a few current clamp optical stimulation experiments that the cortical cells are healthy, but this result was far from comprehensive. For example, membrane resistance, capacitance, general excitability curves, etc are not reported. In Figure S2, some of the conditions look quite different (e.g., S2B, input D2-record D2, the method used yields quite different results that the authors write off as not different). Furthermore, these experiments do not consider the likely sickness and death that occurs in starter cells, as has been reported elsewhere. Health of cells in the circuit is overall a substantial concern that alone could invalidate a large portion, if not all, of the behavioral results. This is a major confound given those neurons are thought to play critical roles in the behaviors being studied. This is a major reason why first-generation rabies viruses have not been used in combination with behavior, but this significant caveat does not appear to have been considered, and controls e.g., uninfected animals, infected with AAV helpers, etc, were not included. 

      This issue remains unaddressed. I did not request clarity about experimental design, but rather, raised issues about the potential effects of toxicity. I believe this to be a valid concern that needs to be discussed in the manuscript, especially given what look visually like potential differences in S2. 

      We understand and appreciate the reviewer’s concern regarding the potential cytotoxicity of rabies virus infection. Although we performed the in vivo optogenetic behavioral experiments during a period when rabies-infected cells are generally considered relatively healthy, some deficits in starter cells may still occur and could contribute to the observed effects of optogenetic cortical stimulation. We have added this clarification to the Discussion (lines 298-306).

      The overall purity (e.g., EnvA pseudotyping efficiency) of the RABV prep is not shown. If there was a virus that was not well EnvA-pseudotyped and thus could directly infect cortical (or other) inputs, it would degrade specificity. This issue has not been addressed. Viral strain is irrelevant. The quality of the specific preparations used is what matters.

      While most of the study focuses on the cortical inputs, in slice recordings, inputs from the thalamus are not considered, yet likely contribute to the observed results. Related to this, in in vivo optogenetic experiments, technically, if the thalamic or other inputs to the dorsal striatum project to the cortex, their method will not only target cortical neurons but also terminals of other excitatory inputs. If this cannot be ruled it, stating that the authors are able to selectively activate the cortical inputs to one or the other population should be toned down. 

      The authors added text to the discussion to address this point. While it largely does what is intended, based on the one study cited, I disagree with the authors' conclusions that it is "clear" that potential contamination from other sites does not play a role. The simplest interpretation is the one the authors state, and there is some supporting evidence to back up that assertion, but to me that falls short of making the point "clear" that there are no other interpretations. 

      The statements about specificity of connectivity are not well founded. It may be that in the specific case where they are assessing outside of the area of injections, their conclusions may hold (e.g., excitatory inputs onto D2s have more inputs onto D1s than vice versa). However, how this relates to the actual site of injection is not clear. At face value, if such a connectivity exists, it would suggest that D1-MSNs receive substantially more overall excitatory inputs than D2s. It is thus possible that this observation would not hold over other spatial intervals. This was not explored and thus the conclusions are over-generalized. e.g., the distance from the area of red cells in the striatum to recordings was not quantified, what constituted a high level of cortical labeling was not quantified, etc. Without more rigorous quantification of what was being done, it is difficult to interpret the results. 

      Again, the goal here would be to make a statement about this in the discussion to clarify limitations of the study. I don't expect the authors to re-do all of these experiments, but since they are discussing the corticostriatal circuits, which have multiple subdomains, this remains a relevant point. It has not been addressed. 

      The results in Figure 3 are not well controlled. The authors show contrasting effects of optogenetic stimulation of D1-MSNs and D2-MSNs in the DMS and DLS, results which are largely consistent with the canon of basal ganglia function. However, when stimulating cortical inputs, stimulating the inputs from D1-MSNs gives the expected results (increased locomotion) while stimulating putative inputs to D2-MSNs had no effect. This is not the same as showing a decrease in locomotion - showing no effect here is not possible to interpret. 

      I think that the caveat of showing no clear effects of inputs to D2 stimulation should be pointed out. Yes, I understand that the viruses appeared to express etc., but again it remains possible that the results are driven by a lack of e.g., sufficient ChR2 expression. Aside from a full quantification of the number of cells expressing ChR2, overlap in fiber placement and ChR2 expression (which I don't suggest), this remains a possibility and should be pointed out, as it remains a possibility. 

      In the light of their circuit model, the result showing that inputs to D2-MSNs drive ICSS is confusing. How can the authors account for the fact that these cells are not locomotor-activating, stimulation of their putative downstream cells (D2-MSNs) does not drive ICSS, yet the cortical inputs drive ICSS? Is the idea that these inputs somehow also drive D1s? If this is the case, how do D2s get activated, if all of the cortical inputs tested net activate D1s and not D2s? Same with the results in Figure 4 - the inputs and putative downstream cells do not have the same effects. Given potential caveats of differences in viral efficiency, spatial location of injections, and cellular toxicity, I cannot interpret these experiments. 

      The explanation the authors provide in their rebuttal makes sense, however this should be included in the discussion of the manuscript, as it is interesting and relevant. 

      We thank the reviewer for the valuable comments and suggestions. In line with the reviewer’s recommendation, we have incorporated these explanations into the Discussion (lines 242–279) to help interpret the complex behavioral outcomes of optogenetic stimulation of cortical neurons projecting to D1- or D2-SPNs.

      Reviewer #2 (Recommendations for the authors): 

      I appreciate the authors' responses, which helped clarify some experimental choices. I appreciate that the experiment in Fig S3 serves as a reasonable light control for optogenetics experiments. The careful comparison with methods in Cui et al (2021) is useful, although not added to the main manuscript. Some of the other citations here don't really address the controversy, e.g. Kravitz at al is in DMS, but perhaps fully addressing this issue is outside the scope of the current manuscript and awaits further experiments. I also appreciate the clarification for recording locations that "This configuration ensured that the distance between recorded and starter cells did not exceed 100 µm, maintaining close anatomical proximity and thereby preserving the likelihood of shared cortical innervation within the examined circuitry." However, the statement in the reviewer response does not seem to be added to the manuscript's methods, which I think would be helpful. The criteria for choosing recorded cells are still a bit fuzzy without a map of recording locations and histology. There is also a problem that mCherry-positive cells could be starter cells or could be monosynaptically traced cells, so it is hard to know the area of the starter cell population in these experiments for sure. My evaluation of the manuscript remains largely the same as the original. However, I have adjusted my public review a bit to incorporate the authors' responses. I still think this paper has valuable information, suggesting an interesting and previously unappreciated structure of corticostriatal inputs that I hope this group and others will continue to investigate and incorporate into models of basal ganglia function.

      We thank the reviewer for the valuable suggestions. We have now included a comparison with Cui et al. in the Discussion. In addition, we have added the criteria for selecting recorded cells to the Methods section: ‘This configuration ensured that the distance between recorded and starter cells did not exceed 100 µm, maintaining close anatomical proximity and thereby preserving the likelihood of shared cortical innervation within the examined circuitry.’

    1. Reviewer #3 (Public review):

      Summary:

      The manuscript by Zhang et al. demonstrates that MORC2 undergoes liquid-liquid phase separation (LLPS) to form nuclear condensates critical for transcriptional repression. Using a combination of in vitro LLPS assays, cellular studies, NMR spectroscopy, and crystallography, the authors show that a dimeric scaffold formed by CC3 drives phase separation, while multivalent interactions between an intrinsically disordered region (IDR) and a newly defined IDR-binding domain (IBD) further promote condensate formation. Notably, LLPS enhances MORC2 ATPase activity in a DNA-dependent manner and contributes to transcriptional regulation, establishing a functional link between phase separation, DNA binding, and transcriptional control. Overall, the manuscript is well-organized and logically structured, offering mechanistic insights into MORC2 function, and most conclusions are supported by the presented data. Nevertheless, some of the claims are not sufficiently supported by the current data and would benefit from additional evidence to strengthen the conclusions.

      The following suggestions may help strengthen the manuscript:

      Major comments:

      (1) The central model proposes that multivalent interactions between the IDR and IBD promote MORC2 LLPS. However, the characterization of these interactions is currently limited. It is recommended that the authors perform more systematic analyses to investigate the contribution of these interactions to LLPS, for example, by in vitro assays assessing how the IDR or IBD individually influence MORC2 phase separation.

      (2) The authors mention that DNA binding can promote MORC2 LLPS. It is recommended that they generate a phase diagram to systematically assess how DNA influences phase separation.

      (3) The authors use the N39A mutant as a negative control to study the effect of DNA binding on ATP hydrolysis. Given that N39A is defective in DNA binding, it could also be employed to directly test whether DNA binding influences MORC2 phase separation.

      (4) Many of the cellular and in vitro LLPS experiments employ EGFP fusions. The authors should evaluate whether the EGFP tag influences MORC2 phase separation behavior.

    1. reply to u/GrandRevolutionary99 at https://reddit.com/r/stationery/comments/1nrkuqf/i_need_help_to_create_my_own_letterhead_for_my/

      Typewriter enthusiasts often use 100% cotton or high linen content papers with weights in the 32 pound range for 8.5x11. This gives you some nice tactile feel, but will also feed into most typewriters, even with a solid backing sheet. If you want to do thicker card stocks, then you might opt for a bigger standard typewriter which generally have larger diameter platens and more easily handle much thicker paper (they were meant for doing carbon packs up up to 10 sheets or more.)

      When it comes to the look of your letters, you can generally choose between silk (clean, crisp imprints), nylon (almost as clean as silk, but with more "grain"), and cotton typewriter ribbon (which leaves a very grainy/old timey and "typewriter-y" imprint). Comparisons here.

      I've got a small fleet of typewriters and prefer to use the pica sizes for personal correspondence. I also tend toward the cursive or Vogue typefaces for those as well.

      In the US, a lot of stationers have pre-cut paper and envelopes for 6-3/8" x 8-1/2" paper which is a good size sheet for quick notes. My typewriter pen pal Tom Hanks' most recent letter to me was on a custom page of 7.125 x 10.25" and had space for design at the top and bottom with some reasonable space in the middle. If you do custom designs, be sure to order a box or two of plain stock to use as second, third, etc. pages behind your first page if you tend to write over your first page.

      Naturally custom designing your own can be fun as well, but get a few samples of the size and weight you want and try them out before ordering in quantity.

      Lenore Fenton can give you tips on making carbon copies of your letters if you want to keep them for your own files while sending out the originals: https://www.youtube.com/watch?v=JUJfCfqgsX0

      Searching r/typewriters for stationery, letterhead, paper, etc. might give you some ideas as well.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review)

      The weaknesses are in the clarity and resolution of the data that forms the basis of the model. In addition to whole embryo morphology that is used as evidence for convergent extension (CE) defects, two forms of data are presented, co-expression and IP, as well as a strong reliance on IF of exogenously expressed proteins. Thus, it is critical that both forms of evidence be very strong and clear, and this is where there are deficiencies; 1) For vast majority of experiments general morphology and LWR was used as evidence of effects on convergent extension movements rather than Keller explants or actual cell movements in the embryo. 2) The study would benefit from high or super resolution microscopy, since in many cases the differences in protein localization are not very pronounced. 3) The IP and Western analysis data often show subtle differences, and not apparent in some cases. 4) It is not clear how many biological repeats were performed or how and whether statistical analyses were performed. 

      (1) To more objectively assess the convergent extension phenotypes, we developed a Fiji macro to automatically quantify the LWR in various injected Xenopus embryos, as detailed in the Methods section. We acknowledge that a limitation in the current manuscript is how to link our mechanistic model at the molecular level with the actual cellular behavior during convergent extension, and we plan to perform cell biological studies in the future to elucidate the link;

      (2) We have repeated some of the imaging experiments in DMZ explants using a Zeiss LSM 900 confocal equipped with Airyscan2 detector that can increase the resolution to ~100 nm. The new data are in Suppl. Fig. 4, 9, 11, 16;

      (3) We have repeated all IP and western blots at least three times and provided quantification and statistical analyses;

      (4) We have added the information on biological repeats and statistical analyses in all figures and figure legends.

      Reviewer #2 (Public Review):

      The protein localization experiments in animal cap assays are for the most part convincing, but with the caveat that the authors assume that the proteins are acting within the same cell. As Fzd and Vangl2 are thought to localize to opposite cell ends in many contexts, can the authors be sure that the effects they observe are not due to trans interactions? 

      In our previous publication, we provided evidence that Vangl is necessary and sufficient to recruit Dvl to the plasma membrane within the same cell (Figure 3 in 10.1093/hmg/ddx095). In a more recent publication ( 10.1038/s41467-025-57658-0 ), we further elucidated a mechanism through which Dvl oligomerization switches its binding from Vangl to Fz, and determined that Dvl binding to Vangl and Fz are differentially mediated by its PDZ and DEP domain, respectively. In the current manuscript, we also performed co-IP experiment under various conditions to demonstrate binding between Dvl and Vangl. We feel that these evidences together provide a strong argument for our model where Vangl2 acts within the same cell to sequester Dvl from Fz.

      In regards to the Dvl patches induced by Wnt11 (Fig. 3 and Suppl. Fig. 9), we performed separate injection of EGFP- and mSc-tagged Dvl into adjacent blastomeres, and demonstrated that the Wnt11-induced patches arise from symmetrical accumulation of Dvl at contact of two neighboring cells (Suppl. Fig. 9a-c’). This scenario is different from epithelial PCP where Fz/Dvl and Vangl/Pk are asymmetrically accumulated at the contact between two adjacent cells.

      The authors propose a model whereby Vangl2 acts as an adaptor between Dvl and Ror, to first prevent ectopic activation of signaling, and then to relay Dvl to Fzd upon Wnt stimulation. This is based on the observation that Ror2 can be co-IPed with Vangl2 but not Dvl; and secondly that the distribution of Ror2 in membrane patches after Wnt11 stimulation is broader than that of Fzd7/Dvl, while Vangl2 localizes to the edges of these patches. The data for both these points is not wholly convincing. The co-IP of Ror2 and Vangl2 is very weak, and the input of Dvl into the same experiment is very low, so any direct interaction could have been missed. Secondly, the broader distribution of Ror2 in membrane patches is very subtle, and further analysis would be needed to firm up this conclusion. 

      (1) We repeated the co-IP experiment with Myc-tagged Vangl or Dvl. Using the same anti-Myc antibody and experimental condition (including the expression level of Vangl, Dvl and Ror2), we still found that Ror2 could be pulled down by Vangl but not Dvl (Suppl. Fig. 15b). Whereas this data confirms our previous conclusion, we acknowledge that a negative data does not fully exclude the possibility for direct biding between Ror and Dvl.

      (2) We re-analyzed the signal intensity of Dvl and Ror in Wnt11-induced patches. By quantifying the intensity ratio between Ror and Dvl along the patches, we found an increase over two folds at the border of the patches (Fig. 7j, bottom panel). We interpret this data to suggest that Ror is accumulated to a higher level than Dvl at the patch borders.     

      A final caveat to these experiments is that in the animal cap assays, loss of function and gain of function both cause convergence and extension defects, so any genetic interactions need to be treated with caution i.e. two injected factors enhancing a phenotype does not imply they act in the same direction in a pathway, in particular as there are both cis/trans and positive/negative feedbacks between the PCP proteins. 

      We agree with the reviewer that a difficulty in studying PCP/ non-canonical signaling is that both loss and gain of function of any its components can cause convergence and extension defects. Genetic interactions, especially synergistic interactions, should be interpreted with caution. But we do want to point out that, in a number of case, we were also able to demonstrate epistasis. For instance, we found that Dvl2 over-expression induced CE defects can be rescued by Pk over-expression (Fig. 1e and f), whereas Vangl/ Pk co-injection induced severe CE defects can be reciprocally rescued by Dvl2 over-expression (Fig. 1g). Likewise, we showed that Fz2/ Dvl2 co-injection induced CE defects can be rescued by wild-type Vangl2 but not Vangl2 RH mutant (Suppl. Fig. 6b), and Ror2 can rescue Vangl2 overexpression induced CE defect (Suppl. Fig. 14). Collectively, these functional interaction data consistently demonstrate an antagonism between Dvl/ Fz/ Ror2 and Vangl2/ Pk, which is correlated with our imaging and biochemical studies.

      As you can see from the reviews, the referees generally agree that your paper is a potentially valuable contribution to the field. Your observations are important because of the novel model based on the inhibitory feedback regulation between planar cell polarity (PCP) protein complexes. However, the reviewers also stated that the model is only partly supported by data because of insufficient clarity and missing controls in several experiments supporting the proposed model. The paper would be significantly improved if your conclusions are backed up by additional experimentation. Specifically, the referees wanted to see the reproducibility of the results shown in Figures 3, 4, 8, S3, S7, S12. 

      We hope that you are able to revise the paper along the lines suggested by the referees to increase the impact of your study on the current understanding of PCP signaling mechanisms. 

      We thank the reviewers for careful reading of our manuscript and for their constructive critiques and suggestions. We have repeated the animal cap studies in original Figures 3, 4, 8 and S3 with DMZ explants, and the new data are in Supplementary Fig. 9, 11, 16 and 4, respectively. We also repeated the biochemical studies in original Figure S 7and 12, and the new data are in Supplementary Fig. 8 and 15.

      Reviewer #1 (Recommendations For The Authors):

      Major points:(1) The author conducted an analysis of the subcellular localization of PCP core proteins, including Vangl2, Pk, Fz, and Dvl, within animal cap explants (ectodermal explants). To validate the model proposing that 'non-canonical Wnt induces Dvl to transition from Vangl to Fz, while PK inhibits this transition, and they function synergistically with Vangl to suppress Dvl during Convergent Extension (CE),' it is crucial to assess the subcellular localization of PCP core proteins in dorsal marginal zone (DMZ) cells, which are known to undergo CE. Notably, the overexpression of Wnt11 alone, as employed by the author, does not induce animal cap elongation. Therefore, the use of animal cap explants may not be sufficient to substantiate the model during Convergent Extension (CE). Indeed, previous knowledge indicates that Vangl2 and Pk localize to the anterior region in DMZ explants. However, the results presented in this manuscript appear to differ from this established understanding. Consequently, to provide more robust support for the proposed model, it is advisable to replicate the key experiments (Figures 3, 4, 8, and Figure S3) using DMZ explants. 

      We repeated the experiments in Figure 3, 4, 8 and Figure S3 with DMZ explant and the new data are in new Supplementary Fig. 9, 11, 16 and 4, respectively.In regards to “previous knowledge indicates that Vangl2 and Pk localize to the anterior region in DMZ explants”, we are aware Vangl/ Pk localization to the anterior cell cortex in neural epithelium from the studies by the Sokol and Wallingford labs, but are not aware of similar reports in DMZ explants. When we examined the localization of small amount of injected EGFP-mPk2 (0.1 ng mRNA) in DMZ explants, we saw a somewhat uniform distribution on the plasma membrane (Suppl. Fig. 4). In addition, in a related recent publication, we examined endogenous XVangl2 protein localization in activin induced animal cap explants that do undergo CE. What we observed was that whereas low level injected Dvl2 and Fz form clusters on the plasma member, endogenous XVangl2 remains uniformly distributed on the plasma membrane (Suppl. Fig. 3S-Z in 10.1038/s41467-025-57658-0 ). These observations may suggest potential differences of PCP protein localization during neural vs. mesodermal convergence and extension.

      (2) The author suggests that 'Vangl2 and Pk together synergistically disrupt Fz7-Dvl2 patches.' As shown in Figure 4 (panels J' to I'), it is evident that the co-expression of Pk and Vangl2 increases Fz7 endocytosis. Nevertheless, a significant amount of Fz7 still co-localizes with Dvl2. To strengthen the author's hypothesis, additional clear assay is required such as Fluorescence resonance energy transfer (FRET) assay. 

      We appreciate this valuable advice. Since none of the tagged Fz/ Dvl/ Vangl proteins we had were suitable for FRET, we made proteins tagged with mClover and mRuby2, which were reported as optimized FRET pairs. But in our hands mRuby2 seems to require very long time (~2 days) to mature and become detectable at room temperature, and is not suitable for our Xenopus experiments. We are in the process of establishing a luciferase based NanoBiT system to detect Fz-Dvl and Dvl-Vangl interactions in live cells and cell lysates, and will use it in future studies to investigate their interaction dynamics.

      For the current manuscript, we reason that a substantial reduction of Fz7-Dvl2 clusters with Vangl2/ Pk co-injection would still support our idea that Vangl2 and Pk act synergistically to sequester Dvl from Fz to prevent their clustering in response to non-canonical Wnt ligands.

      (3) The IP data is less clear and evident. A couple of examples are: a) Fig 2g where the authors report that the Vangl2 R177H variant reduced Vangl2 interaction with Pk and recruitment of Pk to the plasma membrane, but it appears that the variant interacts slightly better than WT Vangl2 with Pk. In Fig. S7a, the authors state that Pk overexpression can indeed significantly reduce Wnt11-induced dissociation of EGFP-Vangl2 and Flag-Dvl2 in the DMZ. However, there is a minimal impact when compared to the Wnt11 absent control. Based on the results presented in Fig S12a the authors indicate that Wnt11 reduces the association between Vangl2 and Dvl2, which can be discerned, but loss of Ror2 does not change this in any obvious way - but the authors indicate it does. In S12b, the authors have suggested that Ror and Dvl do not form a direct binding interaction. However, the interpretation of Figure S12b is not entirely convincing due to several issues. Notably, the expression levels of each protein appear inconsistent, the bands are not sufficiently clear, and there is the detection of three different tag proteins on a single blot. To strengthen the validity of these findings, it is advisable to repeat this experiment with improved quality. 

      We repeated all the co-IP and western blot analyses pointed out by the reviewer, and performed quantification and statistical analyses.

      Fig 2g had a mistake in the labeling and is replaced with new Figure 2g;

      Fig. S7a is replaced by new data in Supplementary Figure 8a and b;

      Fig. S12a and 12b are replaced by new data in Supplementary Figure 15a, a’ and b, respectively. In 15a and a’, we noticed a consistent decrease of Dvl2-Vangl2 co-IP in Xror2 morphant. The reason for this is not yet clear and will need further study in the future.

      Minor points: (1) In all the whole embryo injection assays examining morphology, no Western analysis is performed to show roughly equivalent and appropriate levels of the various proteins are being expressed. Differences will affect the data. 

      Although we did not do western analyses to examine the protein levels in various functional interaction assays, we did examine how co-expression of Vangl2, mPk2 or Dvl2 may impact each other’s protein levels in Supplementary Fig. 2, which did not reveal any significant change when co-injected in different combination.

      (2) The author's prior publication (Bimodal regulation of Dishevelled function by Vangl2 during morphogenesis, Hum Mol Genet. 2017) presented clear evidence of Vangl2 overexpression inducing Dvl2 membrane localization. However, Figure S4 in the current manuscript did not provide clear evidence of membrane localization. To strengthen the hypothesis that Vangl2-RH mutant also induces Dvl2 membrane localization, further comprehensive imaging analysis is needed. 

      We re-analyzed the imaging data and replaced old Figure S4 with a new Supplementary Fig. 5.

      (3) In Supplementary Figure 9, the authors propose that the overexpression of Vangl2/Pk induces Fz7 endocytosis, as indicated by its co-localization with FM4-64. However, it raises a question: how does the Fz7-GFP protein internalize into the cells without endocytosis, as seen in Figures S9a-c'? To enhance readers' understanding, a discussion addressing this point should be included. 

      We think that this might be a technical issue. As detailed in the Method section, we only incubated the embryos transiently with FM4-64 for 30 minutes, and the embryos were subsequently washed and dissected in 0.1X MMR without the dye. Therefore, only the Fz7-GFP protein endocytosed during the 30 minute-incubation would be labeled by FM-64, whereas that endocytosed before or after the incubation would not. Alternatively, the very few Fz7-GFP puncta occasionally observed in the absence of Vangl2/Pk overexpression could be vesicles trafficking to the plasma membrane.

      (4) Statistical analyses are absent for several results, including those in Figure 2f, Figure S4d, and Figure S7b. 

      We repeated these experiments and included statistical analyses. The new data are in Figure 2f, Supplementary Fig. 5d and Supplementary Fig. 8b.

      (5) This manuscript lacks any results regarding Ck1. Therefore, it is advisable to consider removing the discussion or mention of CK1. 

      We agree, and tune down the discussion on CK1 and removed CK1 from our model in Fig. 9.

      Reviewer #2 (Recommendations For The Authors):

      (1) In all the convergence and extension assays, the authors should report n numbers (i.e. number of animals), what statistical test is used, and what the error bars show. Ideally dot-plots would be used instead of bar charts as they give a better insight into the data distribution. It might be useful to give a section on the statistical analyses used in the M&M, including e.g. any power calculations carried out, as now required by many journals. 

      We have follow the advice to use dot-plots for all the quantification analyses in the manuscript. We include in the figure legends the statistical test used and what the error bars show. The number of embryos analyzed were included in each panel in the figures. We also provided more details in the Methods section on how the LWR quantification was carried out.

      (2) I think Figure 2g is wrongly labelled? FLAG bands are in all three lanes in the western blot, but not labelled as such in the schematic. 

      We corrected the schematic labeling in Figure 2g, and thank the reviewer for catching this mistake.

      (3) In Figure S7, the authors show that co-IP of Dvl and Vangl2 is reduced by Wnt11 and the effects of Wnt are blocked by Pk. Does Pk have any effect in the absence of Wnt? 

      We examined the effect of Pk over-expression on Dvl2-Vangl2 co-IP as advised, and did not see a significant impact in the absence of Wnt11 co-injection. The data is included in the new Supplementary Figure 8a. We interpret the data to suggest that “at least under the condition of our co-IP experiment, Pk may not directly impact the steady-state binding between Vangl and Dvl”.

      (4) In Figure 3, the authors show (as published previously) that Wnt11 induces patches of Dvl at the plasma membrane. It would be useful to see Dvl in the absence of Wnt and Vangl2/Dvl in the absence of Wnt. 

      Dvl is widely known as a cytoplasmic protein and its localization has been published by many labs over the past 20-30 years. In our recent publication (10.1038/s41467-025-57658-0 ), we also re-examined Dvl localization when injected at various dosages. So we did not feel it was necessary to show its localization in the absence of Wnt11 again, but included a reference to our prior publication. In regards to Vangl/Dvl distribution in the absence of Wnt11, the readers can see Suppl. Fig. 5b as an example, in addition to our previous publications referenced in the manuscript.

      (5) In the review figures, the difference in Fz7-GFP patch formation in d' and e' (vs e.g. a') is not very clear. Could the images be improved or (better) quantified in some way? 

      We assume that “review figures” refer to Figure 3 or 4? If so, we felt that Fz7-GFP patch formation was clear in Fig. 3d’, e’ or Fig. 4d’, e’. Nevertheless, we repeated these experiments in DMZ explants as advised by Reviewer 1, and additional examples of Fz7-EGFP patch formation can be seen in the new Suppl. Fig. 9d-f’ and Suppl. Fig. 11d-f’.

      (6) In Figure 6d, I'm concerned that the loss of flag-Dvl2 might occur via dephosphorylation in the IP reaction. Also the M&M don't include methodological details about buffers and whether phosphatase inhibitors were used. A compelling control would be anti-FLAG pulldown showing retention of phosphorylation. Also Figure 6f shows a reduced ratio of fast-to-slow migrating bands of Dvl with Vangl2/Pk - unless I have misunderstood, is this ratio the wrong way round? 

      We added co-IP buffer and protease inhibitor information in Methods.

      We agree that the concern about dephosphorylation during IP reaction is valid, and that direct pull down of Dvl to show the phosphorylated form is a compelling control. We therefore note that in Suppl. Fig. 8a and 15b, direct pull down of Flag-Dvl or Myc-Dvl (with anti-Flag or anti-Myc) did show the slower migrating, phosphorylated form. Additional examples in which Vangl only co-IP the faster migrating unphosphorylated Dvl include Suppl. Fig. 15a, and in a related paper we published recently (Fig. 3R and R’ in 10.1038/s41467-025-57658-0 ).

      Finally, we did wrongly label Figure 6f in the last submission, and the ratio should have been “slow/fast”. We have made the correction, and appreaicte the reviewer for the meticulousness in perusing our manuscript.

      (7) In Figure 7, what does Ror2 look like in the absence of Wnt11? 

      We included new Figure 7a-c to show that without Wnt11 co-injection, Ror2 is uniformly distributed on the plasma membrane.

      (8) Also in Figure 7, Ror2 patches are said to be slightly wider than Dvl2 patches "reminiscent of Vangl2" - I wouldn't describe them as being similar. Vangl2 shows a distinct dip in the center of the Dvl patches, Ror2 does not show a dip, and is only (at best) in a slightly wider patch, and I would want to see further examples to be convinced that the localization domain is reproducibly wider. The merge of many samples in 7d may actually be making the distribution harder to see and if the Xror2 and Dvl2 intensities were normalized I'm not sure how different the curves would appear. (i.e. the Xror2 curve looks like a flattened version of the Dvl2 curve). 

      We have added an additional panel in the new Figure 7j to compare the intensity ratio of Ror/ Dvl2 along the patches, and this analysis reveals an over two folds increase of the ratio at the border region. This quantification may make a more convincing argument that at the patch border region, Dvl is diminished whereas Ror2 accumulate with Vangl2. 

      (9) In Figure S12a, the authors suggest Wnt11 induced dissociation of Dvl from Vangl2 (by co-IP), and this is reduced after Ror2 MO. This would be more convincing with replicates and quantitation. 

      We have repeated this experiment with Vangl2 pull down and added quantification. The data is in the new Suppl. Fig. 15a.

      (10) In Figure S12b, the authors suggest Ror2 can co-IP Vangl2 but not Dvl. This is not very convincing, as the Dvl input band is very weak, and the Vangl2 co-IP band is very weak. 

      We repeated the co-IP experiment with Myc-tagged Vangl or Dvl. Using the same anti-Myc antibody and experimental condition (including the expression level of Vangl, Dvl and Ror2), we still found that Ror2 could be pulled down by Vangl but not Dvl (Suppl. Fig. 15b).

      (11) "Prickle" spelled "Prickel" in the abstract (and abbreviated to "PK" not "Pk" at one place in the abstract and several places in text) 

      We have corrected these typos.

      (12) Quite a lot of interesting observations are in supplemental figures. Normally it might be expected that extra data supporting a conclusion would be in supplemental, but here some of the supplemental data feels like it is more than simply additional evidence. For instance supplemental Figures 2 and 3 feel more than just supplemental (and Supplemental Figure 3 if merged with Figure 2 would make it easier for the reader). Moreover, for example, the description of the results in Figure 2 is punctuated by references to supplemental Figures 4 and 5 that contain key data to support the conclusions, which means the reader has to flick backwards and forwards from place to place in the manuscript to follow the argument. It is of course up to the authors, but in some cases putting supplemental data back into the main figures (for which there is no size or number limit) would increase clarity. 

      These are excellent points; in the resubmitted manuscript we have a total of 24 data figures, and we used 8 as main figures since we felt that they provide the most relevant and conclusive evidence to our model. We will consult the copy editors at eLife on how to arrange the rest as main vs. supporting figures when requesting publication as version of record.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      We thank the reviewers for their thoughtful comments and overall very supportive feedback.

      Reviewer #1 writes: "The study is very thorough and the experiments contain the appropriate controls. (...) The findings of the study can have relevance for human conditions involving disrupted mitochondrial dynamics, caused for example by mutations in mitofusins." Reviewer #2 writes: "The dataset is rich and the time-resolved approach strong." Reviewer #3 writes: "I admire the philosophy of the research, acknowledging an attempt to control for the many possible confounding influences. (...) This is a powerful and thoughtful study that provides a collection of new mechanistic insights into the link between physical and genetic properties of mitochondria in yeast."

      We address all points below. We have not yet updated our text and figures since we expect substantial additions from new experiments. But we have included Figure R1 with some additional analyses of existing data at the bottom of the manuscript.

      Reviewer1

      1.1 Statistical comparisons are missing throughout the manuscript (with the exception of Fig. 2c). Appropriate statistical tests, along with p-values, should be used and reported where different gorups are compared, for example (but not limited to) Fig. 3d and most panels of Fig. 4.

      We initially decided not to add too many extra labels to the already very busy plots, given that the magnitude of change mostly speaks for itself. However, we will try to find meaningful statistical tests together with a sensible graphical representation for all of the figures. For one example see Figure R1A.

      1.2. I do not agree with the use of Atp6 protein as a direct read-out of mtDNA content. While Atp6 protein levels will decrease with decreasing mtDNA content, the inverse is not necessarily true: decreased Atp6 protein levels do not necessarily indicate decreased mtDNA levels, because they could alternatively or additionally be caused by decreased transcription and/or translation. Therefore, please do not equate Atp6 protein levels to mtDNA levels, and instead rephrase the text referencing the Atp6 experiments in the Results and Discussion sections to measure "mtDNA expression" or "mt-encoded protein" or similar. For example, on p. 14 line 431 should read "mtDNA expression" rather than "decreased synthesis of mtDNA", and line 440 on the same page "mean mtDNA levels" should be "mtDNA expression" or similar.

      All three reviewers agree that using Atp6-NG as a direct proxy for mtDNA requires more validation, or at least rephrasing of the text. We agree that this is the most important point to address. We had previously tried using the mtDNA LacO array (Osman et al. 2015) to directly assess the amount of nucleoids per cell. However, the altered mitochondrial morphology of the Fzo1 depleted cells combined with the LacI-GFP which is still in mitochondria even when mtDNA is gone, increases the noise level to a point that we cannot interpret the signal. However, as this manuscript was in the submission process, the Schmoller lab (co-authors #2 and #7) adapted the HI-NESS system to label mtDNA in live yeast cells(Deng et al. 2025). This system promises much better signal to noise and we expect we can address all concerns regarding the actual count of nucleoids per cell. Should this unexpectedly fail for technical reasons, we will try to calibrate the Atp6-levels with DAPI staining at defined time points and will rephrase the text as the reviewer suggests.

      1.3. In Fig. 3, the authors use the fluorescence intensity of a mitochondrially-targeted mCardinal as a read-out of mitochondrial mass. Please provide evidence that this is not affected by MMP, either with relevant references or by control experiments (e.g. comparing it to N-acridine orange or other MMP-independent dyes or methods).

      Whether or not the import of any mitochondrial protein is dependent on the MMP depends largely on the signal sequence. The preSu9-signaling sequence was previously characterized as largely independent of the MMP compared to other presequences (Martin, Mahlke, and Pfanner 1991), which is why Vowinckel (Vowinckel et al. 2015) and others (Di Bartolomeo et al. 2020; Perić et al. 2016; Ebert et al. 2025) have previously used this as a neutral reference to the strongly MMP-dependent pre-Cox4 signal to estimate MMP. As one control in our own data, we consider that the population-averaged mitochondrial fluorescent signal Figure S3C stays constant in the first few hours, in agreement with the total averaged mitochondrial proteome (Fig R1E). As additional controls, we plan to compare the signal to an MMP independent dye as the reviewer suggests.

      1.4. In Fig. 2e-f, the authors use a promoter reporter with Neongreen to answer whether the reduced levels of the nuclear-encoded mitochondrial proteins Mrps5 and Qcr7 are due to decreased expression or to protein degradation, and find no evidence of degradation of the Neongreen reporter protein. However, subcellular localization might affect the availability of the protein to proteases. Although not absolutely required, it would be relevant to know if the Neongreen fusion protein is found in the same subcellular compartment as Mrps5 and Qcr7 at 0h and 9h after Fzo1 depletion.

      Here, it seems we need to explain the set-up and interpretation of the data better. The key point we are trying to make with the promoter-Neongreen construct is that the regulation is not mainly at the level of transcription. We are showing that the reduction in the levels of the actual protein (orange bars) is not (mainly) explained by a reduction in expression, since the promoter is similarly active at 0 and at 9 hours (grey bars). If expression from the promoter were strongly reduced, the Neongreen would be diluted with growth and would also decrease, but this is not the case. The fluorophore itself is just floating around in the cytosol and is not subject to the same post-translational regulation as Mrps5 and Qcr7, so there is no reason to expect degradation.

      1.5. Fzo1 depletion leads to a very rapid drop in MMP during the first hour of depletion. In the Discussion, can the authors speculate on the possible mechanism of this rapid MMP drop that occurs well before mtDNA or mt-encoded proteins are decreased in level?

      This is indeed an interesting point. We think there are likely three reasons causing this initial drop: Firstly, due to the fragmentation the mixing of mitochondrial content is disturbed and smaller fragments may have suboptimal stoichiometry of components (see also (Khan et al. 2024) who look at this in detail including the Fzo1 deletion); secondly, already fairly early, some mitochondrial fragments may not contain any mtDNA and therefore will be unable to synthesize ETC proteins; thirdly, altered morphological features like changes in the surface-to-volume ratios may play a role. Sadly, mechanistically following up on this is not possible with the tools in our hands and therefore outside of the scope of this manuscript. But we are happy to include these speculations in our discussion.

      1.6. In Fig. 2a, the mtDNA copy number of Fzo1-depleted cells is ca 1.3-fold of the control cells at the 0h timepoint. Why might this be? Is it an impact of one of the inducers? If so, we might be looking at the combination of two different processes when measuring copy number: one that is an induction caused by the inducer(s), and the other a consequence of Fzo1 depletion itself.

      We believe that this 30% increase is within the noise of the experiment rather than an effect of the induction. Since we normalize to t=0 uninduced, the first black data point does not have error bars, emphasizing this difference. None of the protein data suggests that there is an increase in mtDNA encoded proteins (see e.g. 2B, or Atp6 fluorescence data). In the planned HI-NESS experiment, we will see in our single cell data whether there is an actual increase in mtDNA upon TIR induction. Additionally, we will run a qPCR to carefully determine mtDNA levels of untreated wild-type cells, tetracycline treated wild-type cells and tetracycline induced TIR expressing cells to exclude effects of tetracycline as well as the expression of TIR on mtDNA.

      Minor comments:

      1.7. p. 3, line 71: "ten thousands of dividing cells.." should be "tens of thousands of dividing cells".

      Thank you, will correct.

      1.8.-p.4, line 116: please be even more clear with what the "depleted" cells and controls are treated with: are depleted cells treated with both inducers, and controls with neither?

      We will make this more clear. Depleted cells are treated with both inducers, the control cells are not. However, in Figure 1A and in S1 we do controls to show that inducing TIR per se or adding aTC per se does not change growth rate or mitochondrial morphology. We will make this more clear.

      1.9. -p.5, lines 147-148: the authors write "the rate with which the abundance of Cox2 and Var1 proteins decreases was similar to the rate of mtDNA loss" though the actual rate is not shown. Please calculate and show rates for these processes side by side to make comparison possible, or alternatively rephrase the statement.

      Indeed this was not phrased well. We will call it dynamics rather than rates.

      1.10. -Fig. 2d: changing the y-axis numbering to match those in panels a and b would facilitate comparisons.

      Makes sense, we will change this.

      1.11. Fig. 2e: it is recommended to label the western blot panels to indicate what protein is being imaged in each (Neongree,, Mrps5, Qcr7).

      We will adapt the labelling to make it more clear.

      1.12. -p.9, line 262: I suggest referencing Fig. 4e at the end of the first sentence for clarity.

      We will modify the sentence as suggested.

      1.13. -In the sections related to Fig. 3a and Fig. 5a as well as the connected supplemental data, the authors discuss both the median and the mean of mitochondrial mass and Atp6 protein, respectively. For purposes of clarity, I suggest decreasing the focus on the mean (that is provided only in the supplemental data) and focusing the text mainly on the median. The two show differing trends and it is very good that both are shown, but the clarity of the text can be improved by focusing more on the median where possible.

      We will check the phrasing and simplify.

      1.14. -p. 14, line 435: the statement that mt mass is maintained over the first 9h of depletion is only true for the mean mt mass, not for the median. Please make this clear or rephrase.

      We will check phrasing, make it more clear and also point out the extended proteomics data (see Fig R1), which corresponds to the mean of the populations

      1.15.-p.14, line 452: "mitofusions" should be "mitofusins".

      Thanks for catching this.

      Reviewer 2:

      2.1. While inducible TIR is used to reduce background, the manuscript should rigorously exclude auxin/TIR off-targets (growth, mitochondrial phenotypes, gene expression). Please include full matched controls: (plus minus)auxin, (plus minus)TIR, epitope tag alone, and a degron control on an unrelated mitochondrial membrane protein.

      We agree that rigorous controls are crucial for the interpretation of the results. However, we think we have already included most of the controls the reviewer is asking for, but we might have not pointed this out clearly enough. For example, in Fig 1A, we could make it more clear by adding more labels in which samples we added aTC, which is only described in the figure legend.

      Here is a list of all the controls:

      • Each depletion experiment is always matched with an experiment of the same strain without induction. So the genetic background as well as effects such as light exposure, time spent in the microfluidics systems, etc are controlled for.
      • Figure S1D shows that the growth rate is wildtype like in a strain containing either the AID tag or the TIR protein AND upon addition of both chemicals. It also shows that the final genetic background (AID-tag and TIR) also grows like wildtype if the inducers are not added. This conclusively shows that neither the tags/constructs nor the chemicals per se affect growth rate
      • In Figure S1C we show the mitochondrial morphology of the same controls. We will make sure to label them more consistently to match panel D, and include an actual wildtype and a FLAG-AID-Fzo1 strain without TIR treated with both aTC and 5-Ph-IAA as direct comparison
      • In figure 1A we compare the Fzo1 protein levels of a strain with and without TIR. We show that in absence of TIR, adding either aTC or Auxin does not change Fzo1 levels and that the levels are comparable in the strain that is able to deplete Fzo1 directly before addition of 5-Ph-IAA (after 2 h of induction of TIR through addition of tetracycline)
      • Additionally, in Figure S2C we show that two hours after adding aTC, the entire proteome does not change significantly apart from a strong induction of TIR. We can also make this more clear in the figure legend.
      • Additionally, we will run a qPCR to carefully determine mtDNA levels of untreated wild-type cells, tetracycline treated wild-type cells and tetracycline induced TIR expressing cells to exclude effects of tetracycline as well as the expression of TIR on mtDNA. (also in response to 1.6.) In summary, we think we have controlled sufficiently for all confounding parameters and most importantly showed that addition of either aTC or Auxin as well as the FLAG-AID tag per se does not disturb mitochondria or cell growth. We do not see what a degron control on an unrelated protein will tell us. Depending on the nature of the protein, it may or may not have a phenotype that may or may not be related to morphology changes etc.

      2.2. The Mitoloc preSu9 vs Cox4 import ratio is only a proxy of mitochondrial membrane potential (ΔΨm) and itself depends on mitochondrial mass, protein expression, matrix ATP, and import saturation. The authors need to calibrate ΔΨm with orthogonal dyes (TMRE/TMRM) and pharmacologic titrations (FCCP/antimycin/oligomycin) to generate a response curve; show that Mitoloc tracks dye-based ΔΨm across the relevant range and corrects for mass/photobleaching. Report single-cell ΔΨm vs mass residuals.

      We completely agree that the MitoLoc system is only a rough proxy for the actual membrane potential. That is why we make no quantitative claims on the absolute value or absolute difference between groups of cells. We also make very clear in Fig 3B what we are actually measuring and can emphasize again in the text that this is only a proxy. We agree that it is a good idea to compare MitoLoc values to TMRE staining as the reviewer suggests, we will do these experiments in depleted and control cells at different timepoints. Please note though that also dye staining has its caveats, especially in dynamic live cell experiments. TMRM for example is not compatible with the acidic pH 5 medium that is typically used for yeast and subjecting cells to washing steps and higher pH may change both morphology of mitochondria and the MMP, especially in cells that are already “stressed”. We prefer not to complete elaborate pharmacological titration experiments because firstly, this was extensively done in the original MitoLoc paper by the Ralser lab ((Vowinckel et al. 2015), cited 120 times); secondly, the value of the MMP is not the most critical claim of the manuscript. See also 3.12. Please note that in Figure S4D we had already plotted MMP vs mitochondrial concentration.

      2.3. To use Atp6-mNeon as a proxy for mtDNA is an assumption. Interpreting Atp6 intensity as "functional mtDNA" could be confounded by translation, turnover, or assembly. Please (i) report mtDNA copy number time courses (you have qPCR), nucleoid counts (DAPI/PicoGreen or TFAM/Abf2 tagging), and (ii) assess translation (e.g., 35S-labeling or puromycin proxies) and turnover (proteasome/AAA protease inhibition, mitophagy mutants -some data are alluded to- plus mRNA levels for mtDNA-encoded genes). This will support the "reduced synthesis" versus "increased degradation" conclusion.

      We agree with all three reviewers that Atp6 is only a proxy for mtDNA (Jakubke et al. 2021; Roussou et al. 2024) and the correlation should be checked more carefully. We will use the very recently established Hi-NESS system to follow nucleoids/ mtDNA during depletion experiments. See detailed reply to 1.2.

      (ii) in Figure 2C we inhibit mitochondrial translation and show that in this case control and depleted cells have the same level of Cox2, at least suggesting that degradation is not the key mechanism controlling the levels of mtDNA encoded proteins. We cannot do proteasome inhibitor assays since the nature of the AID-TIR systems requires an active proteasome. In figure S5C we show that the Atp6 depletion is similar in an atg32 deletion. This does not completely exclude a contribution of mitophagy to the observed phenotype, but does confirm that mitophagy is not the primary reason for cells becoming petite.

      2.4. The promoter-NeonGreen reporters argue against transcriptional down-regulation of nuclear OXPHOS. Please add mRNA (RT-qPCR/RNA-seq) for representative genes and a pulse-chase or degradation-pathway dependency (e.g., proteasome/mitophagy/autophagy mutants) to firmly assign active degradation. The authors need to normalize proteomics to mitochondrial mass (e.g., citrate synthase/porin) to separate organelle abundance from protein turnover.

      While we are happy to perform qPCR experiments for selected genes, a full RNA-seq experiment seems outside the scope of this study. As explained above, a proteasome inhibitor experiment is not possible in this set-up. Bulk mitophagy/autophagy seems unlikely to be the cause of the decrease of the nuclear-encoded OXPHOS proteins, since most other mitochondrial proteins do not decrease on average on population level in the first hours. This data is now plotted as additional figure (see below) and will be included in the supplementary of the revised manuscript (Fig R1E).

      2.5. Using preSu9-mCardinal intensity as "mitochondrial concentration" is sensitive to expression, import competence, and morphology/segmentation. The authors should provide validation that this metric tracks 3D volume across fragmentation states (e.g., correlation with mito-GFP volumetrics; detergent-free CS activity; TOMM20/Por1 immunoblot per cell).

      We agree that this is an important point and the co-authors discussed this point quite intensively. In figure S3A and B we show (using confocal data) that there is a very strong correlation between the total fluorescence signal and the 3D volume reconstruction. However, the slope of the correlation is different between tubular and fragmented mitochondria (compare panels A and B) and see figure legend. Since we are dealing with diffraction-limited objects it is likely that the 3D reconstruction is sensitive to morphology, especially if mitochondria are “clumping”. We therefore think that the total fluorescence signal is actually a better estimate of mitochondrial mass per cell than the 3D volume reconstruction (especially for our data obtained with a conventional epifluorescence microscope). The mean of the total mitochondrial fluorescence also better matches the population average mitochondrial proteome (Fig R1E). To consolidate this assumption, we will additionally compare our data to a strain with Tom70-Neongreen and to MMP independent dyes.

      Notably, since the morphology is similarly altered in mothers and buds this is of minor impact for our main point – the unequal distribution between mother and buds.

      2.6. The unequal mother-daughter distribution is compelling, but causality remains inferred. Test whether modulating inheritance machinery (actin cables/Myo2, Num1, Mmr1) or altering fission (Dnm1 inhibition) modifies segregation defects and rescues mtDNA/Atp6 decline. Complementation with Fzo1 re-expression at defined times would help order the phenotype cascade.

      We agree that rescue experiments would be very useful. We have some preliminary data for tether experiments, for example with Num1. The general problem is that the fragmented mitochondria clump together. We have not found a method to restore an equal distribution between mother and daughter cells. We will try to optimize the assay, but are not overly confident it will work. Mmr1 deletion aggravates the Fzo1 phenotype, likely also because the distribution becomes even more heterogeneous, but we have not rigorously analyzed this.

      We like the idea of the Fzo1 re-expression and will run such experiments. This will be especially powerful in combination with the new HI-NESS mtDNA reporter. We may be able to track exactly when cells reach the point-of-no return and become petite. This will also help connecting our mathematical model more directly to the data.

      2.7. The model is useful but should include parameter sensitivity (segregation variance, synthesis slopes, initial nucleoid number) and prospective validation (e.g., predict rescue upon partial restoration of synthesis or inheritance, then test experimentally).

      We will refine our model to include the to-be-measured nucleoids/mtDNA values. We will include a parameter sensitivity analysis with the updated model.

      Reviewer 3:

      3.1. About the use of Atp6 as a good proxy for mtDNA content. This is assumed from l285 onwards, based on a previous publication. As the link is fairly central to part of the paper's arguments, and the system in this study is being perturbed in several different ways, a stronger argument or demonstration that this link remains intact (and unchanged, as it is used in comparisons) would seem important.

      We agree, see 1.2.

      3.2. About confounding variables and processes. The study does an admirable job of being transparent and attempting to control for the many different influences involved in the physical-genetic link. But some remain less clearly unpacked, including some I think could be quite important. For example, there is a lot of focus on mito concentration -- but given the phenotypes are changing the sizes of cells, do concentration changes come from volume changes, mito changes, or both? In "ruling out" mitophagy -- a potentially important (and intuitive) influence, the argument is not presented as directly as it could be and it's not completely clear that it can in fact be ruled out in this way. There are a couple of other instances which I've put in the smaller points below.

      Thank you for acknowledging our efforts to show transparent and well-controlled experiments! We address each of the specific points below.

      3.3. full genus name when it first appears

      We will add the full name.

      3.4. I may be wrong here, but I thought the petite phenotype more classically arises from mtDNA deletion mutations, not loss? The way this is phrased implies that mtDNA loss is [always] the cause. Whether I'm wrong on that point or not, the petite phenotype should be described and referenced.

      We can expand the text and cite additional relevant papers. The term “petite” refers to any strain that is respiratory incompetent and leads to small colonies (not necessarily small cells!) (Seel et al. 2023). This can be mutations or gene loss (fragments) on the mtDNA (these are called cytoplasmic petite), or chemically induced loss of mtDNA (e.g. EtBr), or mutations of nuclear genes required for respiration (these are termed nuclear petite; some nuclear petites show loss of mtDNA in addition to the mutation in the nuclear genome) (Contamine and Picard 2000).

      3.5. para starting l59 -- should mention for context that mitochondria in (healthy, wildtype) yeast are generally much more fused than in other organisms

      ok.

      3.6. Fig 1C -- very odd choice of y-axis range! either start at zero or ensure that the data fill as much vertical space of the plot as possible

      True, this was probably some formatting relic. We will adapt the axis to fill the full space. Most of our axes start at 0, but that doesn’t make so much sense here, since we consider the solidity in the control as “baseline”.

      3.7. "wild-type like more tubular mitochondria" reads rather awkwardly. "more tubular mitochondria (as in the wild-type)"?

      Thank you, sounds better.

      3.8. l106 -- imaging artefacts? are mitos fragmenting because of photo stress? -- this is mentioned in l577-8 in the Methods, but the data from the growth rate and MMP comparison isn't given -- an SI figure would be helpful here. It would be reassuring to know that mito morphology wasn't changing in response to phototoxicity too.

      In the methods we just briefly point out that we have done all our “due diligence” controls to check that we do not generate phototoxicity, something that we highlight in the cited review. We do not explicitly have a figure for this, but figure S1A shows that the solidity of the mitochondrial network in control cells stays the same over 9 hours, even though these cells are exposed to the same cultivation and imaging regime as the depleted cells. We will also add a picture of control cells after 9 h. In S1B we show that control cells containing TIR but no AID tag treated with both chemicals imaged over 9 hours also show the same solidity (~mitochondrial morphology) as untreated control. Also, the doubling times of cells grown in our imaging system (Fig R1B) are very similar to the shake flask (Fig R1A). All in all, we are very confident that our imaging settings did not impact our reported phenotypes.

      3.9. para l146 -- so this suggests mtDNA-encoded proteins have a very rapid turnover, O(hours) -- is this known/reasonable?

      Reference (Christiano et al. 2014) suggests that respiratory chain proteins are shorter lived than the average yeast protein. However, based on Figure 2C we think the dynamics mostly speak for a dilution by growth.

      3.10. section l189 -- it's hard to reason fully about these statistics of mitochondrial concentration given that the petite phenotype is fundamentally affecting overall cell volume. can we have details on the cell size distribution in parallel with these results? to put it another way -- how does mitochondrial *amount* per cell change?

      This is a good point. We report mostly on mitochondrial “concentrations” because we think this is what the cell actually cares about (mitochondrial activity in relationship to cytosolic activity). But we will include additional graphs on mitochondrial amount as well as size distributions (Fig R1C, related to Fig 4F). We can already point out that the size distribution of the population does not change much in the first hours. The “petite” phenotype refers to small colonies on growth medium with limited supply of a fermentable carbon source, not to smaller size of single cells.

      3.11. l199 the mean in Fig S3C certainly does change -- it increases, clearly relative both to control and to its initial value. rather than sweeping this under the carpet we should look in more detail to understand it (a consequence of the increased skew of the distribution)?

      This relates somewhat to the previous point. The increase in average concentration is not due to an increased amount in the population, but due to the fact that it is the small buds that get a very high amount of the mitochondria which “exaggerates” the asymmetric/heterogenous distribution. This will be clarified by the figures we mention in the point above.

      3.12. para line 206 -- this doesn't make it clear whether your MMP signal is integrated over all mitochondria in the cell, or normalised by mitochondrial content? this matters quite a lot for the interpretation if the distributions of mitochondrial content are changing. reading on, this is even more important for para line 222. Reading further on, there is an equation on l612 that gives a definition, but it doesn't really clarify (apologies if I'm misunderstanding).

      For each cell, we basically calculate the relative mitochondrial enrichment of the MMP sensitive vs the MMP insensitive pre-sequence.

      So, MMP= (total intensity of mitochondrial pre-Cox4 Neongreen/ total intensity of mitochondrial pre-Su9 Cardinal) / (total cytosolic pre-Cox4 Neongreen/ total cytosolic pre-Su9 Cardinal).

      We calculate this value for each cell, but we do not have the optical resolution to calculate it for individual mitochondrial fragments.

      Both constructs are driven by the same strong promoter, so transcription of the fluorophore should never limit the uptake. Also, in Figure 3D we compare control and depleted cells with similar total mitochondrial concentration, so the difference must be due to a different import of the two fluorophores, see also Fig S4D. The calculated “MMP” value is of course only a crude proxy for the actual membrane potential in millivolts and we do not want to make any claims on absolute values or quantitative differences. But essentially what we are interested in is “mitochondrial health/activity” and we think the system is good at reporting this. See also 2.2.

      3.13. l230 -- a point of personal interest -- low mito concentrations are connected to low "function" (MMP) and give extended division times -- this is interestingly exactly the model needed to reproduce observations in HeLa cells (https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002416). That model went on to predict several aspects of downstream cellular behaviour -- it would be very interesting to see how compatible that picture (parameterised using HeLa observations) is with yeast!

      Thank you for pointing out your interesting paper, which we will include in our discussion. Another recent preprint about fission yeast (Chacko et al. 2025) also fits into this picture. Since you were kind enough to disclose your identity, we would be happy to discuss this further with you in person if we can maybe follow-up on this.

      3.14. l239 "less mitochondria" -- a bit tricky but I'd say "fewer mitochondria" or "less mitochondrial content"

      Thanks, we will think about how to best rephrase this, probably less mitochondrial content.

      3.15. Section l234 So here (and in Fig 4) the focus is on overall distributions of mitochondrial concentration in different cells (mother-to-be, mother, bud; gen 1, gen >1). But we've just seen that one effect of fzo1 is to broader the distribution of mitochondrial concentration across cells. Can't we look in more depth at the implications of this heterogeneity? For example in Fig 4F (which is cool) we look at the distribution of all fzo1 mothers-to-be, mothers, and buds. But this loses information about the provenance. For example, do mothers-to-be with extremely low mito concentrations just push everything to the bud, while mothers-to-be with high mito concentrations distribute things more evenly? It would seem very easy and very interesting to somehow subset the distribution of mothers-to-be by concentration and see how different subsets behave

      This is a good point. When analyzing the data, we pretty much plotted everything against everything and then chose the graphs that we think will best guide the reader through the story-line. We can make additional supplementary plots where we show the starting concentrations/amounts of the mother in relationship to the resulting split ratio at the end of the cycle (Fig R1D).

      3.16. l285 -- experimental design -- do we know that Atp6 will continue to be a good proxy for functional mtDNA in the face of the perturbations provided by Fzo1 depletion? Especially if there is impact on the expression of mitoribosomes, the relationship between mtDNA and Atp6 may look rather different in the mutant?

      This is actually our top-priority experiment now. We will use the HI-NESS system and possibly DAPI staining to make a more direct link to mtDNA/ nucleoid numbers, see 1.2.

      3.17. l290 -- ruled out mitophagy. This message could be much clearer. Comparing Fig S5C and Fig 3A side-by-side is a needlessly difficult task -- put Fig 3A into Fig S5. Then we see that when mitophagy is compromised, the distribution of mitochondrial concentration has a lower median and much lower upper quartile than in the mitophagy-equipped Fzo1 mutant? What is going on here? For a paper motivated by disentangling coupled mechanisms, this should be made clearer!

      Thanks for pointing this out. We can of course easily include the control in the corresponding figure. Compromising mitophagy is likely to generally affect mitochondrial health and turnover a little bit, independent of what is going on with Fzo1. The second evidence that speaks against large-scale mitophagy is the proteomics data: On population level the dynamics of the respiratory chain proteins are very different from those of other (nuclear encoded) mitochondrial proteins. We will add additional supplementary figures to make this more clear, see Fig R1E. Most mitochondrial proteins in the proteomics experiment stay constant in the first few hours, consistent with the imaging data showing that the mean mitochondrial content of the population does not change initially. This again highlights that it is the unequal distribution which is the problem and not massive degradation of mitochondria.

      3.18. With the Atp6 signal, how do we know that fluorescence from different cells is comparable? Buds will be smaller than mother cells for example, potentially leading to less occlusion of the fluorescent signal by other content in the cytoplasm

      This is of course a general problem that anyone faces doing quantitative fluorescence microscopy. From the technical side, we have done the best we could by taking a reasonable amount of z-slices and by choosing fluorophores that are in a range with little cellular background fluorescence (e.g. Neongreen is much better than GFP). From a practical standpoint, we are always comparing to the control, which is subject to the same technical limitations as the depleted cells and the cell sizes are very similar. So, even if we are systematically overestimating the Atp6 concentration in the bud by a few %, the difference to the control would still be qualitatively true. We therefore do not think that any of our conclusions are affected by this.

      3.19. l343 -- maintenance of mtDNA -- here the point about l285 (is the Atp6-mtDNA relationship the same in the Fzo1 mutant) is particularly important, as we're directly tying findings about the protein product to implications about the mtDNA

      We will carefully address this, see above.

      3.20. l367 -- on a first read this description of the model feels like lots of choices have been made without being fully justified. Why a log-normal distribution (when the fit to the data looks rather flawed); why the choice of 5 groups for nucleoid number (why not 3? or 8?); the process used for parameter fitting is very unclear (after reading the methods I think some of these values are read directly from the data, but the shapes of the distributions remain unexplained). l705 -- presumably the ratio was drawn from a log-normal distribution and then the corresponding nucleoid numbers were rounded to integers? the ratio itself wasn't rounded? (also l367) How were the log-normal distributions fitted to experiments (Figs. S7A,B)? Just by eye?

      We will update our model based on measured nucleoid counts and then explain more stringently the choices we make/ parameters we select.

      3.21. l711 by random selection -- just at random? ("selection" could be confusing) Overall, it feels like the model may be too complicated for what it needs to show. Either (a) the model should show qualitatively that unequal inheritance and reduced production leads to rapid loss -- which a much simpler model, probably just involving a couple of lines of algebra, could show. Or (b) the model should quantitatively reproduce the particular numerical observations from the experiments -- it's not totally clear that it does this (do the cell-cycle-based decay timescales in Fig 7 correspond to the hour-based decay timescales in other plots, for example). At the moment the model is at a (b) level of detail but it's only clear that it's reporting the (a) level of results.

      If the HI-NESS and Fzo1 re-addition experiments work as explained above, all parameters will have direct experimental data, and we should get much closer to (a).

      3.22. A lot of the discussion repeats the results; depending on editorial preferences some of this text could probably be pared back to focus on the literature connections and context.

      We will think about streamlining the discussion once some of the additional material alluded to above has been added.

      3.23. Data availability -- it looks like much of the data required to reproduce the results is not going to be made available. Images and proteomic data are promised, but the data associated with mitochondrial concentration and other features are not mentioned. For FAIR purposes all the data (including statistics from analysis of the images) should be published.

      We maybe didn’t phrase this clearly. All data will be made available. Where technically feasible, this will be directly accessible in a repository, otherwise by request to the corresponding author.

      On our OMERO server, we have deposited many TB of raw images as well as all the intermediate steps such as segmentation masks, and the csv files with all the extracted data for each cell (including background corrections etc). Additionally, we can include csvs with the data grouped in a way that we used to generate all the box blots etc. As of now, the OMERO data is unfortunately only available by requesting a personal guest login from our bioinformatics facility, but we were promised that with the next technical update there will be a public link available. The proteomics data and the model are already fully accessible. The raw western blot images with corresponding ponceau staining will be included with the final publication either as additional supplementary material or in whatever format matches the journal requirements.

      3.24 l660 -- can an overview of the EM protocol be given, to avoid having to buy the Mayer 2024 article?

      The cited paper is open access. But we can also include more details in our method section.

      References:

      Chacko, L. A., H. Nakaoka, R. Morris, W. Marshall, and V. Ananthanarayanan. 2025. 'Mitochondrial function regulates cell growth kinetics to actively maintain mitochondrial homeostasis', bioRxiv.

      Christiano, R., N. Nagaraj, F. Frohlich, and T. C. Walther. 2014. 'Global proteome turnover analyses of the Yeasts S. cerevisiae and S. pombe', Cell Rep, 9: 1959-65.

      Contamine, V., and M. Picard. 2000. 'Maintenance and integrity of the mitochondrial genome: a plethora of nuclear genes in the budding yeast', Microbiol Mol Biol Rev, 64: 281-315.

      Deng, Jingti, Lucy Swift, Mashiat Zaman, Fatemeh Shahhosseini, Abhishek Sharma, Daniela Bureik, Francesco Padovani, Alissa Benedikt, Amit Jaiswal, Craig Brideau, Savraj Grewal, Kurt M. Schmoller, Pina Colarusso, and Timothy E. Shutt. 2025. 'A novel genetic fluorescent reporter to visualize mitochondrial nucleoids', bioRxiv: 2023.10.23.563667.

      Di Bartolomeo, F., C. Malina, K. Campbell, M. Mormino, J. Fuchs, E. Vorontsov, C. M. Gustafsson, and J. Nielsen. 2020. 'Absolute yeast mitochondrial proteome quantification reveals trade-off between biosynthesis and energy generation during diauxic shift', Proc Natl Acad Sci U S A, 117: 7524-35.

      Ebert, A. C., N. L. Hepowit, T. A. Martinez, H. Vollmer, H. L. Singkhek, K. D. Frazier, S. A. Kantejeva, M. R. Patel, and J. A. MacGurn. 2025. 'Sphingolipid metabolism drives mitochondria remodeling during aging and oxidative stress', bioRxiv.

      Jakubke, C., R. Roussou, A. Maiser, C. Schug, F. Thoma, R. Bunk, D. Horl, H. Leonhardt, P. Walter, T. Klecker, and C. Osman. 2021. 'Cristae-dependent quality control of the mitochondrial genome', Sci Adv, 7: eabi8886.

      Khan, Abdul Haseeb, Xuefang Gu, Rutvik J. Patel, Prabha Chuphal, Matheus P. Viana, Aidan I. Brown, Brian M. Zid, and Tatsuhisa Tsuboi. 2024. 'Mitochondrial protein heterogeneity stems from the stochastic nature of co-translational protein targeting in cell senescence', Nature Communications, 15: 8274.

      Martin, J., K. Mahlke, and N. Pfanner. 1991. 'Role of an energized inner membrane in mitochondrial protein import. Delta psi drives the movement of presequences', J Biol Chem, 266: 18051-7.

      Osman, C., T. R. Noriega, V. Okreglak, J. C. Fung, and P. Walter. 2015. 'Integrity of the yeast mitochondrial genome, but not its distribution and inheritance, relies on mitochondrial fission and fusion', Proc Natl Acad Sci U S A, 112: E947-56.

      Perić, Matea, Peter Bou Dib, Sven Dennerlein, Marina Musa, Marina Rudan, Anita Lovrić, Andrea Nikolić, Ana Šarić, Sandra Sobočanec, Željka Mačak, Nuno Raimundo, and Anita Kriško. 2016. 'Crosstalk between cellular compartments protects against proteotoxicity and extends lifespan', Scientific Reports, 6: 28751.

      Roussou, Rodaria, Dirk Metzler, Francesco Padovani, Felix Thoma, Rebecca Schwarz, Boris Shraiman, Kurt M. Schmoller, and Christof Osman. 2024. 'Real-time assessment of mitochondrial DNA heteroplasmy dynamics at the single-cell level', The EMBO Journal, 43: 5340-59-59.

      Seel, A., F. Padovani, M. Mayer, A. Finster, D. Bureik, F. Thoma, C. Osman, T. Klecker, and K. M. Schmoller. 2023. 'Regulation with cell size ensures mitochondrial DNA homeostasis during cell growth', Nat Struct Mol Biol, 30: 1549-60.

      Vowinckel, J., J. Hartl, R. Butler, and M. Ralser. 2015. 'MitoLoc: A method for the simultaneous quantification of mitochondrial network morphology and membrane potential in single cells', Mitochondrion, 24: 77-86.

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #2

      Evidence, reproducibility and clarity

      Dengler and colleagues use an AID-based acute depletion of Fzo1 in budding yeast, coupling microfluidics live imaging, single-cell quantification (>30k cells), proteomics, an mtDNA-encoded Atp6 reporter, and simple modeling to argue that fusion loss causes (i) rapid fragmentation and ΔΨm decline, (ii) progressive mtDNA/RC depletion, and (iii) unequal mother-daughter mitochondrial inheritance; together with a failure of compensatory synthesis, these changes drive petite formation. The time-resolved design is valuable, but several readouts are indirect, and some claims (particularly those regarding membrane potential, synthesis "failure," and causality) appear over-interpreted without additional controls.

      Major points

      1. While inducible TIR is used to reduce background, the manuscript should rigorously exclude auxin/TIR off-targets (growth, mitochondrial phenotypes, gene expression). Please include full matched controls: {plus minus}auxin, {plus minus}TIR, epitope tag alone, and a degron control on an unrelated mitochondrial membrane protein.
      2. The Mitoloc preSu9 vs Cox4 import ratio is only a proxy of mitochondrial membrane potential (ΔΨm) and itself depends on mitochondrial mass, protein expression, matrix ATP, and import saturation. The authors need to calibrate ΔΨm with orthogonal dyes (TMRE/TMRM) and pharmacologic titrations (FCCP/antimycin/oligomycin) to generate a response curve; show that Mitoloc tracks dye-based ΔΨm across the relevant range and corrects for mass/photobleaching. Report single-cell ΔΨm vs mass residuals.
      3. To use Atp6-mNeon as a proxy for mtDNA is an assumption. Interpreting Atp6 intensity as "functional mtDNA" could be confounded by translation, turnover, or assembly. Please (i) report mtDNA copy number time courses (you have qPCR), nucleoid counts (DAPI/PicoGreen or TFAM/Abf2 tagging), and (ii) assess translation (e.g., 35S-labeling or puromycin proxies) and turnover (proteasome/AAA protease inhibition, mitophagy mutants -some data are alluded to- plus mRNA levels for mtDNA-encoded genes). This will support the "reduced synthesis" versus "increased degradation" conclusion.
      4. The promoter-NeonGreen reporters argue against transcriptional down-regulation of nuclear OXPHOS. Please add mRNA (RT-qPCR/RNA-seq) for representative genes and a pulse-chase or degradation-pathway dependency (e.g., proteasome/mitophagy/autophagy mutants) to firmly assign active degradation. The authors need to normalize proteomics to mitochondrial mass (e.g., citrate synthase/porin) to separate organelle abundance from protein turnover.
      5. Using preSu9-mCardinal intensity as "mitochondrial concentration" is sensitive to expression, import competence, and morphology/segmentation. The authors should provide validation that this metric tracks 3D volume across fragmentation states (e.g., correlation with mito-GFP volumetrics; detergent-free CS activity; TOMM20/Por1 immunoblot per cell).
      6. The unequal mother-daughter distribution is compelling, but causality remains inferred. Test whether modulating inheritance machinery (actin cables/Myo2, Num1, Mmr1) or altering fission (Dnm1 inhibition) modifies segregation defects and rescues mtDNA/Atp6 decline. Complementation with Fzo1 re-expression at defined times would help order the phenotype cascade.
      7. The model is useful but should include parameter sensitivity (segregation variance, synthesis slopes, initial nucleoid number) and prospective validation (e.g., predict rescue upon partial restoration of synthesis or inheritance, then test experimentally).

      Significance

      The dataset is rich and the time-resolved approach strong, but key conclusions rely on indirect proxies and need orthogonal validation and at least one causal rescue experiment to avoid over-interpretation.

    1. And because our (digital) prototypes try to be used/validaded mainly by communities instead of by academic peers, we need to care about the practicalities of such prototypes and their insertion in the communities. In my experience, this practical insertion could happen via two complementary strategies: the encompassing one and embedding one. The encompassing strategy could be exemplified by the Smalltalk variants, like Pharo or GToolkit, with their OS and IDE rolled into one approach. Here, a single computing experience includes "everything" a community artifact could need: object networks acting as "app(s)"3, persistance, data formats, IDEs, graphical stack, debbugers and so on. The practicalities are related with the collapse of incidental complexity when the community has a single metatool to bridge their other tools and workflows. We use what I call "interstitial programming" to bridge socio-technical systems by changing what happens in the gaps/bridges between them, instead of changing them from inside. This was the approach I followed with Grafoscopio, since late 2014 and early 2015 until present day, with pretty good results and fluency, allowing us to make several prototypes and empowering practices convering diverse needs: from self (PDF/web) publishing, to civic tech and political oversight, community learning and memory, amont other themes (chosing needs and topics in resonance with the community is key in having this prototypes as living artifacts in such community). The embedding strategy could be exemplified by Lua and its variants, like YueScript. Here, an already existing tool/experience is extended from inside or by complementing and then replacing an existing tool/practice, and while this contrast the "interstitial" approach mentioned above, still shares the concern of dealing with needs felt in the community in its current workflows and tools. This is the strategy I plan to explore this year, particularly regarding the publishing workflows/formats of several local grassroots communities, and to compare with how I'll be implementing part of such ideas in Grafoscopio (keeping on with the encompassing strategy). While previously I thought in Fengari as my way to implement embeddability to increse agency in the (web) tools, the recent developments on hypermedia systems make me think that I can keep avoiding JavaScript4 and implement the strategy server side by reimagining TiddlyWiki in Lua+YueScript. Cardumem is the working name for such idea, and as explained in that link the intend is to provide a similar gentle learning curve between being a content creator and a functionality creator, that TiddlyWiki give us, while being able to generalize the concepts learnt while using and extending the wiki in its own functional DSL to other computing languages (for more details and links to the TW's community discussion visit the previos link). So, regarding the "Not Invented Here syndrome", the differences with TiddlyWiki are enough to justify why we need to invest all that work in Cardumem, as community and (inter)personal knowledge management is a core concern5 in the Grafoscopio community, to the point that we need to reinvent the wheel, for the contexts where the already existing ones don't work as we expect for our needs. While learning Lua and YueScript, I frequently miss a lot of the code liveness and the interactive documentation of the "Argumentative Driven Development" (ADD? 🤔) that I already enjoy within Grafoscopio over Pharo/GToolkit. So I thought that my first job would be to implement some kind of minimal notebook publishing on Lua, inpired by Clojure's Clerk6 and Julia's Pluto, but quite more static, at least as the begining (see Boostrapping a Lua notebook for more details). But finally a minimal Lua long comment + "markup tag" was good enough to have my documentation in the Lua files to postpone the idea, while exploring the HTML interactive interfaces provided by HTMX. Instead the design has been guided by the needs I have with my students/apprentices in my classes this semester at the university and future workshops in the hackerspace. And it has been a pretty fruitful design space/practice, where UI and functionality emerge organically, with the lessons I need to learn to ptovide the experience I need/want. There is still a long path to walk, but the initial advances are promising. Let's see how I walk the exploration map sketched here in this pendular movement from emcompassing to embedding strategies and from abstraction about the to concrete implementations. I will document my advances in the entries to come.

      La tecnología pensada para comunidades debe práctica y no solo teórica, y para lograrlo se pueden usar dos estrategias: la envolvente, que ofrece una herramienta integral como Grafoscopio, o la incrustada, que mejora las herramientas que la gente ya utiliza, como se muestra con Cardumem. La idea es encontrar que entre estas dos formas se alinee para que la tecnología llegue a las necesidades reales de una comunidad y no solo el entorno académico u operativo de la programación.

    1. This simple single plate protocol allows itself to a wide range of high-throughput research and development screening applications, ranging from streamlining protein production and identification of activity enhancing mutations, to ligand screening for basic research, biotechnological and drug discovery applications.

      This is a really interesting method using a peptide tag to target proteins to extracellular vesicles for ease of isolation in E. coli! I can think of lots of benefits and applications!

    2. As an illustration, we have developed a multiwell format in vitro assay that allows researchers to measure the activity of in-plate expressed and exported VNp-uricase protein (Figure 3), by following changes in 293 nm absorbance to monitor enzyme dependent breakdown of uric acid

      I'm guessing that you measured this in your initial paper, but might be worth mentioning here as well. Have you shown that the VNp tag doesn't affect enzyme activity, stability, folding?

    3. The VNp tag facilitates the export of recombinant proteins into extracellular membrane-bound vesicles, creating a microenvironment that enhances the solubility and stability of challenging proteins

      Very cool!

    1. Reviewer #3 (Public review):

      Summary

      This manuscript, from the developers of the novel DREADD-selective agonist DCZ (Nagai et al., 2020), utilizes a unique dataset where multiple PET scans in a large number of monkeys, including baseline scans before AAV injection, 30-120 days post-injection, and then periodically over the course of the prolonged experiments, were performed to access short- and long-term dynamics of DREADD expression in vivo, and to associate DREADD expression with the efficacy of manipulating the neuronal activity or behavior. The goal was to provide critical insights into practicality and design of multi-year studies using chemogenetics, and to elucidate factors affecting expression stability.

      Strengths are systematic quantitative assessment of the effects of both excitatory and inhibitory DREADDs, quantification of both the short-term and longer-term dynamics, a wide range of functional assessment approaches (behavior, electrophysiology, imaging), and assessment of factors affecting DREADD expression levels, such as serotype, promoter, titer (concentration), tag, and DREADD type.

      These finding will undoubtedly have a very significant impact on the rapidly growing, but still highly challenging field of primate chemogenetic manipulations. As such, the work represents an invaluable resource for the community.

    1. reply to u/todddiskin at https://www.reddit.com/r/typewriters/comments/1nlodr0/how_do_you_use_your_machines/

      Some various recent uses:

      • I've got writing projects sitting in two different machines.
      • I use one on my primary desk for typing up notes on index cards, recipes, my commonplace "book", letters, and other personal correspondence.
      • I use a few of my portables on the porch in the mornings/evenings for journaling.
      • One machine in the hallway is for impromptu ideas and poetry and an occasional bit of typewriter art.
      • One machine near the kitchen is always gamed up for adding to the ever-growing shopping list.
      • I'll often get one out for scoring baseball games.
      • Participating in One Typed Page and One Typed Quote
      • Typing up notes in zoom calls - I've got a camera mount over a Royal KMG that has its own Zoom account so people can watch the notes typed in real time.
      • Labels for folders, index card dividers, and sticky labels.
      • Addressing envelopes.
      • Writing out checks.
      • Typecasting
      • Hiding a flask or two of bourbon (the Fold-A-Matic Remingtons are great for this)
      • Supplementing the nose of my bourbon and whisky collection.

      At the end of the day though, unless you're Paul Sheldon, typewriters are unitaskers and are designed to do one thing well: put text on paper. All the rest are just variations on the theme. 😁🤪☠️

      see also: https://www.reddit.com/r/typewriters/search/?q=typewriter+uses

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Summary:

      Desveaux et al. describe human mAbs targeting protein from the Pseudomonas aeruginosa T3SS, discovered by employing single cell B cell sorting from cystic fibrosis patients. The mAbs were directed at the proteins PscF and PcrV. They particularly focused on two mAbs binding the T3SS with the potential of blocking activity. The supplemented biochemical analysis was crystal structures of P3D6 Fab complex. They also compared the blocking activity with mAbs that were described in previous studies, using an assay that evaluated the toxin injection. They conducted mechanistic structure analysis and found that these mAbs might act through different mechanisms by preventing PcrV oligomerization and disrupting PcrVs scaffolding function.

      Strengths:

      The antibiotic resistance crisis requires the development of new solutions to treat infections caused by MDR bacteria. The development of antibacterial mAbs holds great potential. In that context, this report is important as it paves the way for the development of additional mAbs targeting various pathogens that harbor the T3SS. In this report, the authors present a comparative study of their discovered mAbs vs. a commercial mAb currently in clinical testing resulting in valuable data with applicative implications. The authors investigated the mechanism of action of the mAbs using advanced methods and assays for the characterization of antibody and antigen interaction, underlining the effort to determine the discovered mAbs suitability for downstream application.

      Weaknesses:

      Although the information presented in this manuscript is important, previous reports regarding other T3SS structures complexed with antibodies, reduce the novelty of this report. Nevertheless, we provide several comments that may help to improve the report. The structural analysis of the presented mAbs is incomplete and unfortunately, the authors did not address any developability assessment. With such vital information missing, it is unclear if the proposed antibodies are suited for diagnostic or therapeutic usage. This vastly reduces the importance of the possibly great potential of the authors' findings. Moreover, the structural information does not include the interacting regions on the mAb which may impede the optimization of the mAb if it is required to improve its affinity.

      As described in the manuscript (Fig. 6), our mAbs are markedly less effective in every in vitro T3SS inhibition assay than the mAbs recently described by Simonis et al. They are therefore very unlikely to outperform these mAbs in in vivo animal models of P. aeruginosa infection. Considering the high cost of animal experiments and ethical concerns-and in accordance with the Reduction principal of the 3Rs guidelines-we chose not to pursue in vivo experiments. Instead, we focused on leveraging the new isolated mAbs to investigate the mechanisms of action and structural features of anti-PcrV mAbs.

      Following the reviewer's suggestion, we have now added mAb interaction features into the structural data presented in the manuscript. However, based on the efficiency data, the structural analysis and the mechanistic insights presented, we do not consider further therapeutic use and optimization of our mAbs to be warranted.

      Reviewer #2 (Public review):

      Summary:

      Desveaux et al. performed Elisa and translocation assays to identify among 34 cystic fibrosis patients which ones produced antibodies against P. aeruginosa type three secretion system (T3SS). The authors were especially interested in antibodies against PcrV and PcsF, two key components of the T3SS. The authors leveraged their binding assays and flow cytometry to isolate individual B cells from the two most promising sera, and then obtained monoclonal antibodies for the proteins of interest. Among the tested monoclonal antibodies, P3D6 and P5B3 emerged as the best candidates due to their inhibitory effect on the ExoS-Bla translocation marker (with 24% and 94% inhibition, respectively). The authors then showed that P5B3 binds to the five most common variants of PcrV, while P3D6 seems to recognize only one variant. Furthermore, the authors showed that P3D6 inhibits translocon formation, measured as cell death of J774 macrophages. To get insights into the P3D6PcrV interaction, the authors defined the crystal structure of the P3D6-PcrV complex. Finally, the authors compared their new antibodies with two previous ones (i.e., MEDI3902 and 30-B8).

      Strengths:

      (1) The article is well written.

      (2) The authors used complementary assays to evaluate the protective effect of candidate monoclonal antibodies.

      (3) The authors offered crystal structure with insights into the P3D6 antibody-T3SS interaction (e.g., interactions with monomer vs pentamers).

      (4) The authors put their results in context by comparing their antibodies with respect to previous ones.

      Weaknesses:

      The authors used a similar workflow to the one previously reported in Simonis et al. 2023 (antibodies from cystic fibrosis patients that included B cell isolation, antibody-PcrV interaction modeling, etc.) but the authors do not clearly explain how their work and findings differentiate from previous work.   

      We employed a similar mAb isolation pipeline to that used by Simonis et al., beginning with the screening of a cohort of cystic fibrosis patients chronically infected with P. aeruginosa. As in Simonis et al., we isolated specific B cells using a recombinant PcrV bait, followed by single-cell PCR amplification of immunoglobulin genes. The main differences in methodology between the two studies are as follows: i) the use of individuals from different cohorts, and therefore having different Ab repertoires; ii) the nature of the screening assays, although in both cases the screening was focused on the inhibition of T3SS function; iii) the PcrV labeling strategy, with Simonis et al. employing direct labeling, whereas we used a biotinylated tag combined with streptavidin;

      The number of specific mAbs obtained and produced was higher in Simonis et al. (47 versus 9 in our study). They sorted B cells from three individuals compared to two in our work and possibly started with a larger amount of PBMCs per donor, which may account for the higher number of specific B cells and mAbs isolated. Considering that the strategies were overall very similar, the greater number of mAbs isolated in Simonis et al. likely explains, to a large extent, why they identified mAbs targeting different epitopes compared to ours, including highly potent mAbs that we did not recover. 

      Our modeling study, unlike that of Simonis et al., which relied on an AlphaFold prediction of the multimeric structure of P. aeruginosa PcrV, was based on the experimentally determined structure of the homologous Salmonella SipD pentamer, as described in the manuscript. Furthermore, we compared our mAb P3D6 not only with 30-B8 from Simonis et al., but also with MEDI3902. Finally, in contrast to the approach of Simonis et al., we used functional assays to investigate the differences in mechanisms of action among these mAbs, which target three distinct epitopes.

      (2) Although new antibodies against P. aeruginosa T3SS expand the potential space of antibodybased therapies, it is unclear if P3D6 or P5B3 are better than previous antibodies. In fact, in the discussion section authors suggested that the 30-B8 antibody seems to be the most effective of the tested antibodies.  

      As explained above and shown in the Results section (Figure 6), the 30-B8 mAb is markedly more effective at inhibiting T3SS activity in both in vitro assays used.

      (3) The authors should explain better which of the two antibodies they have discovered would be better suited for follow-up studies. It is confusing that the authors focused the last sections of the manuscript on P3D6 despite P3D6 having a much lower ExoS-Bla inhibition effect than P5B3 and the limitation in the PcrV variant that P3D6 seems to recognize. A better description of this comparison and the criteria to select among candidate antibodies would help readers identify the main messages of the paper. 

      The P3D6 mAb shows stronger inhibitory activity than P5B3 in the two assays used, as shown in Supplementary Figure 1. An error in the table in Figure 2B was corrected and this table now reflects the results presented in Supplementary Figure 1. 

      The final sections of the manuscript focus on P3D6, which is more potent than P5B3, and for which we successfully determined a co-crystal structure with PcrV*. All parallel attempts to obtain a structure of P5B3 in complex with PcrV* failed. The P3D6-PcrV* structure was used to analyze epitope recognition and mechanisms of action in comparison to previously described mAbs. As previously mentioned, we do not consider further studies aimed at therapeutic development and optimization of our mAbs to be justified given the current data. Therefore, we believe that the main message of the paper is adequately captured in the title.

      (4) This work could strongly benefit from two additional experiments:

      (a) In vivo experiments: experiments in animal models could offer a more comprehensive picture of the potential of the identified monoclonal antibodies. Additionally, this could help to answer a naïve question: why do the patients that have the antibodies still have chronic P. aeruginosa infections? 

      As explained above, the mAbs we isolated are significantly less potent than those described by Simonis et al., and are therefore unlikely to outperform the best anti-PcrV candidates in vivo. In light of the data, and considering ethical concerns related to animal use in research and budgetary constraints, we decided not to proceed with in vivo experiments.

      There are a number of reasons that may explain why patients with anti-PcrV Abs blocking the T3SS can still be chronically infected with Pa. First these Abs may be at limiting concentration, particularly in sites where Pa replicates, and thus unable to clear infection. in addition, it has been described that the T3SS is downregulated in chronic infection in cystic fibrosis patients. This suggests that a therapeutic intervention with T3SS inhibiting Abs may be more efficient if done early in cystic fibrosis patients to prevent colonization when Pa possesses an active T3SS. Finally, T3SS is not the only virulence mechanism employed by P. aeruginosa during infection. Indeed, multiple protein adhesins and polysaccharides are important factors facilitating the formation of bacterial biofilms that are crucial for establishing chronic persistent infection. In this regard, a combination of Abs targeting different factors on the P. aeruginosa surface may be needed to treat chronic infections.  

      (b) Multi-antibody T3SS assays (i.e., a combination of two or more monoclonal antibodies evaluated with the same assays used for characterization of single ones). This could explore the synergistic effects of combinatorial therapies that could address some of the limitations of individual antibodies. 

      Given the high potency of the Simonis mAbs and the mechanisms of action highlighted by our analysis, it is unlikely that our mAbs would synergize with those described by Simonis. Additionally, since our two mAbs cross-compete for binding, synergy between them is also improbable.

      Reviewer #1 (Recommendations for the authors):

      Line 166: How was the serum-IgG purified? (e.g., protein A, protein G). 

      Protein A purification was used, as now mentioned in the manuscript. Purified Igs were thus predominantly IgG1, IgG2 and IgG4, as indicated.

      (2) Line 196: When mentioning affinities, it is preferable to present in molar units. 

      To facilitate comparisons, Ab concentrations were presented in µg/mL as in Simonis et al.

      (3) Line 206: The author states that P3D6 displays significantly reduced ExoS-Bla injection (Figure 2B), but according to the presented table, ExoS-Bla inhibition was higher for P5B3. Additionally, when using "significantly", what was the statistical test that was used to evaluate the significance? Please clarify.

      We thank the reviewer for pointing out this inconsistency. Indeed, the names of P3D6 and P5B3 were exchanged when building the table related to Figure 2B. The corrected version of this figure is now presented in the new version of the manuscript. An ANOVA was performed to evaluate the significance of the observed difference (adjusted p-values < 0.001) and it is now mentioned in the figure caption.  

      (4) Line 215: "P3B3" typo.

      This was corrected.

      (5) Figure 3B: Could the author explain the higher level of ExoS-Bla injection when using VRCO1 antibody compared to no antibody.  

      A slightly higher level of the median is observed in the case of three variants out of five. However, this difference is not statistically significant (p-value > 0.05).

      (6) Supplement Figure 1: the presented grey area is not clear (is it the 95%CI?) and how was the IC50 calculated? With what model was it projected? Are the values for IC50 beyond the 100µg/mL mark a projection? It seems that projecting such greater values (such as the IC50 of over 400µg/mL for variant 5) is prone to high error probability.

      The grey area represents the 95% confidence interval (95% CI) and it is now mentioned in the figure caption. The IC50 and 95% CI were both inferred by the dose-response drc R package based on a three-parameters log-logistic model and it is now explained in the Materials & Methods section. The p-values for IC50 beyond the 100µg/mL were below 0.05 but we agree that such extrapolation should be considered with precaution (see below our response to comment number 7).

      (7) Line 227: The author describes that P5B3 has similar IC50 values towards variants 1-4, but the  IC50 towards variant 5 is substantially higher with 400µg/mL, albeit the only difference between variant 4 and 5 is the switch position 225 Arg -> Lys which are very similar in their properties. Please provide an explanation. 

      As explained in our response to comment number 6, we agree that the comparison of IC50 that are estimated to be close or higher than the highest experimental concentration is somehow speculative. Indeed, we performed further statistical analysis that showed no significant difference between the IC50 toward the five PcrV variants of mAb P5B3. In contrast, the difference between the IC50 of mAbs P5B3 and P3D6 toward variant 1 is statistically significant. This is now explained in the manuscript.

      (8) Line 233: Pore assembly: It is not clear how the data was normalized. The authors mention the methods normalization against the wildtype strain in the absence of antibodies, but did not elaborate clearly if the mutant strain has the same base cytotoxicity as the wild type. It would be helpful to show the level of cytotoxicity of the wild type compared to the mutant in the absence of antibodies to understand the baseline of cytotoxicity of both strains.  

      In these experiments we did not use the wild-type strain. As explained, the only strain that allows the measurement of pore formation by translocators PopB/PopD is the one lacking all effectors. All the experiments were done with this strain, and all the measurements were normalized accordingly. 

      (9) Figure 4: The explanation is redundant as it is clearly stated in the results. It would be better for the caption to describe the figure and leave interpretation to the results section. Overall, this comment is relevant to all figure captions, as it will reduce redundancy. My suggestion is to keep the figure caption as a road map to understand what is shown in the figure. For example, the Figure 4 caption should include that the concentration is presented in logarithmic scale, what is the dashed line, what is the grey area (what interval does it represent?), what each circle represents, and what is the regression model used? 

      Figure captions have been improved as suggested. 

      (10) Line 432: The authors apparently misquoted the original article describing the chimeric form PcrV* by describing the fusion of amino acids 1-17 and 136-249. I quote the original article by Tabor et al. "[...] we generated a truncated PcrV fragment (PcrVfrag) comprising PcrV amino acids 1-17 fused to amino acids 149-236 [...]". Additionally, how does the absence of amino acid 21 in the variant affect the conclusion? 

      Our construct was inspired by the one described in Tabor et al. but was not identical. We have therefore replaced "was constructed based on a construct by Tabor et al." for "whose design was inspired by the construct described in Tabor et al."

      Amino acid 21 is only absent in the construct used for crystallization experiments; all other experiments looking at Ab activity were performed with bacteria bearing full-length PcrV. The difference in P3D6 activity between variants V1 and V2-appears to be explained by the nature of the residue at position 225, according to the structural data, as explained now in more detail in the manuscript. Accordingly, the difference in efficiency of P3D6 against the V1 and V2  variants is explained by the residue at position 225, as both variants have the same residue at position 21. However, while the nature of the residue at position 225 appears to explain the absence of efficiency of the Ab for the variants studied, an impact of residue 21 could not be totally ruled out in putative variants with a Ser at 225 but different amino acids at 21.

      (11) Line 569: Missing word - ESRF stands for European Synchrotron Radiation Facility. 

      This has been corrected.

      (12) Line 268-269 (Figure 5A): The description of the alpha helices in relation to the figure is incomplete. Helices 2,3 and 5 are not indicated. 

      Indeed, since the structure is well-known and in the interest of visibility and simplicity, we only included the most relevant secondary structure features.

      (13) Line 271-272: It would be good to elaborate on the exact binding platform between LC and HC of the Fab and the residues on the PcrV side. For example, the author could apply the structure to PDBePISA (EMBL-EBI) which will provide details about the interface between the PcrV and the antibody. It is very interesting to learn what regions of the antibody are in charge of the binding, such as: is the H-CDR3 the major contributor of the binding or are other CDRs more involved? Additionally, in line 275 they state that the substitution of Ser 225 with Arg or Lys is consistent with the P3D6 insufficient binding. What contributed to this result on the antibodies side? 

      In order to address this question, we are now providing a LigPlot figure (supplementary Figure 3) in which specific interactions between PcrV* and the Fab are shown.

      (14) Line 291: It is unclear from what data the authors concluded that anti-PscF targets 3 distinct regions of PscF. 

      The data are shown in Supplementary Table 2, as mentioned in the manuscript. We have now modified the order of the anti-PcrV mAbs in the table to better illustrate the three identified epitope clusters (Sup table 2). Similarly, the anti-PscF mAbs appear to group into three clusters as P3G9 and P5E10 only compete with themselves, while mabs P3D6 and P5B3 compete with themselves and each other.

      (15) Line 315: It is preferable to introduce results in the results section instead of the discussion. 

      While preparing the manuscript, we initially included these results as a separate paragraph in the Results section, but ultimately chose the current format to improve flow and avoid redundancy.

      (16) Supplement Figure 2: What was the regression model used to evaluate IC50, and what is presented in the graph? What is the dashed line (see comment for Figure 4 above)? 

      The regression is based on a three-parameters log-logistic model and the light-colors area correspond to the 95% IC. The dashed lines visually represents 100% of ExoS-Bla injection. These information are now mentioned in the figure caption.

      (17) Figure 6B: It would be better to show an additional rotation of the PcrV bound by Fab 30-B8 that corresponds to the same as the one represented with Fab MEDI3092. This would clear up the differences in binding regions. Same for Fab P3D6. 

      Figure 6 already depicts two orientations. Despite the fact that we agree that additional orientations could be of interest, we believe that this would add unnecessary complexity to the figure, and would prefer to maintain the figure as is, if possible.

      (18) Line 356-358: The author proposes an experiment to support the suggested mechanism of P3D6, it would follow up with a bio-chemical analysis showing the prevention of PcrV oligomerization in its presence. 

      We understand the reviewers’ comment regarding the potential use of biochemical approaches to test our hypothesis. However, this not currently feasible as we have been unable to achieve in vitro oligomerization of PcrV alone, possibly due to the absence of other T3SS components, such as the polymerized PscF needle.

      (19) Line 456: Missing details about how the ELISA was conducted including temperature, how the antigen was absorbed, plate type, etc. 

      Experimental details have been added.

      (20) Line 460: Missing substrate used for alkaline phosphatase. 

      The nature of the substrate was added to the methods.

    1. Anchoring Bias

      You see a shirt on a clothing rack with an original price tag of $100 and a sale price tag of $60. Even if you wouldn't normally spend more than $40 on a shirt, the initial, higher price of $100 serves as an anchor, making the sale price of $60 seem like a great deal in comparison.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      “Alternative possibilities are discussed regarding the prior and likelihood of the model. Given that the second case study inspired the introduction of the zero-inflation likelihood, it is not clear how applicable the general methodology is to various datasets. If every unique dataset requires a tailored prior or likelihood to produce the best results, the methodology will not easily replace more traditional statistical analyses that can be applied in a straightforward manner. Furthermore, the differences between the results produced by the two Bayesian models in case study 2 are not discussed. In specific regions, the models provide conflicting results (e.g., regions MH, VPMpc, RCH, SCH, etc.), which are not addressed by the authors. A third case study would have provided further evidence for the generalizability of the methodology.”

      We hope in this paper to propose a ‘standard workflow’ for these data; this standard workflow uses the horseshoe prior and we propose that this is the approach used to describe cell count data instead of the better established, but to our thinking, inefficient, t-testing approach.

      The horseshoe prior is robust and allows a partially-pooled model to used while weighing-up the contribution of different data points. This is an analogue of excluding outliers and, in any analysis it is normal to investigate further if there are points being excluded as outliers. Often this reveals a particular challenge with the data, in the case of the data here, there are a lot of zeros, indicating that some samples should be excluded because the preparation failed to tag cells rather than because there were no cells to tag. This idea behind the ZIP example is to show that the Bayesian method can allow for this sort of further investigation and, indeed, as the reviewer notes this sort of extended analysis is often bespoke, tailored to the data.

      We have clearly failed to explain that the ‘standard workflow’ we propose replace the more traditional methods is the first one we describe, with the horseshoe prior; this produces better results on both datasets than the traditional approach. However, we also feel it is useful to show how a more tailored follow-on can be useful; we need to make it clear that this is intended as an illustration of an ‘optional extra’ rather than a part of the more straightforward ‘standard workflow’.

      To make this clearer we have made altered the text in several locations:

      • end of Introduction: added clarifying sentence “Here, our aim is to introduce a ‘standard’ Bayesian model for cell count data. We illustrate the application of this model to two datasets, one related to neural activation and the other to developmental lineage. For the second dataset, we also demonstrate a second example extension Bayesian model.”

      • Section Hierarchical modeling: “Our goal in both cases is to quantify group differences in the data. We present a ‘standard’ hierarchical model. This model reflects the experimental features common to cell count experiments and reflects the hierarchical structure of cell count data; the standard model is designed to deal robustly and efficiently with noise. On some occasions, to reflect a specific hypotheses, the structure of a particular experiment or an observed source of noise, this model can be further refined or changed to target the analysis. We will give an example of this for our second dataset.”

      • Section Horseshoe prior: “The alternative is via a flexible prior such as the horseshoe Carvalho et al., 2010; Piironen and Vehtari, 2017. This more generic option may be suitable as a default ‘standard’ approach in the typical case where outliers are poorly understood.”

      • Discussion: word ‘standard’ added to sentence: “Our standard workflow uses a horseshoe prior, along with the partial pooling, this allows our model to deal effectively with outliers.”

      • Discussion: modified sentence “The horseshoe prior model workflow we have exhibited here is intended as a standard approach.”

      Indeed, because the horseshoe prior deals robustly with outliers, whereas the ZIP is intended to model the outliers, any substantial difference between the two should be examined carefully. The referee is right to point out that we have not explained this in any detail and has helpfully listed a few brain regions were there are differences. This is useful, particularly since the examples listed illustrate in a useful way the opportunities and hazards this sort of data presents. To address this, we have added a new version of Figure 6 to the revised manuscript

      Previously Figure 6 showed two example brain regions: MPN and TMd. We have now added MH and SCH to the figure, and new text commenting on the insights the plots provide, both in the Results and Discussion.

      Reviewer #2 (Public review):

      “A clearer link between the experimental data and model-structure terminology would be a benefit to the non-expert reader.”

      This is a very good point and we are acutely aware through our own work how difficult it can be moving between fields with different research goals, different scientific cultures and different technical vocabularies. Just as it can be difficult translating from one language to another without losing nuance and meaning, it can be a real challenge finding technical terms that are useful for the non-expert reader while retaining the precision the application requires! In the long run, we hope that, just as some of the very specialized vocabulary that surrounds frequentist statistics has become familiar to to the working experimental scientists, the precise terminology involved in Bayesian modelling will become familiar and transparent. However, in advance of that day, we have included a glossary of terms at the end of the main text, and have made numerous small tweaks to make sure that link between data and model terminology is clearer and better explained.

      Reviewer #1 (Recommendations fro the authors):

      (1) “I would strongly recommend that the authors include more case studies in the manuscript, and address the qualitative differences between the different versions of the model.”

      We agree that our method will only become established when it is applied to more datasets, we hope to contribute to further analysis and we know other people are already using the approach on their own data. We do, however, feel that adding more datasets to this paper will make it longer and more complex; the plan, instead, is to use the method on novel datasets to test specific hypotheses, so that the results will include novel scientific findings as well as adding another illustration of the Bayesian approach applied to data that is already well studied.

      (2) “Figure 6 is not discussed in the main text.”

      We had discussed the results presented in Figure 6 in the second paragraph of the section “Case study two – Ontogeny of inhibitory interneurons of the mouse thalamus”, however the reviewer is right in that we did not directly refer to the Figure – this was an oversight. In any case, in the revised manuscript we present a new version of Figure 6 (in response to above comment), which is now explicitly cited in the text.

      Revised Figure 6: Example data and inferences highlighting model discrepancies. On the left under ‘data’: boxplots with medians and interquartile ranges for the raw data for four example brain regions. The shape of each point pairs left and right hemisphere readings in each of the five animals. On the right under ‘inference’: HDIs and confidence intervals are plotted. Purple is the Bayesian horseshoe model, pink is the Bayesian ZIP model, and orange is the sample mean. The Bayesian estimates are not strongly influenced by the zero-valued observations (MPN, SCH, TMd) or large-valued outliers (MH) and have means close to the data median. This explains the advantage of the Bayesian results over the confidence interval.

      Reviewer #2 (Recommendations from the authors):

      (1) “This is a generally well-written methodology paper that also provides the underlying code as a resource. As a reviewer outside both cell-count modelling and hierarchical-Bayesian approaches (though with a general interest in the topics) I found the method a little difficult to follow and would have liked to have been left with a better understanding of how the method is applied to the data. For example, in Figure 1 we are introduced to brain region count, animal count, and “items”. Then in the next line: pooling, model, structure, population and etc in subsequent lines. It is not clear what the subscripts (the pools?) are referring to: are they different regions R or animals N? These terms need to be better linked to the data and/or trimmed. Having said that, the later results look like a solid contribution to the field with a significant reduction in uncertainty from the Bayesian approach over the frequentist one. A future version of the manuscript, therefore, would benefit from greater precision of language as well as an economy and greater focus of terms linking the method to the biology. This is particularly the case around the exposition parts in Figure 1, Figure 2, and the “Hierarchical modelling” section.”

      This is another important point. We have now made numerous small changes to tighten up the text in the paper, in response to both this point and the next point.

      (2) “Language throughout could be sharpened. Subjectivity like “surprising outliers” could be removed and quirky grammar like “often small, ten is a typical” improved. There are also typos “an rate” etc that should be tidied up.”

      As per previous response, we have made numerous tweaks and small improvements and feel that the paper is stronger in this respect.

      (3) “Figure 1 caption. “It is a spectrum that depends” Is spectrum the right word here? Also, “thicker stroke” what does this refer to? Wasn’t immediately clear. In A, why is the whole animal within the R bracket that signifies brain regions, and then the brain regions are within the N bracket that signifies whole animals? Apart from the teal colouring, what are the other coloured regions in the image referring to? Improving this first figure would greatly help a reader unfamiliar with the context of the approach.”

      We have replaced the word “spectrum” with “continuum”. We have replaced “ Observed quantities have been highlighted with a thicker stroke in the graphical model.” with “The observed data quantities, y<sub>i</sub> to y<sub>n</sub>, are highlighted with a thick line in the model diagrams”. We have added the following text to describe the red and green lines in panel A: “green and red lines indicate regions labeled as damaged”.

      (4) “On P2 there is no discussion of priors when running through the advantage of the Bayesian approach. Is this a choice or an oversight? Priors do have a role in the later analysis.”

      A short additional paragraph has been added to the introduction outlining the advantage of having a prior, but also noting that the obligation to pick a prior can be intimidating and that suggesting priors is one of the contributions of our paper: “A Bayesian model also includes a set of probability distributions, referred to as the prior, which represent those beliefs it is reasonable to hold about the statistical model parameters before actually doing the experiment. The prior can be thought of as an advantage, it allows us to include in our analysis our understanding of the data based on previous experiments. The prior also makes explicit in a Bayesian model assumptions that are often implicit in other approaches. However, having to design priors is often considered a challenge and here we hope to make this more straightforward by suggesting priors that are suitable for this class of data.”

      (5) “On P4 more explanation would help greatly. Formulas like 23*10*4 or 50*6+50*4 are presented without explanation. What are the various numbers being multiplied? Regions, animals? Again, a clearer link between biological data and model structure would be advantageous.”

      We have now modified this line to clearly state the numbers’ sources: “The index i runs over the full set of samples, which in this case comprises 23 brain regions ×10 animals ×4 groups ≈920 datapoints in the first study, and 50 brain regions × 6 HET animals + 50 brain regions × 4 KO animals ≈500 datapoints in the second.”

      (6) “P6 and Results. Is it possible to show examples of the data set sampled from? Perhaps an image or two for the two experiments. Both Figures 4 and 5 as they currently are could be made slightly smaller to provide space for a small explanatory sub-panel. This would help ground the results.”

      This is a good idea. We have now added heatmap visualisations of both entire datasets to revised versions of Figures 4 and 5 (assuming that this is what the reviewer was suggesting).

    1. Reviewer #1 (Public review):

      Summary:

      Ever since the surprising discovery of the membrane-associated Periodic Skeleton (MPS) in axons, a significant body of published work has been aimed at trying to understand its assembly mechanism and function. Despite this, we still lack a mechanistic understanding of how this amazing structure is assembled in neuronal cells. In this article, the authors report a "gap-and-patch" pattern of labelled spectrin in iPSC-derived human motor neurons grown in culture. The mid-sections of these axons exhibit patches with reasonably well-organized MPS that are separated by gaps lacking any detectable MPS and having low spectrin content. Further, they report that the intensity modulation of spectrin is correlated with intensity modulations of tubulin as well. However, neurofilament fluorescence does not show any correlation. Using DIC imaging, the authors show that often the axonal diameter remains uniform across segments, showing a patch-gap pattern. Gaps are seen more abundantly in the midsection of the axon, with the proximal section showing continuous MPS and the distal segment showing continuous spectrin fluorescence but no organized MPS. The authors show that spectrin degradation by caspase/calpain is not responsible for gap formation, and the patches are nascent MPS domains. The gap and patch pattern increases with days in culture and can be enhanced by treating the cells using the general kinase inhibitor staurosporine. Treatment with the actin depolymerizing agent Latrunculin A reduces gap formation. The reasons for the last two observations are not well understood/explained.

      Strengths:

      The claims made in the paper are supported by extensive imaging work and quantification of MPS. Overall, the paper is well written and the findings are interesting. Although much of the reported data are from axons treated with staurosporine, this may be a convenient system to investigate the dynamics of MPS assembly, which is still an open question.

      Weaknesses:

      Much of the analysis is on staurosporine-treated cells, and the effects of this treatment can be broad. The increase in patch-gap pattern with days in culture is intriguing, and the reason for this needs to be checked carefully. It would have been nice to have live cell data on the evolution of the patch and gap pattern using a GFP tag on spectrin. The evolution of individual patches and possible coalescence of patches can be observed even with confocal microscopy if live cell super-resolution observation is difficult.

      Some more comments:

      (1) Axons can undergo transient beading or regularly spaced varicosity formation during media change if changes in osmolarity or chemical composition occur. Such shape modulations can induce cytoskeletal modulations as well (the authors report modulations in microtubule fluorescence). The authors mention axonal enlargements in some instances. Although they present DIC images to argue that the axons showing gaps are often tubular, possible beading artefacts need to be checked. Beading can be transient and can be checked by doing media changes while observing the axons on a microscope.

      (2) Why do microtubules appear patchy? One would imagine the microtubule lengths to be greater than the patch size and hence to be more uniform.

      (3) Why do axons with gaps increase with days in culture? If patches are nascent MPS that progressively grow, one would have expected fewer gaps with increasing days in culture. Is this indicative of some sort of degeneration of axons?

      (4) It is surprising that Latrunculin A reduces gap formation induced by staurosporine (also seems to increase MPS correlation) while it decreases actin filament content. How can this be understood? If the idea is to block actin dynamics, have the authors tried using Jasplakinolide to stabilize the filaments?

      (5) The authors speculate that the patches are formed by the condensation of free spectrins, which then leaves the immediate neighborhood depleted of these proteins. This is an interesting hypothesis, and exploring this in live cells using spectrin-GFP constructs will greatly strengthen the article. Will the patch-gap regions evolve into continuous MPS? If so, do these patches expand with time as new spectrin and actin are recruited and merge with neighboring patches, or can the entire patch "diffuse" and coalesce with neighboring patches, thus expanding the MPS region?

    2. Author response:

      Reviewer #1 (Public review)

      Summary:

      Ever since the surprising discovery of the membrane-associated Periodic Skeleton (MPS) in axons, a significant body of published work has been aimed at trying to understand its assembly mechanism and function. Despite this, we still lack a mechanistic understanding of how this amazing structure is assembled in neuronal cells. In this article, the authors report a "gap-and-patch" pattern of labelled spectrin in iPSC-derived human motor neurons grown in culture. The mid-sections of these axons exhibit patches with reasonably well-organized MPS that are separated by gaps lacking any detectable MPS and having low spectrin content. Further, they report that the intensity modulation of spectrin is correlated with intensity modulations of tubulin as well. However, neurofilament fluorescence does not show any correlation. Using DIC imaging, the authors show that often the axonal diameter remains uniform across segments, showing a patch-gap pattern. Gaps are seen more abundantly in the midsection of the axon, with the proximal section showing continuous MPS and the distal segment showing continuous spectrin fluorescence but no organized MPS. The authors show that spectrin degradation by caspase/calpain is not responsible for gap formation, and the patches are nascent MPS domains. The gap and patch pattern increases with days in culture and can be enhanced by treating the cells using the general kinase inhibitor staurosporine. Treatment with the actin depolymerizing agent Latrunculin A reduces gap formation. The reasons for the last two observations are not well understood/explained.

      We thank the reviewer for the detailed and accurate description of the data shown and its relevance to further our understanding of MPS assembly mechanism and function.

      Strengths:

      The claims made in the paper are supported by extensive imaging work and quantification of MPS. Overall, the paper is well written and the findings are interesting. Although much of the reported data are from axons treated with staurosporine, this may be a convenient system to investigate the dynamics of MPS assembly, which is still an open question.

      We thank the reviewer for the positive comments on the manuscript, the techniques used and the proposed model.

      Weaknesses:

      Much of the analysis is on staurosporine-treated cells, and the effects of this treatment can be broad. The increase in patch-gap pattern with days in culture is intriguing, and the reason for this needs to be checked carefully. It would have been nice to have live cell data on the evolution of the patch and gap pattern using a GFP tag on spectrin. The evolution of individual patches and possible coalescence of patches can be observed even with confocal microscopy if live cell super-resolution observation is difficult.

      We will consider the inclusion of live imaging experiments using the expressión of C-terminus-tagged human beta2-spectrin in the revised version of the manuscript. We are familiar with live-imaging and FRAP experiments and we will explore how to develop these experiments to generate data for inclusion in a revised submission.

      Some more comments:

      (1) Axons can undergo transient beading or regularly spaced varicosity formation during media change if changes in osmolarity or chemical composition occur. Such shape modulations can induce cytoskeletal modulations as well (the authors report modulations in microtubule fluorescence). The authors mention axonal enlargements in some instances. Although they present DIC images to argue that the axons showing gaps are often tubular, possible beading artefacts need to be checked. Beading can be transient and can be checked by doing media changes while observing the axons on a microscope.

      We don´t discard the presence of “nano beads” in these axons. It was recently suggested that the normal morphology of axons is indeed resembling “pearls-on-a-string” (Griswold et al., 2025), with “nano beads” separated by thin tubular "connectors" (also referred to as NSV, for non-synaptic varicosities). However, it is unlikely that the gap-patch pattern of beta2-spectrin can be attributed to such a morphology, given we used formaldehyde as fixative, and Griswold and colleagues show that the use of aldehyde-based fixatives do not preserve NSVs. We are able to see scattered axonal enlargements (“micro beads”), as we described in distal portions in Fig. 1C(C2) and E. However, the number, appearance and staining of these are not compatible with the gap-patch pattern in beta2-spectrin. Moreover, we would have expected to see these NSVs in our extensive STED imaging, yet we did not. We will discuss this further in the resubmission.

      (2) Why do microtubules appear patchy? One would imagine the microtubule lengths to be greater than the patch size and hence to be more uniform.

      Our stainings are for tubulin protein isoforms beta-III and alpha-II. That is, they would label microtubules, but free tubulin as well. The slight decrease in intensity for tubulin within gaps is indeed something to investigate, but we don´t interpret this as “patchy microtubules”. If the Reviewer refers to Fig. 2C-D, it is actually difficult to anticipate the slight decrease in intensity by the naked eye. To further support this, we will consider including stainings and quantitative analyses for microtubules in the resubmission. We are familiar with the use of permeabilizing conditions during fixation (in protocols known as “cytoskeletal fixation” to label microtubules (and not free tubulin).

      (3) Why do axons with gaps increase with days in culture? If patches are nascent MPS that progressively grow, one would have expected fewer gaps with increasing days in culture. Is this indicative of some sort of degeneration of axons?

      We agree with the apparent discrepancy. However, one has to take into account that these axons are still elongating even at 2 weeks in culture. Hence, at any time point, there is a new axonal compartment recently added, and hence, with low beta2-spectrin and no MPS. Also, the dynamical evolution of the MPS has to take into account beta2-spectrin supply. If supply is somehow lower than a given threshold, it is expected that there will be more gaps, given the new, more distant parts of the axons have a lower supply of beta2-spectrin . To explore this formally, we are working on simulations of these multifactorial dynamic systems to better understand this, that together with key experimental observations would enhance our understanding into overall MPS assembly in growing axons. However, findings for this project will be the subject of another manuscript.

      (4) It is surprising that Latrunculin A reduces gap formation induced by staurosporine (also seems to increase MPS correlation) while it decreases actin filament content. How can this be understood? If the idea is to block actin dynamics, have the authors tried using Jasplakinolide to stabilize the filaments?

      The results with the co-treatment with Latrunculin A and Staurosporine are indeed intriguing, and provide clear evidence that the gap-and-patch pattern arises from local assembly of the MPS, requiring new actin filaments. However, the fact that F-actin within the pre-formed MPS seems unaffected is not surprising. There are many different populations of F-actin in axons (i.e. MPS rings, longitudinal filaments, actin patches, actin trails). Latrunculin A affects filaments indirectly. The target of Latrunculin A is not actin filaments, but free monomers. It ultimately affects actin filaments as they end up losing monomers, and devoid of new monomers, filaments get shorter and eventually disappear. The drastic decrease in F-actin in our axons reflects that. The fact that F-actin in the MPS is preserved only speaks to the fact that these filaments are stable -if they are not losing monomers in the time frame of the treatment, the filament remains unaffected. We will support this with more observations and imaging and with a more extensive discussion summarizing the literature on the matter in the resubmission.

      On the other hand, the use of F-actin stabilizing drugs (like Jasplakinolide) would have a different effect. We will study how an experiment with these drugs could be informative of the process under investigation for the resubmission

      (5) The authors speculate that the patches are formed by the condensation of free spectrins, which then leaves the immediate neighborhood depleted of these proteins. This is an interesting hypothesis, and exploring this in live cells using spectrin-GFP constructs will greatly strengthen the article. Will the patch-gap regions evolve into continuous MPS? If so, do these patches expand with time as new spectrin and actin are recruited and merge with neighboring patches, or can the entire patch "diffuse" and coalesce with neighboring patches, thus expanding the MPS region?

      We agree with the reviewer's interpretation. A virtue of our experimental model and our interpretations of the observations in fixed cells is that it gives rise to informative questions such as the ones posed by the reviewer. As stated above, we will consider the inclusion of live imaging experiments using the expressión of C-terminus tagged human beta2-spectrin in the revised version of the manuscript. We are familiar with live-imaging and FRAP experiments and we think we can provide the evidence suggested.

      Reviewer #2 (Public review):

      Summary:

      In this manuscript, Gazal et al. describe the presence of unique gaps and patches of BetaII-spectrin in medial sections of long human motor neuron axons. BII-spectrin, along with Alpha-spectrin, forms horizontal linkers between 180nm spaced F-actin rings in axons. These F-actin rings, along with the spectrin linkers, form membrane periodic structures (MPS) which are critical for the maintenance of the integrity, size, and function of axons. The primary goal of the authors was to address whether long motor axons, particularly those carrying familial mutations associated with the neurodegenerative disorder ALS, show defects in gaps and patches of BetaII-spectrin, ultimately leading to degradation of these neurons.

      We thank the reviewer for the detailed and accurate description of the data shown.

      Strengths:

      The experiments are well-designed, and the authors have used the right methods and cutting-edge techniques to address the questions in this manuscript. The use of human motor neurons and the use of motor neurons with different familial ALS mutations is a strength. The use of isogenic controls is a positive. The induction of gaps and patches by the kinase inhibitor staurosporine and their rescue by Latrunculin A is novel and well-executed. The use of biochemical assays to explore the role of calpains is appropriate and well-designed. The use of STED imaging to define the periodicity of MPS in the gaps and patches of spectrin is a strength.

      We thank the reviewer for the positive comments on the manuscript, the techniques used and the proposed model.

      Weaknesses:

      The primary weakness is the lack of rigorous evaluation to validate the proposed model of spectrin capture from the gaps into adjacent patches by the use of photobleaching and live imaging. Another point is the lack of investigation into how gaps and patches change in axons carrying the familial ALS mutations as they age, since 2 weeks is not a time point when neurodegeneration is expected to start.

      We will consider the inclusion of live imaging experiments using the expressión of tagged human beta2-spectrin in the revised version of the manuscript. We are familiar with live-imaging and FRAP experiments and we believe we can provide the evidence suggested. We don't discard the notion that axons carrying familial ALS mutations will show defects in MPS formation and/or stability when observed at longer culture times, or under culture conditions that promote neuronal aging (Guix et al., 2021). Thus, we will continue to work with these cells, but the goal of that project lies well beyond the primary message of the present manuscript, and we anticipate that the revised version will not include new data on this matter. 

      Reviewer #3 (Public review):

      Summary:

      Gazal et al present convincing evidence supporting a new model of MPS formation where a gap-and-patch MPS pattern coalesces laterally to give rise to a lattice covering the entire axon shaft.

      Strengths:

      (1) This is a very interesting study that supports a change in paradigm in the model of MPS lattice formation.

      (2) Knowledge on MPS organization is mainly derived from studies using rat hippocampal neurons. In the current manuscript, Gazal et al use human IPS-derived motor neurons, a highly relevant neuron type, to further the current knowledge on MPS biology.

      (3) The quality of the images provided, specifically of those involving super-resolution, is of a high standard. This adequately supports the conclusions of the authors.

      We thank the reviewer for the positive comments on the manuscript, the techniques used and the proposed model.

      Weaknesses:

      (1) The main concern raised by the manuscript is the assumption that staudosporine-induced gap and patch formation recapitulates the physiological assembly of gaps and patches of betaII-spectrin.

      We will further explore the inclusion of more measurements of other parameters and variables towards establishing whether these gaps-and-patches patterns are equivalent structures in control and staurosporine-treated cells. 

      (2) One technical challenge that limits a more compelling support of the new model of MPS formation is that fixed neurons are imaged, which precludes the observation of patch coalescence.

      As stated before regarding similar comments by other reviewers, we will consider the inclusion of live imaging experiments in the revised version of the manuscript.

      Nicolas Unsain, PhD, and Thomas Durcan, PhD.

      References

      Griswold, J.M., Bonilla-Quintana, M., Pepper, R. et al. Membrane mechanics dictate axonal pearls-on-a-string morphology and function. Nat Neurosci 28, 49–61 (2025). https://doi.org/10.1038/s41593-024-01813-1

      Guix F.X., Marrero Capitán A., Casadomé-Perales A., Palomares-Pérez .I, López Del Castillo I., Miguel V., Goedeke L., Martín M.G., Lamas S., Peinado H., Fernández-Hernando C., Dotti C.G. Increased exosome secretion in neurons aging in vitro by NPC1-mediated endosomal cholesterol buildup. Life Sci Alliance. 2021 Jun 28;4(8):e202101055. doi: 10.26508/lsa.202101055. Print 2021 Aug.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Joint Public Review:

      Weaknesses:

      The lack of pleiotropy is an unconfirmable assumption of MR, and the addition of those models is therefore quite important, as this is a primary weakness of the MR approach. Given that concern, I read the sensitivity analyses using pleiotropy-robust models as the main result, and in that case, they can't test their hypotheses as these models do not show a BMI instrumental variable association. The other weakness, which might be remedied, is that the power of the tests here is not described. When a hypothesis is tested with an under-powered model, the apparent lack of association could be due to inadequate sample size rather than a true null. Typically, when a statistically significant association is reported, power concerns are discounted as long as the study is not so small as to create spurious findings. That is the case with their primary BMI instrumental variable model - they find an association so we can presume it was adequately powered. But the primary models they share are not the pleiotropy-robust methods MR-Egger, weighted median, and weighted mode. The tests for these models are null, and that could mean a couple of things: (1) the original primary significant association between the BMI genetic instrument was due to pleiotropy, and they therefore don't have a robust model to explore the effects of the tobacco genetic instrument. (2) The power for the sensitivity analysis models (the pleiotropy-robust methods) is inadequate, and the authors share no discussion about the relative power of the different MR approaches. If they do have adequate power, then again, there is no need to explore the tobacco instrument.

      Reviewing Editor Comments:

      We suggest that the authors add power estimates to assess whether the sample size is sufficient, given the strength and variability of the genetic instruments. It would also be helpful to present effect estimates for the tobacco instruments alone, to clarify their independent contribution and improve the interpretation of the joint models. In addition, the role of pleiotropy should be addressed more clearly, including which model is considered primary. Stratified analyses by smoking status are encouraged, as prior studies indicate that BMI-HNC associations may differ between smokers and non-smokers. Finally, the comparison with previous studies should be revised, as most reported null findings without accounting for tobacco instruments. If this study finds an association, it should not be framed as a replication

      We would like to highlight that post-hoc power calculations are often considered redundant since the statistical power estimated for an observed association is directly related to its p-value[1]. In other words, the uncertainty of the association is already reflected in its 95% confidence interval. However, we understand power calculations may still be of interest to the reader, so we have incorporated them in the revised manuscript. We have edited the text as follows (lines 151-155):“Consequently, we used the total R<sup>2</sup> values to examine the statistical power in our study[42]. However, we acknowledge that the value of post-hoc power calculations is limited, since the statistical power estimated for an observed association is already reflected in the 95% confidence interval presented alongside the point estimate[43].” We have also added supplementary figures 1 and 2.

      We can see that when using the latest HEADSpAcE data we were able to detect BMI-HNC ORs as small as 1.16 with 80% power, while the GAME-ON dataset only permitted the detection of ORs as small as 1.26 using the same BMI instruments (Figure B). We have explained these figures in the results section as follows (lines 257-263): “Using the BMI genetic instruments (total R<sup>2</sup>= 4.8%) and an α of 0.05, we had 80% statistical power to detect an OR as small as 1.16 for HNC risk (Supplementary Figure 1). For WHR (total R<sup>2</sup>= 3.1%) and WC (total R<sup>2</sup>= 4.4%), we could detect odds ratios (ORs) as small as 1.20 and 1.17, respectively. This is an improvement in terms of statistical power compared to the GAME-ON analysis published by Gormley et al.[28], for which there was 80% power to detect an OR as small as 1.26 using the same BMI genetic instruments (Supplementary Figure 2).”

      The reason we use inverse variance weighted (IVW) Mendelian randomization (MR) to obtain our main results rather than the pleiotropy-robust methods mentioned by the reviewer/editors (i.e., MR-Egger, weighted median and weighted mode) is that the former has greater statistical power than the latter[2]. Hence, instead of focussing on the statistical significance of the pleiotropy-robust analyses, we consider it is of more value to compare the consistency of the effect sizes and direction of the effect estimates across methods. Any evidence of such consistency increases our confidence in our main findings, since each method relies on different assumptions. As we cannot be sure about the presence and nature of horizontal pleiotropy, it is useful to compare results across methods even though they are not equally powered. It is true that our results for the genetically predicted effects of body mass index (BMI) on the risk of head and neck cancer (HNC) differ across methods. This is precisely what led us to question the validity of our main finding (suggesting a positive effect of BMI on HNC risk). We have now clarified this in the methods section of the revised manuscript as advised. Lines 165-171:

      “Because the IVW method assumes all genetic variants are valid instruments[44], which is unlikely the case, three pleiotropy-robust two-sample MR methods (i.e., MR-Egger[45], weighted median[46] and weighted mode[47]) were used in sensitivity analyses. When the magnitude and direction of effect estimates are consistent across methods that rely on different assumptions, the main findings are more convincing. As we cannot be sure about the presence and nature of horizontal pleiotropy, it is useful to compare results across methods even if they are not equally powered.”

      We understand that the reviewer/editors are concerned that we do not have a robust model to explore the role of tobacco consumption in the link between BMI and HNC. However, we have a different perspective on the matter. If indeed, the main IVW finding for BMI and HNC is due to pleiotropy (since some of the pleiotropy-robust methods suggest conflicting results), then the IVW multivariable MR method is a way to explore the potential source of this bias[3]. We were particularly interested in exploring the role of smoking in the observed association because smoking and adiposity are known to influence each other [4-9] and share a genetic basis[10, 11].

      We agree that it would be useful to present the univariable MR effect estimates for smoking behaviour and HNC risk along those obtained using multivariable MR. We have now included the univariable MR estimates for both smoking behaviour variables as a note under Supplementary Table 11 and in the manuscript (lines 316-318): “In univariable IVW MR, both CSI and SI were linked to an increased risk of HNC (CSI OR=4.47 per 1-SD higher CSI, 95%CI 3.31–6.03, p<0.001; SI OR=2.07 per 1-SD higher SI 95%CI 1.60–2.68, p<0.001) (Additional File 2: note in Supplementary Table 11).”

      We understand the appeal of conducting stratified MR analyses by smoking status. However, we anticipate such analyses would hinder the interpretation of our findings as they can induce collider bias which could spuriously lead to different effect estimates across strata[12, 13].

      We thank the reviewer/editors for their comment regarding the way we frame of our findings. We have now edited the discussion section to highlight our study results are different to those obtained in studies that do not account for smoking behaviour. Lines 398-401: “With a much larger sample (N=31,523, including 12,264 cases), our IVW MR analysis suggested BMI may play a role in HNC risk, in contrast to previous studies. However, our sensitivity analyses implied that causality was uncertain.”

      Reviewer #1 (Recommendations for the authors):

      The authors do share a table of the percent variance explained of the different genetic instruments, which vary widely, and that table is very welcome because we can get some sense of their utility. The problem is that they don't translate that into a power estimate for the case-control study size that they use. They say that it is the biggest to date, which is good, but without some formal power estimate, it is not particularly reassuring. A framework for MR study power estimates was reported in PMID: 19174578, but that was using very simple MR constructs in use in 2009, and it isn't clear to me if that framework can be used here. That power paper suggests that weak genetic instruments need very large sample sizes, far larger than what is used in the current manuscript. I am unable to estimate the true strength of the instruments used here, and so I am unsure of whether power is an issue or not.

      We have now included power calculations in our manuscript to address the reviewer’s concerns. Nevertheless, as mentioned above, post-hoc power calculations are of limited value, as statistical power is already reflected in the uncertainty around the point estimates (the 95% confidence intervals). Hence, it is important to avoid drawing conclusions regarding the likelihood of true effects or false negatives based on these calculations.

      Although the hypothesis here is that smoking accounts for the apparent BMI association previously reported for HNC, it would have been preferable to see the estimates for their 2 genetic instruments for tobacco alone. The current results only show the BMI instruments alone and then with the tobacco instruments. I would like to see what the risk estimates are for the tobacco instrument alone, so that I can judge for myself what happens in the joint models. As presented, one can only do that for the BMI instruments.

      We thank the reviewer for this comment. The univariable IVW MR estimate of smoking initiation was OR=2.07 (95%CI 1.60 to 2.68, p<0.001), while the one for comprehensive smoking index was OR=4.47 (95%CI 3.31 to 6.03, p<0.001). We have included this information in the manuscript as requested (please see response to reviewing editor above).

      On line 319, they write that "We did not find evidence against bias due to correlated pleiotropy..." I find this difficult to parse, but I think it means that they should believe that correlated pleiotropy remains a problem. So again, they seem to see their primary model as compromised, and so do I. This limitation is again stated by the authors on lines 351-352.

      We apologise if the wording of the sentence was not easy to understand. When using the CAUSE method, we did not find evidence to reject the null hypothesis that the sharing (correlated pleiotropy) model fits the data at least as well as the causal model. In other words, our CAUSE finding and the inconsistencies observed across our other sensitivity analyses led us to believe that our main IVW MR estimate for BMI-HNC was likely biased by correlated pleiotropy. We believe it is important to explore the source of this bias, which is why we used multivariable MR to investigate the direct effect of BMI on HNC risk while accounting for smoking behaviour.

      In the following paragraphs (lines 358-369), the authors state that their findings are consistent with prior reports, but that doesn't seem to be the case if we take their primary BMI instrument as representing the outcome of this manuscript. Here, they find an association between the BMI instrument and HNC risk, but in each of the other papers they present the primary finding was null without the extensive model changes or the aim of accounting for tobacco with another instrument. I don't see that as replication.

      This is a good point. We have now edited the discussion of our manuscript to avoid giving the impression that our findings replicate those from studies that do not account for smoking behaviour in their analyses. We have edited lines 384-401 as follows:

      “Previous MR studies suggest adiposity does not influence HNC risk[27-29]. Gormley et al.[28] did not find a genetically predicted effect of adiposity on combined oral and oropharyngeal cancer when investigating either BMI (OR=0.89 per 1-SD, 95% CI 0.72–1.09, p=0.26), WHR (OR=0.98 per 1-SD, 95% CI 0.74–1.29, p=0.88) or waist circumference (OR=0.73 per 1-SD, 95% CI 0.52–1.02, p=0.07) as risk factors. Similarly, a large two-sample MR study by Vithayathil et al.[29] including 367,561 UK Biobank participants (of which 1,983 were HNC cases) found no link between BMI and HNC risk (OR=0.98 per 1-SD higher BMI, 95% CI 0.93–1.02, p=0.35). Larsson et al.[27] meta-analysed Vithayathil et al.’s[29] findings with results obtained using FinnGen data to increase the sample size even further (N=586,353, including 2,109 cases), but still did not find a genetically predicted effect of BMI on HNC risk (OR=0.96 per 1-SD higher BMI, 95% CI 0.77–1.19, p=0.69). With a much larger sample (N=31,523, including 12,264 cases), our IVW MR analysis suggested BMI may play a role in HNC risk, in contrast to previous studies. However, our sensitivity analyses implied that causality was uncertain.”

      We also deleted part of a sentence in the discussion section, so lines 416-418 now look as follows: “An important strength of our study was that the HEADSpAcE consortium GWAS used had a large sample size which conferred more statistical power to detect effects of adiposity on HNC risk compared to previous MR analyses[27-29].”

      On lines 384-386 they note a strength is that this is the largest study to date, but I would reiterate that larger and more powerful does not equate to adequately powered.

      This is true. We have included power calculations in the manuscript as requested.

      It's well known that different HNC subsites have different etiologies, as they mention on lines 391-392, and it is implicit in their use of data on HPV positive and negative oropharyngeal cancer. They say that they did not find evidence for heterogeneity in this study, but that would only be true for the null BMI instrument. The effect sizes for their smoking instruments are strikingly different between the subsites.

      We agree and are sorry for the confusion we may have caused by the way we worded our findings. We have edited the text to clarify that the lack of subsite heterogeneity only applied to our results for BMI/WHC/WC-HNC risk. Lines 418-424 now read as follows:

      “Furthermore, the availability of data on more HNC subsites, including oropharyngeal cancers by HPV status, allowed us to investigate the relationship between adiposity and HNC risk in more detail than previous MR studies which limited their subsite analyses to oral cavity and overall oropharyngeal cancers[28, 68]. This is relevant because distinct HNC subsites are known to have different aetiologies[69], although we did not find evidence of heterogeneity across subsites in our analyses investigating the genetically predicted effects of BMI, WHR and WC on HNC risk.”

      Finally, the literature on mutational patterns gives us strong reason to believe that HNC caused by tobacco are biologically distinct from tumors not caused by tobacco. The authors report in the introduction that traditional observational studies of BMI and HNC have reported different findings in smokers versus never smokers, so I would assume there is a possibility that the BMI instrument could have different associations with tumors of the tobacco-induced phenotype and tumors with a non-tobacco induced phenotype. I would assume that authors have access to the data on self-reported tobacco use behavior, even if they can't separate these tumors by molecular types. Stratifying their analysis by tobacco users or not might reveal different results with the BMI instrument.

      We appreciate the reviewer’s comment. We agree that it would have been interesting to present stratified analyses by smoking status along our main findings. However, we decided against this because of the risk of inducing collider bias in our MR analyses i.e., where stratifying on smoking status may induce spurious associations between the adiposity instruments and confounding factors. Multivariable MR is considered a better way of investigating the direct effects of an exposure (adiposity) on an outcome (HNC) accounting for a third variable (smoking)[14], which is why we opted for this method instead.

      References:

      (1) Heinsberg LW, Weeks DE: Post hoc power is not informative. Genet Epidemiol 2022, 46(7):390-394.

      (2) Burgess S, Butterworth A, Thompson SG: Mendelian randomization analysis with multiple genetic variants using summarized data. Genet Epidemiol 2013, 37(7):658-665.

      (3) Burgess S, Davey Smith G, Davies NM, Dudbridge F, Gill D, Glymour MM, Hartwig FP, Kutalik Z, Holmes MV, Minelli C et al: Guidelines for performing Mendelian randomization investigations: update for summer 2023. Wellcome Open Res 2019, 4:186.

      (4) Morris RW, Taylor AE, Fluharty ME, Bjorngaard JH, Asvold BO, Elvestad Gabrielsen M, Campbell A, Marioni R, Kumari M, Korhonen T et al: Heavier smoking may lead to a relative increase in waist circumference: evidence for a causal relationship from a Mendelian randomisation meta-analysis. The CARTA consortium. BMJ Open 2015, 5(8):e008808.

      (5) Taylor AE, Morris RW, Fluharty ME, Bjorngaard JH, Asvold BO, Gabrielsen ME, Campbell A, Marioni R, Kumari M, Hallfors J et al: Stratification by smoking status reveals an association of CHRNA5-A3-B4 genotype with body mass index in never smokers. PLoS Genet 2014, 10(12):e1004799.

      (6) Taylor AE, Richmond RC, Palviainen T, Loukola A, Wootton RE, Kaprio J, Relton CL, Davey Smith G, Munafo MR: The effect of body mass index on smoking behaviour and nicotine metabolism: a Mendelian randomization study. Hum Mol Genet 2019, 28(8):1322-1330.

      (7) Asvold BO, Bjorngaard JH, Carslake D, Gabrielsen ME, Skorpen F, Smith GD, Romundstad PR: Causal associations of tobacco smoking with cardiovascular risk factors: a Mendelian randomization analysis of the HUNT Study in Norway. Int J Epidemiol 2014, 43(5):1458-1470.

      (8) Carreras-Torres R, Johansson M, Haycock PC, Relton CL, Davey Smith G, Brennan P, Martin RM: Role of obesity in smoking behaviour: Mendelian randomisation study in UK Biobank. BMJ 2018, 361:k1767.

      (9) Freathy RM, Kazeem GR, Morris RW, Johnson PC, Paternoster L, Ebrahim S, Hattersley AT, Hill A, Hingorani AD, Holst C et al: Genetic variation at CHRNA5-CHRNA3-CHRNB4 interacts with smoking status to influence body mass index. Int J Epidemiol 2011, 40(6):1617-1628.

      (10) Thorgeirsson TE, Gudbjartsson DF, Sulem P, Besenbacher S, Styrkarsdottir U, Thorleifsson G, Walters GB, Consortium TAG, Oxford GSKC, consortium E et al: A common biological basis of obesity and nicotine addiction. Transl Psychiatry 2013, 3(10):e308.

      (11) Wills AG, Hopfer C: Phenotypic and genetic relationship between BMI and cigarette smoking in a sample of UK adults. Addict Behav 2019, 89:98-103.

      (12) Coscia C, Gill D, Benitez R, Perez T, Malats N, Burgess S: Avoiding collider bias in Mendelian randomization when performing stratified analyses. Eur J Epidemiol 2022, 37(7):671-682.

      (13) Hamilton FW, Hughes DA, Lu T, Kutalik Z, Gkatzionis A, Tilling K, Hartwig FP, Davey Smith G: Non-linear Mendelian randomization: evaluation of effect modification in the residual and doubly-ranked methods with simulated and empirical examples. Eur J Epidemiol 2025.

      (14) Sanderson E, Davey Smith G, Windmeijer F, Bowden J: An examination of multivariable Mendelian randomization in the single-sample and two-sample summary data settings. Int J Epidemiol 2019, 48(3):713-727.

    1. Reviewer #2 (Public review):

      This paper remarkably reveals the identification of plasma membrane repair proteins, revealing spatiotemporal cellular responses to plasma membrane damage. The study highlights a combination of sodium dodecyl sulfate (SDS) and lase for identifying and characterizing proteins involved in plasma membrane (PM) repair in Saccharomyces cerevisiae. From 80 PM, repair proteins that were identified, 72 of them were novel proteins. The use of both proteomic and microscopy approaches provided a spatiotemporal coordination of exocytosis and clathrin-mediated endocytosis (CME) during repair. Interestingly, the authors were able to demonstrate that exocytosis dominates early and CME later, with CME also playing an essential role in trafficking transmembrane-domain (TMD) containing repair proteins between the bud tip and the damage site.

      Weaknesses/limitations:

      (1) Why are the authors saying that Pkc1 is the best characterized repair protein? What is the evidence?

      (2) It is unclear why the authors decided on the C-terminal GFP-tagged library to continue with the laser damage assay, exclusively the C-terminal GFP-tagged library. Potentially, this could have missed N-terminal tag-dependent localizations and functions and may have excluded functionally important repair proteins.

      (3) The use of SDS and laser damage may bias toward proteins responsive to these specific stresses, potentially missing proteins involved in other forms of plasma membrane injuries, such as mechanical, osmotic, etc.). SDS stress is known to indirectly induce oxidative stress and heat-shock responses.

      (4) It is unclear what the scale bars of Figures 3, 5, and 6 are. These should be included in the figure legend.

      (5) Figure 4 should be organized to compare WT vs. mutant, which would emphasize the magnitude of impairment.

      (6) It would be interesting to expand on possible mechanisms for CME-mediated sorting and retargeting of TMD proteins, including a speculative model.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Manuscript number: RC-2025-03094

      Corresponding author(s): Saurabh S. Kulkarni

      1. General Statements

      We thank the reviewers for their strong praise of the manuscript, highlighting its rigor, depth, and conceptual importance. They consistently described the study as a beautiful, fascinating, and conceptually strong piece of work that addresses a timely question in multiciliated cells. They also noted the high quality of the data, careful quantification, and the use of multiple genetic and pharmacological approaches, all of which improve the reproducibility and credibility of the findings. Importantly, they emphasized the novelty of discovering a direct mechanistic link between Piezo1-mediated mechanotransduction and Foxj1-driven transcriptional control of multiciliation, representing a significant breakthrough for both the cilia field and mechanobiology more broadly. Collectively, these strengths highlight the manuscript’s wide impact and make it highly suitable for publication in a high-impact journal.

      2. Description of the planned revisions

      Reviewer #1:


      There are two experiments that would significantly strengthen these claims.

      • First if their model is correct then even short term treatment with Yoda1 should induce the pathway and effect centriole numbers. While I appreciate the challenge of long term Yoda1 treatment its not clear to me why it would be needed if short term treatment is setting off the transcriptional cascade. Yoda is used throughout the paper to induce all the pathways but we don't know if it actually induces the phenotype. I think this should be addressed with either short term treatments or a dose response to find a dose that does not lead to skin pealing. It is hard to ignore this obvious deficiency.
      • Second, the model predicts that all of this is to regulate Foxj1 levels to regulate the subtle balance between cell size and centriole number. If this is correct, then the overexpression of Foxj1 should have a profound effect on centriole number in multiciliated cells. This is such an easy experiment that would validate many of the claims. RESPONSE:

      We recognize that the reviewer is asking us to test the sufficiency of the pathway with these comments: “If their model is correct, then they should be able to activate the pathway in one way or another to stimulate centriole number. This is a significant limitation to their overall model.” And “If this is correct, then the overexpression of Foxj1 should have a profound effect on centriole number in multiciliated cells.”

      To address reviewers’ suggestions, we will perform the following experiments.

      1. A brief exposure (15 and 30 mins) to Yoda1 and wait for 3 hours to examine changes in centriole amplification. This will avoid skin peeling from long-term exposure.
      2. A brief exposure to Yoda1 (15 mins) followed by a 30-minute wait period, and the cycle repeats a total of 4 times for a total of 3 hours to examine centriole amplification.
      3. The above two experiments will also be done in a constitutively active-Yap background to increase the probability that synergistic activation can lead to centriole amplification.
      4. Although Foxj1 is essential for multiciliogenesis, it is not sufficient to induce multiciliogenesis, as shown by multiple previous studies. Therefore, we do not expect overexpression of Foxj1 to have a profound effect on centriole number. While we will conduct the experiments because we truly want to address the suggestions and gain insight into the answers ourselves, we respectfully ask the Reviewer to consider the following responses to their concern.

      Yoda1 sufficiency: We agree that testing whether acute Yoda1 treatment can induce centriole amplification is an important question. We will conduct experiments with short-pulse and cyclic Yoda1 exposure, including in a constitutively active-YAP background (listed above), to address this possibility. However, several challenges complicate interpretation: (i) PIEZO1 adapts and desensitizes upon activation, (ii) transient signaling may be sufficient to cause secondary signaling but insufficient to drive stable transcriptional programs required for amplification, and (iii) centriole number is inherently variable, making modest effects difficult to resolve. However, we must recognize that failure to observe sufficiency under these conditions would not invalidate the model for two reasons: 1) absence of evidence is not evidence of absence, and thus, we may not have found the right experimental design. 2) PIEZO1–YAP is a necessary input but not sufficient on its own, as elaborated below. For both reasons, we are very careful about the interpretation of results in the manuscript, which shows that this pathway is necessary for centriole amplification using loss-of-function approaches.

      Foxj1 overexpression: Foxj1 is a well-established regulator essential for motile and multiciliogenesis across species (Xenopus, zebrafish, mouse). Loss of Foxj1 reduces cilia number in MCCs, but its activation alone does not have a profound effect on ciliogenesis/cilia number in MCCs. This is because Foxj1 is a part of a larger network essential for multiciliogenesis. This parallels the behavior of other transcriptional regulators, such as Myb, where loss of function impairs centriole amplification, but overexpression does not drive the formation of supernumerary centrioles. Both studies are seminal discoveries in the field of ciliogenesis, but they did not demonstrate the sufficiency of these molecules/pathways. Thus, our results, demonstrating that Foxj1 is necessary to induce tension-dependent centriole amplification, are significant, as the reviewer mentioned. The lack of Foxj1 sufficiency to induce centriole amplification is not a deficiency of the study, but rather evidence that Foxj1 is a part of a larger network essential for tension-dependent centriole amplification.

      Necessity versus sufficiency: We respectfully emphasize that sufficiency is not a prerequisite for demonstrating the significance of a pathway. Mechanochemical signaling is inherently complex, involving many mechanosensitive proteins and pathways. In our case, mechanical stretch increases centriole amplification, with PIEZO1–YAP signaling identified as a key mediator. However, we do not claim that PIEZO1–YAP alone is sufficient. Other pathways, including cadherin-mediated junctions, F-actin–myosin contractility, integrin–focal adhesion signaling, and nuclear mechanotransduction, likely contribute and may regulate unique downstream effectors that collectively promote centriole amplification. Therefore, PIEZO1–YAP should be regarded as one essential component within a larger network.


      __TIMELINE: __We will perform these additional proposed experiments. Since the first author, a postdoctoral researcher on this manuscript, has started a new job and will be coming in on weekends to complete the experiments, we estimate it will take approximately 2-3 months to finish them.


      Reviewer #2:

      1. Considering the Yap-piezo mechanism of action, the authors' logic for the selection of myb, foxj, plk4 and ccno as transcriptional targets is clear, but the HCR-derived signal and the differences seen in the yap morphants are not very strong, notwithstanding the statistical significance. There appear to be distinct subgroups within the treated populations (in Figure S6B, although these data seem quite different in Fig. 7H, so a comment on the technical differences might be helpful), so that the extent to which Yap1 regulates (Myb-)Foxj1 expression in MCCs is not clearly demonstrated by this experiment. Related to this point, it is unclear why 20-25% of the yap1/ piezo1 MO-treated embryos do not show a decline in FOXj1 in Fig. 6, given the qualitative nature of the scoring. Assuming the KD penetrance would vary on a cell-to-cell basis, rather than an embryo-to-embryo basis, this may suggest that there are additional relevant targets (some of which are discussed by the authors). Single-cell analysis might be a way to address this; however, this is not a trivial experiment, it might be sufficient to include a caveat in the text. Furthermore, the conclusion that Foxj1 regulates centriole amplification in a tension-dependent manner is well-supported by the data.

      RESPONSE: We appreciate the reviewer’s thoughtful observation. Differences in the expression of Foxj1 from experiment to experiment are possible due to a combination of factors, including heterogeneity in MCC development across embryos, slightly different embryonic stages, differences in embryo quality between fertilizations, and variability in morpholino delivery and knockdown penetrance, which can occur both across embryos and on a cell-to-cell basis within an embryo. We also note that technical aspects of HCR RNA-FISH, such as proteinase K treatment and washing steps, can affect signal intensity, potentially contributing to the appearance of distinct subgroups within treated populations.

      We agree that single-cell analysis would be a powerful way to dissect these differences, but as the reviewer notes, this is not a trivial experiment and is beyond the scope of the present study. We have therefore added clarifications in the text and discussion to acknowledge these sources of variability and to highlight the possibility of parallel pathways regulating foxj1 expression.

      ********************************************

      Controls for the knockdowns by the various MOs should be provided.

      RESPONSE: We appreciate the reviewer’s comment. The piezo1 MO has been previously established in Kulkarni et al. (2021). Additionally, the current manuscript includes MO control experiments for both erk2 and yap1, through KD at the 1-cell stage using the MO oligonucleotide, followed by mosaic-rescue with the respective WT RNA constructs (mCherry-ERK2 and yap1-GFP) and a nuclear tracer molecule such as H2B-RFP (Fig. 5, E-H, Fig. S5, C&D, Fig. 3, D-F). The mosaic-rescue is a robust experiment that provides an internal control within the same embryo, thereby avoiding differences that may arise due to embryo-to-embryo variability, embryo quality, or differences in fertilization batches. This approach also serves as a valuable tool for detecting cell-autonomous effects, providing a clear readout against uninjected neighboring cells, as the injected cells are labeled with a tracer. We will perform a similar mosaic-rescue experiment for the foxj1 MO.

      TIMELINE: We will conduct mosaic-rescue experiments for the foxj1 MO. We will need 1 month to complete the experiment.

      ********************************************

      __Minor comments:

      __

      Autocorrection of ERK1/2 or MEK1/2 pathways to 1/2 should be avoided. – We are unclear on this comment. Can reviewer please clarify what they mean.


      Reviewer # 3

      Major concerns

      1- The presented data do not yet establish a specific, direct pathway linking mechanotransduction to centriole number, because the molecular players tested (PIEZO1, Ca²⁺, PKC, ERK, YAP, Foxj1) are highly pleiotropic. As such, the observed centriole number phenotypes, and some of the major conclusions, could be indirect. It is therefore critical to test the specificity and causality of the proposed pathway. This could be done with the authors' own strategies and/or with the following potential approaches:

      • Genetic dependency and sufficiency tests: It could be shown that Yoda1 has no effect in PIEZO1 loss-of-function MCCs, and that wild-type PIEZO1, but not conductance-ad PIEZO1 pore mutants restores Yoda1 responsiveness across centriole number, pERK, and YAP readouts. For example, PIEZO1 C terminus was shown to govern Ca²⁺ influx and ERK1/2 activation. Comparing full length PIEZO1 with a C terminal deletion in MCC restricted rescue; loss of rescue of centriole amplification and ERK/YAP activation with the C terminal deletion can provide a genetics anchored specificity test beyond broad inhibitors.

      RESPONSE:

      • To address the reviewer’s concern, we will test whether Yoda1 affects ERK and Yap activation when Piezo1 is depleted. We appreciate the reviewer’s thoughtful suggestion to employ genetic rescue experiments with Piezo1 mutants. Unfortunately, these are not technically feasible in Xenopus, as the Piezo1 coding sequence is exceptionally large (~7.5 kb)____, and repeated attempts by our group to generate and express stable, translatable transcripts have been unsuccessful. To address genetic dependency and specificity despite these technical barriers, we have employed a combination of orthogonal strategies that together provide strong genetic and mechanistic evidence:

      • Mosaic loss-of-function experiments (Fig. 1) demonstrate that Piezo1 regulates centriole number in a cell-autonomous manner, ruling out global epithelial or indirect tissue-wide effects.

      • Pharmacological activation/inhibition with Piezo1-specific agonist (Yoda1) and inhibitors (GSMTx4, gadolinium) produced consistent phenotypes, including activation of downstream ERK and YAP readouts. Notably, Yoda1 is a Piezo-specific agonist, not a broad pharmacological agent.
      • Downstream pathway dissection (calcium chelation, PKC inhibition, ERK2 depletion, and YAP1 knockdown/rescue) consistently converges on the same phenotypes, reduced centriole amplification and altered Foxj1 expression, providing multiple independent lines of evidence that the Piezo1–Ca²⁺–PKC–ERK–YAP axis specifically controls centriole number.
      • Positive feedback regulation of Piezo1 expression by YAP/Foxj1 (Fig. 7) further strengthens the argument for a pathway-specific role rather than pleiotropic, indirect effects. Taken together, while full-length Piezo1 rescue experiments are technically not possible in Xenopus due to gene size constraints, our data employ state-of-the-art genetic, pharmacological, and orthogonal functional assays to rigorously test pathway specificity. These complementary approaches provide compelling evidence for the causal role of Piezo1-mediated mechanotransduction in centriole number control in MCCs.

      • Downstream bypass/rescue experiments: In PIEZO1 loss-of-function or BAPTA conditions, can enforcing MEK/ERK activation or YAP rescue centriole number defect? Conversely, can MEK inhibitors block Yoda1-induced effects.

      RESPONSE: We appreciate the reviewer’s insightful questions.

      • We will express CA Yap in the Piezo1 KD background to assess if we can rescue centriole number. We also note that the converse experiment has already been performed in our study: 1) PKC inhibition abolishes Yoda1-induced ERK phosphorylation and nuclear localization (Fig. 2), 2) both MEK inhibition and ERK2 depletion block Yoda1-induced Yap activation and nuclear entry (Figs. 4, S2). Thus, we have directly demonstrated that MEK inhibition prevents Yoda1-induced effects, satisfying this aspect of the reviewer’s concern.

      ********************************************

      2- Image quantification and analysis must be described in greater detail in the Methods section, as they are central to the major conclusions of the manuscript. For example, the authors should explain how nuclear, cytoplasmic, and centriole segmentation were performed, and how relative protein levels in the nucleus versus the cytoplasm (e.g., YAP, volume- or area-based) were quantified. Specifically, the thresholds and segmentation criteria applied to different cellular structures under various conditions, as well as the use of Imaris and other software, should be clearly detailed.

      RESPONSE: We will describe the methods in greater detail.

      ********************************************

      3- PIEZO1 mRNA was shown to incrase in a Foxj1 linked feedback loop. Does this increase translate into an increase in total protein levels?

      RESPONSE: If the reviewer is referring to Figure 7B, that is the Piezo1 antibody, so yes, the Piezo1 protein levels have increased.

      If the reviewer is referring to Figure 7C and D, we show that loss of Foxj1 leads to a reduction in Piezo1 mRNA expression.

      ********************************************

      4- Is the proposed signaling cascade active in mammalian multiciliated cells (e.g., airway epithelium). If possible, testing this by using one of the major players of the pathway as a readout such as as ERK phosphorylation, YAP nuclear localization in mammalian MCCs will reveal whether regulation of centriole number through this pathway is conserved and would strengthen the generality.


      RESPONSE: We agree with the reviewer that testing conservation of this pathway in mammalian MCCs is of great interest. Indeed, another group is currently investigating the role of Yap in the mammalian airway epithelium; in their temporally controlled Yap knockout model (the global Yap KO being embryonic lethal), they observed that Yap loss led to a reduction in centriole number. To avoid overlap and direct competition with this ongoing work, we chose to focus our efforts on Xenopus.

      Importantly, Xenopus has become a widely recognized and powerful system for MCC biology, enabling mechanistic dissection of centriole amplification and ciliogenesis. Several key discoveries in the field, including the identification of MCIDAS as a master regulator of MCC fate, were first made in Xenopus before being validated in mammals. Similarly, our study provides a mechanistic framework in Xenopus that can inform and guide ongoing studies in the mammalian airway.

      ********************************************

      5- Throughout the results section, there are multiple times where authors raised specific hypothesis about their data (e.g. foxj1 regulation of number control, apical actin/YAP). However, they have not tested them. These hypothesis are very exciting and if possible, testing experimentally, would strengthen the conclusions associated with them.

      RESPONSE: We are not sure what the reviewer means here by “authors raised specific hypothesis about their data (e.g., foxj1 regulation of number control, apical actin/YAP). However, they have not tested them”,

      BECAUSE:

      • Foxj1 regulation of centriole number: We demonstrate a clear reduction in centriole number upon Foxj1 depletion, and importantly, we extend this finding by showing that the reduction is tension-dependent (Fig. 6). We will perform a rescue assay to demonstrate the specificity.
      • Foxj1 and YAP: We never claimed that Foxj1 regulates YAP expression, and this is not part of our proposed model. Instead, our data show that Piezo1–ERK–YAP signaling regulates Foxj1
      • Foxj1 and apical actin: Foxj1 regulation of apical F-actin has already been established in prior work, and in our study, we clearly observe reduced apical actin intensity in Foxj1-depleted MCCs (Fig. 6). To further strengthen this conclusion, we will provide a quantitative analysis of apical actin intensity in Foxj1 morphants. ********************************************

      __TIMELINE: __We will perform these additional proposed experiments. Since the first author, a postdoc on this manuscript, has started a new job and will be coming in on weekends to finish the experiments, we estimate it will take approximately 2-3 months to complete them.

      Minor comments

      MCC vs non MCC identification (Fig. 1): Clarify how non MCCs were distinguished from MCCs (e.g. markers/criteria). – Can the reviewer please clarify which panel or panels? Or provide more specific text that needs to be changed.

      Add the Kintner group reference linking motile cilia number and centriole number in Xenopus MCCs.– Can the reviewer clarify where and which reference? Thank you.

      3. Description of the revisions that have already been incorporated in the transferred manuscript

      Please insert a point-by-point reply describing the revisions that were already carried out and included in the transferred manuscript. If no revisions have been carried out yet, please leave this section empty.

      Reviewer 2

      Major comments:

      1. It should be clarified whether the immunoblots and the related quantitations in Figs. 2 and S2 are all from separate blots/ exposures. If so, they are not useful as controls, and these blots should be repeated with the relevant samples analyzed in parallel. Size markers and labels should be included (2B, 2G; S2B and S2G). An increase in total ERK would alter the interpretation of the increase in nuclear pERK in the IF experiments. RESPONSE: We thank the reviewer for raising this important point regarding clarification of the immunoblots. All experimental groups were analyzed in parallel with their corresponding controls. Because the primary antibodies for pERK and ERK were both raised in rabbit, we optimized our workflow to prevent protein loss during stripping and to ensure accurate visualization. Specifically, lysates from each experimental group were loaded in duplicate on the same gel, separated by a molecular weight ladder that served as a reference point. After transfer, the blot was cut along the ladder, and the two halves were processed in parallel: one probed with anti-pERK and the other with anti-ERK. This strategy ensured that all samples from a single experiment (e.g., Control and Yoda1-treated groups) were analyzed under identical conditions, with staining and imaging performed together at the same exposure. To enhance clarity, we have provided this data as __uncut, full-length __as Supplemental Figure 7 (Figure S7) in the revised revision.

      ********************************************

      Minor comments:

      1. Reference list should be checked for completeness; some citations lack journal/ volume/ page/ year details. – We have corrected the references.
      2. An 'overexposed' version of the image selected for centrioles in Figure 5F might be included with the Chibby-BFP at the same level as in the other figures. At present, the Yap KD cell in the image appears to have normal centrioles; this is potentially confusing, even though the authors clearly explain the matter in the text. – __We have added a new panel to Fig. 5F to avoid confusion.

      __ 3. It might be clearer to present injected/ uninjected in the same orientation in Fig. 6A and B. – __Unfortunately, that is not possible because the injected and uninjected sides are left and right, and they cannot be in the same orientation.

      __ 4. Figure 7B lacks the schematic described in the figure legend. – We have removed the Schematic sentence from the figure legend. That was an error on our side. Thank you for catching it.


      Reviewer 3


      1. Abstract: "how MCCs regulate centriole/cilia numbers remains a major knowledge gap" overstates the field; please soften to reflect recent advances (mechanics/apical area scaling; PIEZO1 implication). – We changed the text to “incompletely understood”.
      2. GsMTx4 rationale: State that GsMTx4 is a spider venom peptide that inhibits cationic mechanosensitive channels (including PIEZO1) and justify its use alongside Yoda1.– GsMTx4 was used in the previous manuscript, and its use was justified there. Here, we are only comparing the results. However, we have added a sentence describing what GSMTx4 is. We have also included a sentence explaining the use of Yoda1. “GsMTx4, a spider venom peptide used in our previous study, inhibits cationic mechanosensitive channels, including Piezo1.”

      “For this experiment, we used the Piezo1 channel-specific chemical agonist, Yoda1, to increase the sensitivity of Piezo1 and upregulate calcium entry into cells”

      Timeline statement: "Centriole amplification to migration and apical docking takes ~4-5 h (personal observation)" is not appropriate; either cite time lapse literature or include your own time lapse data.– We have added a reference that showed imaging for 2 hours, but it was not enough to capture the entire process from intercalation to maturation, so we also kept “personal observation” still in the manuscript. We are unaware of any study that has done time-lapse imaging for 4 hours to capture the entire process of centriole amplification.

      Redundancy: The description of Yoda1 as a channel specific agonist is repeated; keep only once.- Removed

      "WT yap1 GFP construct previously used by Dr. Lance Davidson ..." should move construct description to Methods and keep only the citation in Results.– We moved it to Methods.

      "(Unpublished data; Dr. Mahjoub)" should be removed unless data are shown.- Removed

      Replace "as shown previously in our eLife paper" with "as we previously showed or shown previously (Kulkarni et al., 2021)".– We have made the change.

      The two hypotheses for how Foxj1 could regulate number under tension (actin remodeling vs. transcriptional control of amplification genes) belong in the Discussion unless tested. Moreover, the part on the discussion on yap sequestration by apical actin and the two possibilities presented also should go do discussion. – We have moved both to the discussion section.

      4. Description of analyses that authors prefer not to carry out

      Please include a point-by-point response explaining why some of the requested data or additional analyses might not be necessary or cannot be provided within the scope of a revision. This can be due to time or resource limitations or in case of disagreement about the necessity of such additional data given the scope of the study. Please leave empty if not applicable.

      Reviewer 3

      1- The hypothesis about the centriole pool of Piezo as the mechnosensor for centriole number regulation is very exciting and novel. Can localization controlled variants be used to test whether a centriole associated pool directly senses tension for number control (for example, centrosome targeted PIEZO1 via a PACT tag). Alternatively, broad cellular Ca sensors (GcaMP) or centrosome proximal Ca sensors (e.g., PACT GCaMP) can be used detect local calcium microdomains during tethering or Yoda1 treatment.

      RESPONSE: We appreciate the reviewer's curiosity and excitement; however, these experiments will not alter the conclusion of this paper and will be part of the next study, which aims to delve deeper into how different pools of Piezo1 at centrioles versus cell junctions function in MCCs. To that point, we had thought about these experiments. As mentioned earlier, the Piezo1 coding sequence is exceptionally large (~7.5 kb)____, and repeated attempts by our group to generate and express stable, translatable transcripts have been unsuccessful. Thus, the idea of centrosome-targeted PIEZO1 via a PACT is very exciting; however, it is not technically feasible. Beyond size, PIEZO1 is a trimeric, large plasma-membrane mechanosensitive channel that requires proper ER processing and bilayer incorporation. PACT localizes cargo to the centriole/pericentriolar material, not a membrane compartment; thus, a PACT-anchored PIEZO1 would be membrane-mismatched and almost certainly nonfunctional even if expressed/

      Second, Centrosome-proximal GCaMP (PACT-GCaMP) would show correlation, not causation. This experiment does not address the question “centriole pool of Piezo as the mechanosensor for centriole number regulation”. It will only show if the Ca2+ influx is happening at the basal bodies, but not whether and how that Ca2+ is essential for centriole amplification. For this purpose, we will need to find a way to block Ca2+ influx specifically at basal bodies, rather than junctions, which will require extensive controls.

      We do not claim that any specific Piezo1 or Ca2+ pool is critical for controlling centriole number and thus the suggested experiment would not alter the manuscript's conclusions. We therefore view the above as exciting future directions rather than prerequisites.

      ********************************************

      2- Because the proposed pathway is tension-sensing and YAP pathway is tightly linked to the actin cytoskeleton, the role of actin cysoskeleton in the proposed pathway should be tested directly. The authors mention different hypothesis around actin but has not tested them in the manuscript. For example, actin-depedent sequestration of Yap at the apical surface is intriguing. Does actin polymerization induced by drugs release Yap from the apical surface?

      RESPONSE: We would like to thank the reviewer for their suggestion. As per the reviewers' suggestion, we have moved this section to discussion, stating that “In the future, we plan to address this question by examining how Yap is sequestered by apical actin.”.

      However, we appreciate the reviewer’s enthusiasm and would like to share some experiments we are thinking/planning of to test the hypothesis.

      We plan to examine if the actin polymerization or contractility is responsible for Yap sequestration/release from the apical surface with the following experiments: 1) if the Yap is displaced by Jasplakinolide treatment, which stabilizes filamentous actin, 2) use of ROCK inhibitor to decrease contractility in the absence or presence of Yoda1, 3) Use genetic constructs such as Shroom3 to increase ROCK-mediated contractility to observe changes in Yap localization and dynamics.

      Although these experiments are interesting, they do not alter the conclusion of the current manuscript, and they represent future directions for our research.

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #3

      Evidence, reproducibility and clarity

      This manuscript investigates how mechanical tension is transduced into centriole amplification in Xenopus multiciliated cells (MCCs). Building on prior work that centriole number scales with MCC apical area and that this scaling depends on PIEZO1, the study proposes that MCCs repurpose a canonical mechanochemical axis-PIEZO1 → Ca²⁺/PKC → ERK1/2 → YAP → Foxj1-to regulate centriole number rather than mitosis. The authors use tethered vs. untetheredanimal cap explants to modulate tissue tension, combine pharmacologic perturbations with genetic loss of function and rescue, quantititative image analysis and present a model in which tension gated PIEZO1 activates ERK/YAP, influences Foxj1, and tunes centriole number in MCCs.

      The manuscript tackles an important and timely problem with clear disease relevance. It major advance is their presented model that posits that post mitotic MCCs repurpose a canonical mechanotransduction module to regulate organelle number rather than proliferation. It is a conceptually strong study addressing an important problem with a clean mechanical paradigm. However, to support the central claim that centriole number control is a specific, direct consequence of the PIEZO1-Ca²⁺-ERK/YAP pathway within MCCs, the revision should establish specificity and causality and provide experimental data for some of the major conclusions as detailed below. Addressing these points are critical to support the mechanistic conclusions and impact.

      Major concerns:

      1) The presented data do not yet establish a specific, direct pathway linking mechanotransduction to centriole number, because the molecular players tested (PIEZO1, Ca²⁺, PKC, ERK, YAP, Foxj1) are highly pleiotropic. As such, the observed centriole number phenotypes, and some of the major conclusions, could be indirect. It is therefore critical to test the specificity and causality of the proposed pathway. This could be done with the authors' own strategies and/or with the following potential approaches:

      • Genetic dependency and sufficiency tests: It could be shown that Yoda1 has no effect in PIEZO1 loss-of-function MCCs, and that wild-type PIEZO1, but not conductance-dead PIEZO1 pore mutants restores Yoda1 responsiveness across centriole number, pERK, and YAP readouts. For example, PIEZO1 C terminus was shown to govern Ca²⁺ influx and ERK1/2 activation. Comparing full length PIEZO1 with a C terminal deletion in MCC restricted rescue; loss of rescue of centriole amplification and ERK/YAP activation with the C terminal deletion can provide a genetics anchored specificity test beyond broad inhibitors.

      • Downstream bypass/rescue experiments: In PIEZO1 loss-of-function or BAPTA conditions, can enforcing MEK/ERK activation or YAP rescue centriole number defect? Conversely, can MEK inhibitors block Yoda1-induced effects.

      2) The hypothesis about the centriole pool of Piezo as the mechnosensor for centriole number regulation is very exciting and novel. Can localization controlled variants be used to test whether a centriole associated pool directly senses tension for number control (for example, centrosome targeted PIEZO1 via a PACT tag). Alternatively, broad cellular Ca sensors (GcaMP) or centrosome proximal Ca sensors (e.g., PACT GCaMP) can be used detect local calcium microdomains during tethering or Yoda1 treatment.

      3) Because the proposed pathway is tension-sensing and YAP pathway is tightly linked to the actin cytoskeleton, the role of actin cysoskeleton in the proposed pathway should be tested directly. The authors mention different hypothesis around actin but has not tested them in the manuscript. For example, actin-depedent sequestration of Yap at the apical surface is intriguing. Does actin polymerization induced by drugs release Yap from the apical surface?

      4) Image quantification and analysis must be described in greater detail in the Methods section, as they are central to the major conclusions of the manuscript. For example, the authors should explain how nuclear, cytoplasmic, and centriole segmentation were performed, and how relative protein levels in the nucleus versus the cytoplasm (e.g., YAP, volume- or area-based) were quantified. Specifically, the thresholds and segmentation criteria applied to different cellular structures under various conditions, as well as the use of Imaris and other software, should be clearly detailed.

      5) PIEZO1 mRNA was shown to incrase in a Foxj1 linked feedback loop. Does this increase translate into an increase in total protein levels?

      6) Is the proposed signaling cascade active in mammalian multiciliated cells (e.g., airway epithelium). If possible, testing this by using one of the major players of the pathway as a readout such as as ERK phosphorylation, YAP nuclear localization in mammalian MCCs will reveal whether regulation of centriole number through this pathway is conserved and would strengthen the generality.

      7) Throughout the results section, there are multiple times where authors raised specific hypothesis about their data (e.g. foxj1 regulation of number control, apical actin/YAP). However, they have not tested them. These hypothesis are very exciting and if possible, testing experimentally, would strengthen the conclusions associated with them.

      Minor concerns:

      1) Abstract: "how MCCs regulate centriole/cilia numbers remains a major knowledge gap" overstates the field; please soften to reflect recent advances (mechanics/apical area scaling; PIEZO1 implication).

      2) MCC vs non MCC identification (Fig. 1): Clarify how non MCCs were distinguished from MCCs (e.g. markers/criteria).

      3) GsMTx4 rationale: State that GsMTx4 is a spider venom peptide that inhibits cationic mechanosensitive channels (including PIEZO1) and justify its use alongside Yoda1.

      4) Timeline statement: "Centriole amplification to migration and apical docking takes ~4-5 h (personal observation)" is not appropriate; either cite time lapse literature or include your own time lapse data.

      5) Redundancy: The description of Yoda1 as a channel specific agonist is repeated; keep only once.

      6) "WT yap1 GFP construct previously used by Dr. Lance Davidson ..." should move construct description to Methods and keep only the citation in Results.

      7) "(Unpublished data; Dr. Mahjoub)" should be removed unless data are shown.

      8) Add the Kintner group reference linking motile cilia number and centriole number in Xenopus MCCs.

      9) Replace "as shown previously in our eLife paper" with "as we previously showed or shown previously (Kulkarni et al., 2021)".

      10) The two hypotheses for how Foxj1 could regulate number under tension (actin remodeling vs. transcriptional control of amplification genes) belong in the Discussion unless tested. Moreover, the part on the discussion on yap sequestration by apical actin and the two possibilities presented also should go do discussion.

      Significance

      This manuscirpt dissects Piezo1-mediated mechanotransduction to regulation of centriole number in Xenopus multiciliated cells (MCCs) via Ca²⁺, ERK/YAP, and Foxj1. While Piezo1 and its downstream effectors have been implicated broadly in mechanosensation, cellular tension responses, and transcriptional regulation, their specific role in centriole nubmer control in MCCs has been unknown By integrating pharmacological manipulation, genetic perturbation, and functional readouts, the authors demonstrate that this pathway directly influences centriole number.

      The findings extend published knowledge in two main ways:

      (1) they connect a mechanosensitive ion channel to the transcriptional program governing Foxj1 expression and multiciliation, a mechanistic link not previously defined, and

      (2) they highlight the pleiotropic yet coordinated nature of Piezo1 signaling in organelle biogenesis. This work will be of broad interest to cell and developmental biologists studying ciliogenesis, epithelial differentiation, and mechanotransduction, as well as to biomedical researchers interested in multicilaited cells and ciliopathies. By situating a well-studied mechanosensor within the context of MCC biology, the study opens new directions for understanding how tissue-level forces shape organelle number control and function.

      At the same time, the impact of the study is weakened by concerns regarding the causability and specificity of the pathway, since the signaling components examined are highly pleiotropic and it remains challenging to separate direct effects on centriole number from broader cellular consequences. The causal relationships among Piezo1 activity, downstream signaling, and Foxj1 expression require stronger substantiation, and the extent to which this pathway operates in mammalian multiciliated cells remains an open question. Addressing these limitations would strengthen the robustness, generality, and translational relevance of the conclusions.

    1. Reviewer #2 (Public review):

      Summary:

      In this manuscript, the authors investigated how the type-I interferon response (ISG) and antigen presentation (AP) pathways are repressed in luminal breast cancer cells and how this repression can be overcome. They found that a STING agonist can reactivate these pathways in breast cancer cells, but it also does so in normal cells, suggesting that this is not a good way to create a therapeutic window. Depletion of ADAR and inhibition of KDM5 also activate ISG and AP genes. The activation of ISG and AP genes is dependent on cGAS/STING and the JAK kinase. Interestingly, although both ADAR depletion and KDM5 inhibition activate ISG and AP genes, their effects on cell fitness are different. Furthermore, KDM5 inhibitor selectively activates ISG and AP genes in tumor cells but not normal cells, arguing that it may create a larger therapeutic window than the STING agonist. These results also suggest that KDM5 inhibition may activate ISG and AP genes in a way different from ADAR loss, and this process may affect tumor cell fitness independently of the activation of ISG and AP genes.

      The authors further showed that KDM5 inhibition increases R-loops and DNA damage in tumor cells, and XPF, a nuclease that cuts R-loops, is required for the activation of ISG and AP genes. Using H3K4me3 CUT&RUN, they found that KMD5 inhibition results in increased H3K4me3 not only at genes, but also at repetitive elements including SINE, LINE, LTR, telomeres, and centromeres. Using S9.6 CUT&TAG, they confirmed that R-loops are increased at SINE, LINE, and LTR repeated with increased H3K4me3. Together, the results of this study suggest that KMD5 inhibition leads to H3K4me3 and R-loop accumulation in repetitive elements, which induces DNA damage and cGAS/STING activation and subsequently activates AP genes. This provides an exciting approach to stimulate the anti-tumor immunity against breast tumors.

      KDM5 inhibition activates interferon and antigen presentation genes through R-loops.

      Strengths:

      A new approach to make breast tumors "hot" for anti-tumor immunity.

      Weaknesses:

      Future in vivo studies are needed to show the effects of KDM5 inhibitors on the immunotherapy responses of breast tumors.

      Comments on revised version:

      The authors have adequately addressed my comments.

  3. accessmedicine-mhmedical-com.libaccess.lib.mcmaster.ca accessmedicine-mhmedical-com.libaccess.lib.mcmaster.ca
    1. Both bind to bacteria, viruses, mycobacteria, and fungi, and enhance phagocytosis and the release of mediators of the immune response by macrophages

      surfactant A&D = innate immunity; tag pathogens for phagocytosis, enhance release of cytokines by macrophages surfactant B = helps arrange phospholipids into lamellar bodies; assist entry of phospholipids into surgace monolayer as alveolar expand during inspiration

    1. Reviewer #1 (Public review):

      Summary:

      The authors present a nanobody-based pulse-labeling system to track yeast NPCs. Transient expression of a nanobody targeting Nup84 (fused to NeonGreen or an affinity tag) permits selective visualization and biochemical capture of NPCs. Short induction effectively labels NPCs, and the resulting purifications match those from conventional Nup84 tagging. Crucially, when induction is repressed, dilution of the labeled pool through successive cell cycles allows the visualization of "old" NPCs (and potentially individual NPCs), providing a powerful view of NPC lifespan and turnover without permanently modifying a core scaffold protein.

      Strengths:

      (1) A brief expression pulse labels NPCs, and subsequent repression allows dilution-based tracking of older (and possibly single) NPCs over multiple cell cycles.

      (2) The affinity-purified complexes closely match known Nup84-associated proteins, indicating specificity and supporting utility for proteomics.

      Weaknesses:

      (1) Reliance on GAL induction introduces metabolic shifts (raffinose → galactose → glucose) that could subtly alter cell physiology or the kinetics of NPC assembly. Alternative induction systems (e.g., β-estradiol-responsive GAL4-ER-VP16) could be discussed as a way to avoid carbon-source changes.

      (2) While proteomics is solid, a comprehensive supplementary table listing all identified proteins (with enrichment and statistics) would enhance transparency.

      (3) Importantly, the authors note that the method is particularly useful "in conditions where direct tagging of Nup84 interferes with its function, while sub-stoichiometric nanobody binding does not." After this sentence, it would be valuable to add concrete examples, such as experiments examining NPC integrity in aging or stress conditions where epitope tags can exacerbate phenotypes. These examples will help readers identify situations in which this approach offers clear advantages.

    1. For $15.95 amonth, Chegg promised answers to homework questions in as little as 30 minutes

      I think ChatGPT is used so vastly because it's free. I remember Chegg, and never using it because of the price tag.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Manuscript number: RC-2025-02879 Corresponding author(s): Matteo Allegretti; Alia dos Santos

      1. General Statements

      In this study, we investigated the effects of paclitaxel on both healthy and cancerous cells, focusing on alterations in nuclear architecture. Our novel findings show that:

      • Paclitaxel-induced microtubule reorganisation during interphase alters the perinuclear distribution of actin and vimentin. The formation of extensive microtubule bundles, in paclitaxel or following GFP-Tau overexpression, coincides with nuclear shape deformation, loss of regulation of nuclear envelope spacing, and alteration of the nuclear lamina.

      • Paclitaxel treatment reduces Lamin A/C protein levels via a SUN2-dependent mechanism. SUN2, which links the lamina to the cytoskeleton, undergoes ubiquitination and consequent degradation following paclitaxel exposure.

      • Lamin A/C expression, frequently dysregulated in cancer cells, is a key determinant of cellular sensitivity to, and recovery from, paclitaxel treatment.

      Collectively, our data support a model in which paclitaxel disrupts nuclear architecture through two mechanisms: (i) aberrant nuclear-cytoskeletal coupling during interphase, and (ii) multimicronucleation following defective mitotic exit. This represents an additional mode of action for paclitaxel beyond its well-established mechanism of mitotic arrest.

      We thank the reviewers for their time and constructive feedback. We have carefully considered all comments and have carried out a full revision. The updated manuscript now includes additional data showing:

      • Overexpression of microtubule-associated protein Tau causes similar nuclear aberration phenotypes to paclitaxel. This supports our hypothesis that increased microtubule bundling directly leads to nuclear disruption in paclitaxel during interphase.

      • Paclitaxel's effects on nuclear shape and Lamin A/C and SUN2 expression levels occur independently of cell division.

      • Reduced levels of Lamin A/C and SUN2 upon paclitaxel treatment occur at the protein level via ubiquitination of SUN2.

      • The effects of paclitaxel on the nucleus are conserved in breast cancer cells.

      Full Revision

      We have also edited our text and added further detail to clarify points raised by the reviewers. We believe that our revised manuscript is overall more complete, solid and compelling thanks to the reviewers' comments.

      1. Point-by-point description of the revisions

      Reviewer #1 Evidence, reproducibility and clarity

      This description of the down-regulation of the expression of lamin A/C upon treatment with paclitaxel and its sensitivity to SUN2 is quite interesting but still somehow preliminary. It is unclear whether this effect involves the regulation of gene expression, or of the stability of the proteins. How SUN2 mediates this effect is still unknown.

      We thank the reviewer for this valuable comment. To elucidate the mechanism behind the decrease in Lamin A/C and SUN2 levels, we have now performed several additional experiments. First, we performed RT-qPCR to quantify mRNA levels of these genes, relative to the housekeeping gene GAPDH (Supplementary Figure 3B and O). The levels of SUN2 and LMNA mRNA remained the same between control and paclitaxel-treated cells, indicating that this effect instead occurs at the protein level. We have also tested post-translational modifications as a potential regulatory mechanism for Lamin A/C and SUN2. In addition to the phosphorylation of Ser404 which we had already tested (Supplementary Figure 3C), we have now included additional Phos-tag gel and Western blotting data showing that the overall phosphorylation status of Lamin A/C is not affected by paclitaxel (Supplementary Figure 3E and F). We also pulled-down Lamin A/C from cell lysates and then Western blotted for polyubiquitin and acetyl-lysine, which showed that the ubiquitination and acetylation states of Lamin A/C are also not affected by paclitaxel (Supplementary Figure 3G-I). However, Western blots for polyubiquitin of SUN2 pulled down from cell lysates showed that paclitaxel treatment results in significant SUN2 ubiquitination (Figure 3M and N). Therefore, we propose that the downregulation of SUN2 following paclitaxel treatment occurs by ubiquitin-mediated proteolysis.

      The roles of free tubulins and polymerized microtubules, and thus the potential role of paclitaxel, need to be uncovered.

      We addressed this important point by using an alternative method to stabilise/bundle microtubules in interphase, namely by overexpressing GFP-Tau, as suggested by reviewer 2. Following GFP- Tau overexpression, large microtubule bundles were observed throughout the cytoplasm (Figure 4A), and this resulted in a significant decrease in nuclear solidity (Figure 4B). Furthermore, in cells where microtubule bundles extensively contacted the nucleus, the nuclear lamina became unevenly distributed and appeared patchy (Figure 4C). This supports our hypothesis that the aberrations to nuclear shape and Lamin A/C localisation in paclitaxel-treated cells are due to the presence of microtubules bundles surrounding the nucleus.

      The doses of paclitaxel at which occur the effects described in the paper are not fully consistent with all the conclusions. Most experiments have been done at 5 nM. However, at this dose the effect of lamin A/C over or down expression on the growth (differences in the slopes of the curves in Figure 4A) are not fully convincing and not fully consistent with the clear effect on viability as well (in addition, duration of treatments before assessing vialbility are not specified). At 1 nM, cell growth is reduced and the rescuing effect of lamin over-expression is much more clear (Fig 4A), and the nucleus deformation clear (Fig 2A) but this dose has no effect on lamin A/C expression (Fig 3C), which questions how lamins impact nucleus shape and cell survival. Cytoskeleton reorganisation in these conditions is not described although it could clarify the respective role of force production (suggested in figure 1) and nuclei resistance (shown in figure 2) in paclitaxel sensitivity.

      We thank the reviewer for raising this important point. We have addressed this by conducting additional repeats for the cell confluency measurements to increase the statistical power of our experiments (Figure 5A). Our data now show that GFP-lamin A/C had a statistically significant effect on rescuing cell growth at both 1 nM and 5 nM paclitaxel, while Lamin A/C knockdown exacerbated the inhibition of cell growth at 5 nM paclitaxel but not 1 nM paclitaxel (Figure 5A). In addition, we note that the duration of paclitaxel treatment before assessing viability was specified in the figure legend: "Bar graph comparing cell viability between wild-type (red), GFP-Lamin A/C overexpression (green), and Lamin A/C knockdown (blue) cells following 20 h incubation in 0, 1, 5, or 10 nM paclitaxel." We also repeated cell viability analysis after 48 h incubation in paclitaxel instead of 20 h to allow for a longer time for differences to take effect (Figure 5B).

      We also added figures showing the cytoskeletal reorganisation at both 1 and 10 nM in addition to 0 and 5 nM (Supplementary Figure 1A) showing that microtubule bundling and condensation of actin into puncta correlated with increased paclitaxel concentration. Vimentin colocalised well with microtubules at all concentrations.

      We have also included in our results section further clarification for the use of 5nM paclitaxel in this study. The new section reads as follows: "Experiments were performed at 5 nM paclitaxel (with additional experiments to determine dose relationships at 1 and 10 nM) because this aligns with previous studies7,14,24. Furthermore, previous analysis of patient plasma reveals that typical concentrations are within the low nanomolar range8, and concentrations of 5-10 nM are required in cell culture to reach the same intracellular concentrations observed in vivo in patient tumours9. This aligns with in vitro cytotoxic studies of paclitaxel in eight human tumour cell lines which show that paclitaxel's IC50 ranges between 2.5 and 7.5 nM41."

      Finally, although the absence of role of mitotic arrest is clear from the data, the defective reorganisation of the nucleus after mitosis still suggest that the effect of paclitaxel is not independent of mitosis.

      We thank the reviewer for pointing out the need for clarification in the wording of our manuscript. We have reworded the title and relevant sections of our abstract, introduction, and discussion to make it clearer that the effects of paclitaxel on the nucleus are due to a combination of aberrant nuclear cytoskeletal coupling during interphase and multimicronucleation following mitotic slippage. We have also added additional data in support of the effect of paclitaxel on nuclear architecture during interphase. For this, we used serum-starved cells (which divide only very slowly such that the majority of cells do not pass through mitosis during the 16 h incubation in paclitaxel [Supplementary Figure 2D]). Our new data confirmed that paclitaxel's effects on nuclear solidity, and Lamin A/C and SUN2 proteins levels can occur independently of cell division (Figure 2C; Figure 3H-J). Finally, when we overexpressed GFP-Tau (as discussed above) we observed similar aberrations to nuclear solidity and Lamin A/C localisation. This indicates that these effects occur due to microtubule bundling in interphase, especially as in our study GFP-Tau did not lead to multimicronucleation or appear to affect mitosis (Figure 4).

      Below are the main changes to the text regarding the interphase effect of paclitaxel:

      • Title: "Paclitaxel compromises nuclear integrity in interphase through SUN2-mediated cytoskeletal coupling"

      • Abstract: "Overall, our data supports nuclear architecture disruption, caused by both aberrant nuclear-cytoskeletal coupling during interphase and exit from defective mitosis, as an additional mechanism for paclitaxel beyond mitotic arrest."

      • Introduction: "Here we propose that cancer cells have increased vulnerability to paclitaxel both during interphase and following aberrant mitosis due to pre-existing defects in their NE and nuclear lamina."

      • Discussion: "Overall, our work builds on previous studies investigating loss of nuclear integrity as an anti-cancer mechanism of paclitaxel separate from mitotic arrest14,20,21. We propose that cancer cells show increased sensitivity to nuclear deformation induced by aberrant nuclear-cytoskeletal coupling and multimicronucleation following mitotic slippage. Therefore, we conclude that paclitaxel functions in interphase as well as mitosis, elucidating how slowly growing tumours are targeted."

      minor: a more thorough introduction of known data about dose response of cells in culture and in vivo would help understanding the range of concentrations used in this study.

      As mentioned above, we have now included additional information in our Results section to clarify our paclitaxel dose range: "Experiments were performed at 5 nM paclitaxel (with additional experiments to determine dose relationships at 1 and 10 nM) because this aligns with previous studies7,14,24. Furthermore, previous analysis of patient plasma reveals that typical concentrations are within the low nanomolar range8, and concentrations of 5-10 nM are required in cell culture to reach the same intracellular concentrations observed in vivo in patient tumours9. This aligns with in vitro cytotoxic studies of paclitaxel in eight human tumour cell lines which show that paclitaxel's IC50 ranges between 2.5 and 7.5 nM41."

      Significance

      In this manuscript, Hale and colleagues describe the effect of paclitaxel on nucleus deformation and cell survival. They showed that 5nM of paclitaxel induces nucleus fragmentation, cytoskeleton reorganisation, reduced expression of LaminA/C and SUN2, and reduced cell growth and viability. They also showed that these effects could be at least partly compensated by the over-expression of lamin A/C. As fairly acknowledged by the authors, the induction of nuclear deformation in paclitaxel-treated cells, and the increased sensitivity to paclitaxel of cells expressing low level of lamin A/C are not novel (reference #14). Here the authors provided more details on the cytoskeleton changes and nuclear membrane deformation upon paclitaxel treatment. The effect of lamin A/C over and down expression on cell growth and survival are not fully convincing, as further discussed below. The most novel part is the observation that paclitaxel can induce the down-regulation of the expression of lamin A/C and that this effect is mediated by SUN2.

      We appreciate the reviewer's summary and thank them for their time. We believe our comprehensive revisions have addressed all comments, strengthening the manuscript and making it more robust and compelling.

      Reviewer #2 Evidence, reproducibility and clarity This study investigates the effects of the chemotherapeutic drug paclitaxel on nuclear-cytoskeletal coupling during interphase, claiming a novel mechanism for its anti-cancer activity. The study uses hTERT-immortalized human fibroblasts. After paclitaxel exposure, a suite of state- of-the-art imaging modalities visualizes changes in the cytoskeleton and nuclear architecture. These include STORM imaging and a large number of FIB-SEM tomograms.

      We thank the reviewer for the summary and for highlighting our efforts in using the latest imaging technical advances.

      Major comments:

      The authors make a major claim that in addition to the somewhat well-described mechanism of paclitaxel on mitosis, they have discovered 'an alternative, poorly characterised mechanism in interphase'.

      However, none of the data proves that the effects shown are independent of mitosis. To the contrary, measurements are presented 48 hours after paclitaxel treatment starts, after which it can be assumed that 100% of cells have completed at least one mitotic event. The appearance of micronuclei evidences this, as discussed by the authors shortly. It looks like most of the results shown are based on botched mitosis or, more specifically, errors on nuclear assembly upon exit from mitosis rather than a specific effect of paclitaxel on interphase. The readouts the authors show just happen to be measurements while the cells are in interphase.

      Alternative hypotheses are missing throughout the manuscript, and so are critical controls and interpretations.

      We thank the reviewer for highlighting the lack of clarity in our wording. We have revised the title, abstract and relevant sections of the introduction and discussion to clarify our message that the effects of paclitaxel on the nucleus arise from a combination of aberrant nuclear-cytoskeletal coupling during interphase and multimicronucleation following exit from defective mitosis. We have also included additional data where we used slow-dividing, serum-starved cells (under these conditions, the majority of cells do not undergo mitosis during the 16 h incubation in paclitaxel [Supplementary Figure 2D]). Our new data show that even in these cells there is a clear effect of paclitaxel on nuclear solidity, and Lamin A/C and SUN2 protein levels, further supporting our hypothesis that these phenotypes can occur independently of cell division (Figure 2C; Figure 3H-J). Furthermore, we performed additional experiments where we used overexpression of GFP-Tau as an alternative method of stabilising microtubules in interphase and observed similar aberrations to nuclear solidity and Lamin A/C localisation. As GFP-Tau overexpression did not lead to micronucleation or appear to affect mitosis, these data support the hypothesis that nuclear aberrations occur due to microtubule bundling in interphase (Figure 4). We discuss these experiments in more detail below. Finally, we have reworded the introduction to better introduce alternative hypotheses and mechanisms for paclitaxel's activity.

      The authors claim that 'Previously, the anti-cancer activity of paclitaxel was thought to rely mostly on the activation of the mitotic checkpoint through disruption of microtubule dynamics, ultimately resulting in apoptosis.' The authors may have overlooked much of the existing literature on the topic, including many recent manuscripts from Xiang-Xi Xu's and another lab.

      We would like to note that the paper from Xiang-Xi Xu's lab (Smith et al, 2021) was cited in our original manuscript (reference 14 in both the original and revised manuscripts). We have now also included additional review articles from the Xiang-Xi Xu lab (PMID:36368286 20 and PMID: 35048083 21). Furthermore, we have clarified the wording in both the introduction and discussion to better reflect the current understanding of paclitaxel's mechanism and alternative hypotheses.

      The data, e.g. in Figure 1, does not hold up to the first alternative hypothesis, e.g. that paclitaxel stabilizes microtubules and that excessive mechanical bundling of microtubules induces major changes to cell shape and mechanical stress on the nucleus. Even the simplest controls for this effect (the application of an alternative MT stabilizing drug or the overexpression of an MT stabilizer, e.g., tau).

      We thank the reviewer for suggesting this control experiment using the microtubule stabiliser Tau. We have now included these experiments in the revised version of the manuscript (Figure 4). The overexpression of GFP-Tau supports our hypothesis that cytoskeletal reorganisation in paclitaxel exerts mechanical stress on the nucleus during interphase, resulting in nuclear deformation and aberrations to the nuclear lamina. In particular, GFP-Tau overexpression resulted in large microtubule bundles throughout the cytoplasm (Figure 4A). Notably, in cells where these bundles extensively contacted the nucleus, we observed a significant decrease in nuclear solidity (Figure 4B) accompanied by changes in nuclear lamina organisation, including a patchy lamina phenotype, similar to that induced by paclitaxel (Figure 4C).

      The focus on nuclear lamina seems somewhat arbitrary and adjacent to previously published work by other groups. What would happen if the authors stained for focal adhesion markers? There would probably be a major change in number and distribution. Would the authors conclude that paclitaxel exerts a specific effect on focal adhesions? Or would the conclusion be that microtubule stabilization and the following mechanical disruption induce pleiotropic effects in cells? Which effects are significant for paclitaxel function on cancer cells?

      We thank the reviewer for raising important points regarding the specificity of paclitaxel's effects. We agree that microtubule stabilisation can induce myriad cellular changes, including alterations to focal adhesions and other cytoskeletal components. Our focus on Lamin A/C and nuclear morphology is grounded both in the established clinical relevance of nuclear mechanics in cancer and builds on mechanistic work from other groups.

      Lamin A/C expression is commonly altered in cancer, and nuclear morphology is frequently used in cancer diagnosis35. Lamin A/C also plays a crucial role in regulating nuclear mechanics32 and, importantly, determines cell sensitivity to paclitaxel14. However, the mechanism by which Lamin A/C determines sensitivity of cancer cells to paclitaxel is unclear.

      Our data are consistent with Lamin A/C being a determinant of paclitaxel survival sensitivity. We also provide evidence that paclitaxel itself reduces Lamin A/C protein levels and disrupts its organisation at the nuclear envelope. We directly link these effects to microtubule bundling around the nucleus and degradation of force-sensing LINC component SUN2, highlighting the importance of nuclear architecture and mechanics to overall cellular function. Furthermore, we show that recovery from paclitaxel treatment depends on Lamin A/C expression levels. This has clinical relevance, as unlike cancer cells, healthy tissue with non-aberrant lamina would be able to selectively recover from paclitaxel treatment.

      Minor comments:

      While I understand the difficulty of the experiments and the effort the authors have put into producing FIB-SEM tomograms, I am not sure they are helping their study or adding anything beyond the light microscopy images. Some of the images may even be in the way, such as supplementary Figure 6, which lacks in quality, controls, and interpretation. Do I see a lot of mitochondria in that slice?

      We agree with the reviewer that Supplementary Figure 6 does not add significant value to the manuscript and thank the reviewer for pointing this out. We have removed it from the manuscript accordingly.

      I may have overlooked it, but has the number of cells from which lamellae have been produced been stated?

      We thank the reviewer for pointing out the missing information. For our cryo-ET experiments, we collected data from 9 lamellae from paclitaxel-treated cells and 6 lamellae from control cells, with each lamella derived from a single cell. This information has now been added to the figure legend (Figure 2F).

      Significance

      The significance of studying the effect of paclitaxel, the most successful chemotherapy drug, should be broad and of interest to basic researchers and clinicians.

      As outlined above, I believe that major concerns about the design and interpretation of the study hamper its significance and advancements.

      We appreciate the reviewer's concerns and have performed major revisions to strengthen the significance of our study. Specifically, we conducted two key sets of experiments to validate our original conclusions: serum starvation to control for the effects of cell division, and overexpression of the microtubule stabiliser Tau to demonstrate that paclitaxel can affect the nucleus via its microtubule bundling activity in interphase.

      By elucidating the mechanistic link between microtubule stabilisation and nuclear-cytoskeletal coupling, our findings contribute to our understanding of paclitaxel's multifaceted actions in cancer cells.

      My areas of expertise could be broadly defined as Cell Biology, Cytoskeleton, Microtubules, and Structural Biology.

      Reviewer #3 Evidence, reproducibility and clarity The manuscript presents interesting new ideas for the mechanism of an old drug, taxol, which has been studied for the last 40 years.

      We thank the reviewer for the positive feedback.

      Although similar ideas are published, which may be suitable to be cited? • Paclitaxel resistance related to nuclear envelope structural sturdiness. Smith ER, Wang JQ, Yang DH, Xu XX. Drug Resist Updat. 2022 Dec;65:100881. doi: 10.1016/j.drup.2022.100881. Epub 2022 Oct 15. PMID: 36368286 Review. • Breaking malignant nuclei as a non-mitotic mechanism of taxol/paclitaxel. Smith ER, Xu XX. J Cancer Biol. 2021;2(4):86-93. doi: 10.46439/cancerbiology.2.031. PMID: 35048083 Free PMC article.

      We thank the reviewer for bringing to our attention these important review articles. In our initial manuscript, we only cited the original paper (14, also reference 14 in the original manuscript). We have now included citations to the suggested publications (20,21).

      We would also like to emphasise how our manuscript distinguishes itself from the work of Smith et al.14,20,21:

      • Cell-type focus: In their study 14, Smith et al. examined the effect of paclitaxel on malignant ovarian cancer cells and proposed that paclitaxel's effects on the nucleus are limited to cancer cells. However, our data extends these findings by demonstrating paclitaxel's effects in both cancerous and non-cancerous backgrounds.

      • Cytoskeletal reorganisation: Smith et al. show reorganisation of microtubules in paclitaxel-treated cells14. Our data show re-organisation of other cytoskeletal components, including F-actin and vimentin.

      • Multimicronucleation: Smith et al. propose that paclitaxel-induced multimicronucleation occurs independently of cell division14. Although we observe progressive nuclear abnormalities during interphase over the course of paclitaxel treatment, our data do not support this conclusion; we find that multimicronucleation occurs only following mitosis.

      • Direct link between microtubule bundling and nuclear aberrations: We show that nuclear aberrations caused by paclitaxel during interphase (distinct from multimicronucleation) are directly linked to microtubule bundling around the nucleus, suggesting they result from mechanical disruption and altered force propagation.

      • Lamin A/C regulation: Consistent with Smith et al.14, we show that Lamin A/C depletion leads to increased sensitivity to paclitaxel treatment. However, we further demonstrate that paclitaxel itself leads to reduced levels of Lamin A/C and that this effect occurs independently of mitosis and is mediated via force-sensing LINC component SUN2. Upon SUN2 knockdown, Lamin A/C levels are no longer affected by paclitaxel treatment.

      • Recovery: Finally, our work reveals that cells expressing low levels of Lamin A/C recover less efficiently after paclitaxel removal. This might help explain how cancer cells could be more susceptible to paclitaxel.

      Only one cell line was used in all the experiments? "Human telomerase reverse transcriptase (hTERT) immortalised human fibroblasts" ? The cells used are not very relevant to cancer cells (carcinomas) that are treated with paclitaxel. It is not clear if the observations and conclusions will be able to be generalized to cancer cells.

      We thank the reviewer for this comment. Our initial study aimed to understand the effects of paclitaxel on nuclear architecture in non-aberrant backgrounds. To show that the observed effects of paclitaxel are also applicable to cancer cells, we have now repeated our main experiments using MDA-MB-231 human breast cancer cells (Supplementary Figure 1B; Supplementary Figure 3P-T). Similar to our findings in human fibroblasts, paclitaxel treatment of MDA-MB-231 led to cytoskeletal reorganisation (Supplementary Figure 1B), a decrease in nuclear solidity (Supplementary Figure 3P), aberrant (patchy) localisation of Lamin A/C (Supplementary Figure 3Q), and a reduction in Lamin A/C and SUN2 levels (Supplementary Figure 3R-T).

      "Fig. 1. (B) STORM imaging of α-tubulin immunofluorescence in cells fixed after 16 h incubation in control media or 5 nM paclitaxel. Lower panels show α-tubulin clusters generated with HDBSCAN analysis. Scale bars = 10 μm." It needs explanation of what is meaning of the different color lines in the lower panels, just different filaments?

      We have added further detail to the figure legend for clarification: "Lower panels show α-tubulin clusters generated with HDBSCAN analysis. Different colours distinguish individual α-tubulin clusters, representing individual microtubule filaments or filament bundles."

      Generally, the figures need additional description to be clear.

      We have added further clarification and detail to our figure legends.

      "Figure 3 - Paclitaxel results in aberrations to the nuclear lamina." The sentence seems not to be well constructed. "Paclitaxel treatment causes ..."?

      We changed this sentence to: "Figure 3 - Paclitaxel treatment results in aberrant organisation of the nuclear lamina and decreased Lamin A/C levels via SUN2."

      Lamin A and C levels are different in different images (Fig. 3B, H): some Lamin A is higher, and sometime Lamin C is higher? This may possibly due to culture condition or subtle difference in sample handling?.

      We thank the reviewer for pointing this out and we agree that the ratio of Lamin A to Lamin C can vary with culture conditions. To confirm that paclitaxel treatment reduces total Lamin A/C levels regardless of this ratio, we repeated the Western blot analysis in three additional biological replicates using cells in which Lamin C levels exceeded Lamin A levels. These experiments confirmed a comparable decrease in total Lamin A/C levels. Figure 3B and 3C have been updated accordingly.

      Also, the effect on Lamin A/C and SUN2 levels are not significant of robust.

      Decreased Lamin A/C and SUN2 levels following paclitaxel treatment were consistently seen across three or more biological repeats (Figure 3B-C), and this could be replicated in a different cell type (MDA-MB-231) (Supplementary Figure 3R-T). Furthermore, Western blotting results are consistent with the patchy Lamin A/C distribution observed using confocal and STORM following paclitaxel treatment (Figure 3A; Supplementary Figure 3A), where Lamin A/C appears to be absent from discrete areas of the lamina.

      Any mechanisms are speculated for the reason for the reduction?

      We have now included additional data which aims to shed light on the mechanism behind the decrease in Lamin A/C and SUN2 levels following paclitaxel treatment. We found that SUN2 is selectively degraded during paclitaxel treatment. Immunoprecipitation of SUN2 followed by Western blotting against Polyubiquitin C showed increased SUN2 ubiquitination in paclitaxel (Figure 3M and N). Furthermore, in our original manuscript, we showed that Lamina A/C levels remained unaltered during paclitaxel treatment in cells where SUN2 had been knocked down. We propose that changes in microtubule organisation affect force propagation to Lamin A/C specifically via SUN2 and that this leads to Lamina A/C removal and depletion. Future work will be needed to fully understand this mechanism.

      In addition to the findings described above, we report no significant changes in mRNA levels for LMNA or SUN2 in paclitaxel (Supplementary Figure 3B and O). Phos-tag gels followed by Western blotting analysis for Lamin A/C also did not detect changes to the overall phosphorylation status of Lamin A/C due to paclitaxel treatment. This is in agreement with our initial data showing no changes to Lamin A/C Ser 404 phosphorylation levels (Supplementary Figure 3E and F). Finally, Lamin A/C immunoprecipitation experiments followed by Western blotting for Polyubiquitin C and acetyl-lysine showed no significant changes in the ubiquitination and acetylation state of Lamin A/C in paclitaxel-treated cells (Supplementary Figure 3G-I).

      Also, the about 50% reduction in protein level is difficult to be convincing as an explanation of nuclear disruption.

      The nuclear lamina and LINC complex proteins play a critical role in regulating nuclear integrity, stiffness and mechanical responsiveness to external forces28,31-33,54,75, as well as in maintaining the nuclear intermembrane distance69,74. In particular, SUN-domain proteins physically bridge the nuclear lamina to the cytoskeleton through interactions with Nesprins, thereby preserving the perinuclear space distance30,69,74. Mutations in Lamins have been shown to disrupt chromatin organization, alter gene expression, and compromise nuclear structural integrity, and experiments with LMNA knockout cells reveal that nuclear mechanical fragility is closely coupled to nuclear deformation47. Furthermore, nuclear-cytoskeletal coupling is essential during processes such as cell migration, where cells undergo stretching and compression of the nucleus; weakening or loss of the lamina in such cases compromises cell movement47,73. In our work, we show that alterations to nuclear Lamin A/C and SUN2 by paclitaxel treatment coincide with nuclear deformations (Figure 2A-D, F, G; Figure 3A-D, F, G; Supplementary Figure 3A, P-T) and that these deformations are reversible following paclitaxel removal (Supplementary Figure 4B-D). Our experiments also demonstrate that Lamin A/C expression levels significantly influence cell growth, cell viability, and cell recovery in paclitaxel (Figure 5). Therefore, drawing on current literature and our results, we propose that, during interphase, paclitaxel induces severe nuclear aberrations through the combined effects of: i) increased cytoskeletal forces on the NE caused by microtubule bundling; ii) loss of ~50% Lamin A/C and SUN2; iii) reorganisation of nucleo-cytoskeletal components.

      Significance

      The manuscript presents interesting new ideas for the mechanism of an old drug, taxol, which has been studied for the last 40 years.

      The data may be improved to provide stronger support.

      Additional cell lines (of cancer or epithelial origin) may be repeated to confirm the generality of the observation and conclusions.?

      We thank the reviewer for the feedback and valuable suggestions. In response, we have included experiments using human breast cancer cell line MDA-MB-231 to further corroborate our findings and interpretations. We believe these additions have improved the clarity, robustness and impact of our manuscript, and we are grateful for the reviewer's contributions to its improvement.

    1. Author response:

      We thank the reviewers for their thoughtful and thorough consideration of the work. We appreciate the positive reception they give the work, and plan to address several of the comments with further experiments. To outline that work (and ensure that we are on the right track to addressing those concerns), we summarize the core concerns that prompt new experiments:

      (1) Does the YFP tag on the ACRs interfere with simultaneous GCaMP imaging of RubyACR-expressing cells and could bleaching of the YFP complicate interpretation of the experiments here?

      We will test whether 920 nm (2p) and 650 nm (1p) excitation cause YFP bleaching that interferes with interpretation of inhibitory calcium (i.e. GCaMP) signals. Because the YFP tag enhances opsin sensitivity, we prioritized these tagged RubyACRs for initial characterization. FLAG-tagged ACRs are in progress, but will take time to fully characterize. Considering that the RubyACR-EYFP versions work very well, and in many cases people will want the YFP tag, either for visualizing expression or to maximize sensitivity, we feel the current work is a valuable contribution on its own. Indeed several labs have already requested these lines.

      (2) Are the ACRs activated by two-photon illumination?

      We will examine GCaMP signals at increasing 2p intensities to determine whether imaging unintentionally activates RubyACRs, as well as whether 2p illumination could be used for intentional opsin activation.

      (3) How toxic is the expression of these opsins?

      We will update the quantification of toxicity in Table 1 to include all the drivers we used in this study. In fact the toxicity we observed was primarily with the vGlut driver, which was why that was the only information in the table. The other drivers we used did not appreciably reduce survival rate, but showing the one case where it did have a big effect left a strong and understandably inaccurate impression that toxicity was a big pitfall. We note that the widely used CSChrimson has similar % survival to the RubyACRs when expressed with these vGlut drivers.

      We also plan to examine whether ACR expression leads to cell-autonomous perturbations. We will determine whether expression leads to some frequency of neuronal cell death, and we will evaluate whether any morphological effects occur.

      We will also clarify in the Discussion that potential toxicity may be driver-specific (as it is here) and should be evaluated case-by-case by investigators using the tool.

      (4) Use functional imaging to confirm inhibition of the neurons used only for behavioral experiments (pIP10 & PPL1-γ1pedc)

      We will perform these imaging experiments. One caveat is that inhibition may not be readily detectable with GCaMP, as the resting calcium levels in pIP10 and PPL1-γ1pedc neurons may already be quite low. This differs from the non-spiking Mi1 neurons, where inhibition was clearly observed with GCaMP. For this reason, we consider the behavioral results stronger evidence of efficacy, but we agree that imaging could provide useful supporting evidence, recognizing that a negative result would be difficult to interpret.

      (5) Confirm that the GtACR1 will inhibit locomotion in the flybowl when activated with green light, its spectral peak.

      We will perform this benchmark experiment. Please note that our intention with this study was to find an effective red-light activated opto-inhibitor because these wavelengths are much less perturbing to behavior. In that respect, regardless of GtACR1’s performance with green light, the RubyACRs clearly provide important new tools for Drosophila behavioral neuroscience.

    1. Author response:

      Reviewer #1 (Public review):

      Summary:

      Review of the manuscript titled " Mycobacterial Metallophosphatase MmpE acts as a nucleomodulin to regulate host gene expression and promotes intracellular survival".

      The study provides an insightful characterization of the mycobacterial secreted effector protein MmpE, which translocates to the host nucleus and exhibits phosphatase activity. The study characterizes the nuclear localization signal sequences and residues critical for the phosphatase activity, both of which are required for intracellular survival.

      Strengths:

      (1) The study addresses the role of nucleomodulins, an understudied aspect in mycobacterial infections.

      (2) The authors employ a combination of biochemical and computational analyses along with in vitro and in vivo validations to characterize the role of MmpE.

      Weaknesses:

      (1) While the study establishes that the phosphatase activity of MmpE operates independently of its NLS, there is a clear gap in understanding how this phosphatase activity supports mycobacterial infection. The investigation lacks experimental data on specific substrates of MmpE or pathways influenced by this virulence factor.

      We thank the reviewer for this insightful comment and agree that identification of the substrate of MmpE is important to fully understand its role in mycobacterial infection.

      MmpE is a putative purple acid phosphatase (PAP) and a member of the metallophosphoesterase (MPE) superfamily. Enzymes in this family are known for their catalytic promiscuity and broad substrate specificity, acting on phosphomonoesters, phosphodiesters, and phosphotriesters (Matange et al., Biochem J., 2015). In bacteria, several characterized MPEs have been shown to hydrolyze substrates such as cyclic nucleotides (e.g., cAMP) (Keppetipola et al., J Biol Chem, 2008; Shenoy et al., J Mol Biol, 2007), nucleotide derivatives (e.g., AMP, UDP-glucose) (Innokentev et al., mBio, 2025), and pyrophosphate-containing compounds (e.g., Ap4A, UDP-DAGn) (Matange et al., Biochem J., 2015). Although the binding motif of MmpE has been identified, determining its physiological substrates remains challenging due to the low abundance and instability of potential metabolites, as well as the limited sensitivity and coverage of current metabolomic technologies in mycobacteria.

      (2) The study does not explore whether the phosphatase activity of MmpE is dependent on the NLS within macrophages, which would provide critical insights into its biological relevance in host cells. Conducting experiments with double knockout/mutant strains and comparing their intracellular survival with single mutants could elucidate these dependencies and further validate the significance of MmpE's dual functions.

      We thank the reviewer for the comment. In our study, we demonstrate that both the nuclear localization and phosphatase activity of MmpE are required for full virulence (Figure 3D–E). Importantly, deletion of the NLS motifs did not impair MmpE’s phosphatase activity in vitro (Figure 2F), indicating that its enzymatic function is structurally independent of its nuclear localization. These findings suggest that MmpE functions as a bifunctional protein, with distinct and non-overlapping roles for its nuclear trafficking and phosphatase activity. We have expanded on this point in the Discussion section “MmpE Functions as a Bifunctional Protein with Nuclear Localization and Phosphatase Activity”.

      (3) The study does not provide direct experimental validation of the MmpE deletion on lysosomal trafficking of the bacteria.

      We thank the reviewer for the comment. The role of Rv2577/MmpE in phagosome maturation has been demonstrated in M. tuberculosis, where its deletion increases colocalization with lysosomal markers such as LAMP-2 and LAMP-3 (Forrellad et al., Front Microbiol, 2020). In our study, we found that mmpE deletion in M. bovis BCG led to upregulation of lysosomal genes, including TFEB, LAMP1, LAMP2, and v-ATPase subunits, compared to the wild-type strain. These results suggest that MmpE may regulate lysosomal trafficking by interfering with phagosome–lysosome fusion.

      To further validate MmpE’s role in phagosome maturation, we will perform fluorescence colocalization assays in THP-1 macrophages infected with BCG/wt, ∆mmpE, complemented, and NLS-mutant strains. Co-staining with LAMP1 and LysoTracker will allow us to assess whether the ∆mmpE mutant is more efficiently trafficked to lysosomes.

      (4) The role of MmpE as a mycobacterial effector would be more relevant using virulent mycobacterial strains such as H37Rv.

      We thank the reviewer for the comment. Previously, the role of Rv2577/MmpE as a virulence factor has been demonstrated in M. tuberculosis CDC 1551, where its deletion significantly reduced bacterial replication in mouse lungs at 30 days post-infection (Forrellad et al., Front Microbiol, 2020). However, that study did not explore the underlying mechanism of MmpE function. In our work, we found that MmpE enhances M. bovis BCG survival in both macrophages (THP-1 and RAW264.7) and mice (Figure 2A-B, Figure 6A), consistent with its proposed role in virulence. To investigate the molecular mechanism by which MmpE promotes intracellular survival, we used M. bovis BCG as a biosafe surrogate and this model is widely accepted for studying mycobacterial pathogenesis (Wang et al., Nat Immunol, 2025; Wang et al., Nat Commun, 2017; Péan et al., Nat Commun, 2017).

      Reviewer #2 (Public review):

      Summary:

      In this paper, the authors have characterized Rv2577 as a Fe3+/Zn2+ -dependent metallophosphatase and a nucleomodulin protein. The authors have also identified His348 and Asn359 as critical residues for Fe3+ coordination. The authors show that the proteins encode for two nuclease localization signals. Using C-terminal Flag expression constructs, the authors have shown that the MmpE protein is secretory. The authors have prepared genetic deletion strains and show that MmpE is essential for intracellular survival of M. bovis BCG in THP-1 macrophages, RAW264.7 macrophages, and a mouse model of infection. The authors have also performed RNA-seq analysis to compare the transcriptional profiles of macrophages infected with wild-type and MmpE mutant strains. The relative levels of ~ 175 transcripts were altered in MmpE mutant-infected macrophages and the majority of these were associated with various immune and inflammatory signalling pathways. Using these deletion strains, the authors proposed that MmpE inhibits inflammatory gene expression by binding to the promoter region of a vitamin D receptor. The authors also showed that MmpE arrests phagosome maturation by regulating the expression of several lysosome-associated genes such as TFEB, LAMP1, LAMP2, etc. These findings reveal a sophisticated mechanism by which a bacterial effector protein manipulates gene transcription and promotes intracellular survival.

      Strength:

      The authors have used a combination of cell biology, microbiology, and transcriptomics to elucidate the mechanisms by which Rv2577 contributes to intracellular survival.

      Weakness:

      The authors should thoroughly check the mice data and show individual replicate values in bar graphs.

      We kindly appreciate the reviewer for the advice. We will update the relevant mice data in the revised manuscript.

      Reviewer #3 (Public review):

      Summary:

      In this manuscript titled "Mycobacterial Metallophosphatase MmpE Acts as a Nucleomodulin to Regulate Host Gene Expression and Promote Intracellular Survival", Chen et al describe biochemical characterisation, localisation and potential functions of the gene using a genetic approach in M. bovis BCG and perform macrophage and mice infections to understand the roles of this potentially secreted protein in the host cell nucleus. The findings demonstrate the role of a secreted phosphatase of M. bovis BCG in shaping the transcriptional profile of infected macrophages, potentially through nuclear localisation and direct binding to transcriptional start sites, thereby regulating the inflammatory response to infection.

      Strengths:

      The authors demonstrate using a transient transfection method that MmpE when expressed as a GFP-tagged protein in HEK293T cells, exhibits nuclear localisation. The authors identify two NLS motifs that together are required for nuclear localisation of the protein. A deletion of the gene in M. bovis BCG results in poorer survival compared to the wild-type parent strain, which is also killed by macrophages. Relative to the WT strain-infected macrophages, macrophages infected with the ∆mmpE strain exhibited differential gene expression. Overexpression of the gene in HEK293T led to occupancy of the transcription start site of several genes, including the Vitamin D Receptor. Expression of VDR in THP1 macrophages was lower in the case of ∆mmpE infection compared to WT infection. This data supports the utility of the overexpression system in identifying potential target loci of MmpE using the HEK293T transfection model. The authors also demonstrate that the protein is a phosphatase, and the phosphatase activity of the protein is partially required for bacterial survival but not for the regulation of the VDR gene expression.

      Weaknesses:

      (1)   While the motifs can most certainly behave as NLSs, the overexpression of a mycobacterial protein in HEK293T cells can also result in artefacts of nuclear localisation. This is not unprecedented. Therefore, to prove that the protein is indeed secreted from BCG, and is able to elicit transcriptional changes during infection, I recommend that the authors (i) establish that the protein is indeed secreted into the host cell nucleus, and (ii) the NLS mutation prevents its localisation to the nucleus without disrupting its secretion.

      We kindly appreciate the reviewer for the advice and will include the relevant experiments in the revised manuscript. The localization of WT MmpE and the NLS mutated MmpE will be tested in the BCG infected macrophages.

      Demonstration that the protein is secreted: Supplementary Figure 3 - Immunoblotting should be performed for a cytosolic protein, also to rule out detection of proteins from lysis of dead cells. Also, for detecting proteins in the secreted fraction, it would be better to use Sauton's media without detergent, and grow the cultures without agitation or with gentle agitation. The method used by the authors is not a recommended protocol for obtaining the secreted fraction of mycobacteria.

      We agree with the reviewer and we will further validate the secretion of MmpE using the tested protocol.

      Demonstration that the protein localises to the host cell nucleus upon infection: Perform an infection followed by immunofluorescence to demonstrate that the endogenous protein of BCG can translocate to the host cell nucleus. This should be done for an NLS1-2 mutant expressing cell also.

      We will add this experiment in the revised manuscript.

      (2) In the RNA-seq analysis, the directionality of change of each of the reported pathways is not apparent in the way the data have been presented. For example, are genes in the cytokine-cytokine receptor interaction or TNF signalling pathway expressed more, or less in the ∆mmpE strain?

      We thank the reviewer for pointing this out and fully agree that conventional KEGG pathway enrichment diagrams do not convey the directionality of individual gene expression changes within each pathway. While KEGG enrichment analysis identifies pathways that are statistically overrepresented among differentially expressed genes, it does not indicate whether individual genes within those pathways are upregulated or downregulated.

      To address this, we re-analyzed the expression trends of DEGs within each significantly enriched KEGG pathway. The results show that key immune-related pathways, including cytokine–cytokine receptor interaction, TNF signaling, NF-κB signaling, and chemokine signaling, are collectively upregulated in THP-1 macrophages infected with ∆mmpE strain compared to those infected with the wild-type BCG strain. The full list of DEGs will be provided in the supplementary materials. The complete RNA-seq dataset has been deposited in the GEO database, and the accession number will be included in the revised manuscript.

      (3) Several of these pathways are affected as a result of infection, while others are not induced by BCG infection. For example, BCG infection does not, on its own, produce changes in IL1β levels. As the author s did not compare the uninfected macrophages as a control, it is difficult to interpret whether ∆mmpE induced higher expression than the WT strain, or simply did not induce a gene while the WT strain suppressed expression of a gene. This is particularly important because the strain is attenuated. Does the attenuation have anything to do with the ability of the protein to induce lysosomal pathway genes? Does induction of this pathway lead to attenuation of the strain? Similarly, for pathways that seem to be downregulated in the ∆mmpE strain compared to the WT strain, these might have been induced upon infection with the WT strain but not sufficiently by the ∆mmpE strain due to its attenuation/ lower bacterial burden.

      We thank the reviewer for the comment. We will update qRT-PCR data with the uninfected macrophages as a control in the revised manuscript.

      Wild-type Mycobacterium bovis BCG strain still has the function of inhibiting phagosome maturation (Branzk et al., Nat Immunol, 2014; Weng et al., Nat Commun, 2022). Forrellad et al. previously identified Rv2577/MmpE as a virulence factor in M. tuberculosis and disruption of the MmpE gene impairs the ability of M. tuberculosis to arrest phagosome maturation (Forrellad et al., Front Microbiol, 2020). In our study, transcriptomic and qRTPCR data (Figures 4C and G, S4C) show that deletion of mmpE in M. bovis BCG leads to upregulation of lysosomal biogenesis and acidification genes, including TFEB, LAMP1, and vATPase. To further validate MmpE’s role in phagosome maturation, we will perform fluorescence colocalization assays in THP-1 macrophages infected with BCG/wt, ∆mmpE, complemented, and NLS-mutant strains. Co-staining with LAMP1 and LysoTracker will assess whether the ∆mmpE mutant is more efficiently trafficked to lysosomes.

      Furthermore, CFU assays demonstrated that the ∆mmpE strain exhibits markedly reduced bacterial survival in both human THP-1 and murine RAW264.7 macrophages, as well as in mice, compared to the wild-type strain (Figures 4A and C, 6A). These findings suggest that the loss of MmpE compromises bacterial survival, likely due to enhanced lysosomal trafficking and acidification. This supports previous studies showing that increased lysosomal activity promotes mycobacterial clearance (Gutierrez et al., Cell, 2004; Pilli et al., Immunity, 2012).

      (4) CHIP-seq should be performed in THP1 macrophages, and not in HEK293T. Overexpression of a nuclear-localised protein in a non-relevant line is likely to lead to several transcriptional changes that do not inform us of the role of the gene as a transcriptional regulator during infection.

      We thank the reviewer for the comment. We performed ChIP-seq in HEK293T cells is based on the fact that this cell line is widely used in ChIP-based assays due to its high transfection efficiency, robust nuclear protein expression, and well-annotated genome (Lampe et al., Nat Biotechnol, 2024; Marasco et al., Cell, 2022). These features make HEK293T an ideal system for the initial identification of genome wide chromatin binding profiles of novel nuclear effectors such as MmpE.

      Furthermore, we validated the major observations in THP-1 macrophages, including (i) RNAseq of THP-1 cells infected with either WT BCG or ∆mmpE strains revealed significant transcriptional changes in immune and lysosomal pathways (Figure 4A); (ii) Integrated analysis of CUT&Tag and RNA-seq data identified 298 genes in infected THP-1 cells that exhibited both MmpE binding and corresponding expression changes. Among these, VDR was validated as a direct transcriptional target of MmpE using EMSA and ChIP-PCR (Figures 5E-J, S5D-F). Notably, the signaling pathways associated with MmpE-bound genes, including PI3K-Akt-mTOR signaling and lysosomal function, substantially overlap with those transcriptionally modulated in infected THP-1 macrophages (Figures 4B-G, S4B-C, S5C-D), further supporting the biological relevance of the ChIP-seq data obtained from HEK293T cells.

      (5) I would not expect to see such large inflammatory reactions persisting 56 days postinfection with M. bovis BCG. Is this something peculiar for an intratracheal infection with 1x107 bacilli? For images of animal tissue, the authors should provide images of the entire lung lobe with the zoomed-in image indicated as an inset.

      We thank the reviewer for the comment. The lung inflammation peaked at days 21–28 and had clearly subsided by day 56 across all groups (Figure 6B), consistent with the expected resolution of immune responses to an attenuated strain like M. bovis BCG. This temporal pattern is in line with previous studies using intravenous or intratracheal BCG vaccination in mice and macaques, which also demonstrated robust early immune activation followed by resolution over time (Smith et al., Nat Microbiol, 2025; Darrah et al., Nature, 2020).

      In this study, the infectious dose (1×10⁷ CFU intratracheally) was selected based on previous studies in which intratracheal delivery of 1×10⁷CFU produced consistent and measurable lung immune responses and pathology without causing overt illness or mortality (Xu et al., Sci Rep, 2017; Niroula et al., Sci Rep, 2025). We will provide whole-lung lobe images with zoomed-in insets in the revised manuscript.

      (6) For the qRT-PCR based validation, infections should be performed with the MmpEcomplemented strain in the same experiments as those for the WT and ∆mmpE strain so that they can be on the same graph, in the main manuscript file. Supplementary Figure 4 has three complementary strains. Again, the absence of the uninfected, WT, and∆mmpE infected condition makes interpretation of these data very difficult.

      We thank the reviewer for the comment. As suggested, we will conduct the qRT-PCR experiment including the uninfected, WT, ∆mmpE, Comp-MmpE, and the three complementary strains infecting THP-1 cells. The updated data will be provided in the revised manuscript.

      (7) The abstract mentions that MmpE represses the PI3K-Akt-mTOR pathway, which arrests phagosome maturation. There is not enough data in this manuscript in support of this claim. Supplementary Figure 5 does provide qRT-PCR validation of genes of this pathway, but the data do not indicate that higher expression of these pathways, whether by VDR repression or otherwise, is driving the growth restriction of the ∆mmpE strain.

      We thank the reviewer for the comment. The role of MmpE in phagosome maturation was previously characterized. Disruption of mmpE impairs the ability of M. tuberculosis to arrest lysosomal trafficking (Forrellad et al., Front Microbiol, 2020). In this study, we further found that MmpE suppresses the expression of key lysosomal genes, including TFEB, LAMP1, LAMP2, and ATPase subunits (Figure 4G), suggesting MmpE is involved in arresting phagosome maturation. As noted, the genes in the PI3K–Akt–mTOR pathway are upregulated in ∆mmpE-infected macrophages (Figure S5C).

      To functionally validate this, we will conduct two complementary experimental approaches:

      (i) Immunofluorescence assays: We will assess phagosome maturation and lysosomal fusion in THP-1 cells infected with BCG/wt, ∆mmpE, Comp-MmpE, and NLS mutant strains. Colocalization of intracellular bacteria with LAMP1 and LysoTracker will be quantified to determine whether the ∆mmpE strain is more efficiently trafficked to lysosomes.

      (ii) CFU assays: We will perform CFU assays in THP-1 cells infected with BCG/wt or ∆mmpE in the presence or absence of PI3K-Akt-mTOR pathway inhibitors (e.g., Dactolisib), to assess whether activation of this pathway contributes to the intracellular growth restriction observed in the ∆mmpE strain.

      (8) The relevance of the NLS and the phosphatase activity is not completely clear in the CFU assays and in the gene expression data. Firstly, there needs to be immunoblot data provided for the expression and secretion of the NLS-deficient and phosphatase mutants. Secondly, CFU data in Figure 3A, C, and E must consistently include both the WT and ∆mmpE strain.

      We thank the reviewer for the comment. We will provide immunoblot data for the expression and secretion of the NLS-deficient and phosphatase mutants. Additionally, we will revise Figure 3A, 3C, and 3E to consistently include both the WT and ΔmmpE strains in the CFU assays.

      Reference

      Branzk N, Lubojemska A, Hardison SE, Wang Q, Gutierrez MG, Brown GD, Papayannopoulos V (2014) Neutrophils sense microbe size and selectively release neutrophil extracellular traps in response to large pathogens Nat Immunol 15:1017-25.

      Darrah PA, Zeppa JJ, Maiello P, Hackney JA, Wadsworth MH 2nd, Hughes TK, Pokkali S, Swanson PA 2nd, Grant NL, Rodgers MA, Kamath M, Causgrove CM, Laddy DJ, Bonavia A, Casimiro D, Lin PL, Klein E, White AG, Scanga CA, Shalek AK, Roederer M, Flynn JL, Seder RA (2020) Prevention of tuberculosis in macaques after intravenous BCG immunization Nature 577:95-102.

      Forrellad MA, Blanco FC, Marrero Diaz de Villegas R, Vázquez CL, Yaneff A, García EA, Gutierrez MG, Durán R, Villarino A, Bigi F (2020) Rv2577 of Mycobacterium tuberculosis Is a virulence factor with dual phosphatase and phosphodiesterase functions Front Microbiol 11:570794.

      Gutierrez MG, Master SS, Singh SB, Taylor GA, Colombo MI, Deretic V (2004) Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages Cell 119:753-66.

      Innokentev A, Sanchez AM, Monetti M, Schwer B, Shuman S (2025) Efn1 and Efn2 are extracellular 5'-nucleotidases induced during the fission yeast response to phosphate starvation mBio 16: e0299224.

      Keppetipola N, Shuman S (2008) A phosphate-binding histidine of binuclear metallophosphodiesterase enzymes is a determinant of 2',3'-cyclic nucleotide phosphodiesterase activity J Biol Chem 283:30942-9.

      Lampe GD, King RT, Halpin-Healy TS, Klompe SE, Hogan MI, Vo PLH, Tang S, Chavez A, Sternberg SH (2024) Targeted DNA integration in human cells without double-strand breaks using CRISPR-associated transposases Nat Biotechnol 42:87-98.

      Marasco LE, Dujardin G, Sousa-Luís R, Liu YH, Stigliano JN, Nomakuchi T, Proudfoot NJ, Krainer AR, Kornblihtt AR (2022) Counteracting chromatin effects of a splicing-correcting antisense oligonucleotide improves its therapeutic efficacy in spinal muscular atrophy Cell 185:2057-2070.e15.

      Matange N, Podobnik M, Visweswariah SS (2015) Metallophosphoesterases: structural fidelity with functional promiscuity Biochem J 467:201-16.

      Niroula N, Ghodasara P, Marreros N, Fuller B, Sanderson H, Zriba S, Walker S, Shury TK, Chen JM (2025) Orally administered live BCG and heat-inactivated Mycobacterium bovis protect bison against experimental bovine tuberculosis Sci Rep 15:3764.

      Péan CB, Schiebler M, Tan SW, Sharrock JA, Kierdorf K, Brown KP, Maserumule MC,

      Menezes S, Pilátová M, Bronda K, Guermonprez P, Stramer BM, Andres Floto R, Dionne MS (2017) Regulation of phagocyte triglyceride by a STAT-ATG2 pathway controls mycobacterial infection Nat Commun 8:14642.

      Pilli M, Arko-Mensah J, Ponpuak M, Roberts E, Master S, Mandell MA, Dupont N, Ornatowski W, Jiang S, Bradfute SB, Bruun JA, Hansen TE, Johansen T, Deretic V (2012) TBK-1 promotes autophagy-mediated antimicrobial defense by controlling autophagosome maturation Immunity 37:223-34.

      Shenoy AR, Capuder M, Draskovic P, Lamba D, Visweswariah SS, Podobnik M (2007) Structural and biochemical analysis of the Rv0805 cyclic nucleotide phosphodiesterase from Mycobacterium tuberculosis J Mol Biol 365:211-25.

      Smith AA, Su H, Wallach J, Liu Y, Maiello P, Borish HJ, Winchell C, Simonson AW, Lin PL, Rodgers M, Fillmore D, Sakal J, Lin K, Vinette V, Schnappinger D, Ehrt S, Flynn JL (2025) A BCG kill switch strain protects against Mycobacterium tuberculosis in mice and non-human primates with improved safety and immunogenicity Nat Microbiol 10:468-481.

      Wang J, Ge P, Qiang L, Tian F, Zhao D, Chai Q, Zhu M, Zhou R, Meng G, Iwakura Y, Gao GF, Liu CH (2017) The mycobacterial phosphatase PtpA regulates the expression of host genes and promotes cell proliferation Nat Commun 8:244.

      Wang J, Li BX, Ge PP, Li J, Wang Q, Gao GF, Qiu XB, Liu CH (2015) Mycobacterium tuberculosis suppresses innate immunity by coopting the host ubiquitin system Nat Immunol 16:237–245

      Weng Y, Shepherd D, Liu Y, Krishnan N, Robertson BD, Platt N, Larrouy-Maumus G, Platt FM (2022) Inhibition of the Niemann-Pick C1 protein is a conserved feature of multiple strains of pathogenic mycobacteria Nat Commun 13:5320.

      Xu X, Lu X, Dong X, Luo Y, Wang Q, Liu X, Fu J, Zhang Y, Zhu B, Ma X (2017) Effects of hMASP2 on the formation of BCG infection-induced granuloma in the lungs of BALB/c mice Sci Rep 7:2300.

    1. Author response:

      Reviewer #1 (Public review):

      Summary:

      This work by Govorunova et al. identified three naturally blue-shifted channelrhodopsins (ChRs) from ancyromonads, namely AnsACR, FtACR, and NlCCR. The phylogenetic analysis places the ancyromonad ChRs in a distinct branch, highlighting their unique evolutionary origin and potential for novel applications in optogenetics. Further characterization revealed the spectral sensitivity, ionic selectivity, and kinetics of the newly discovered AnsACR, FtACR, and NlCCR. This study also offers valuable insights into the molecular mechanism underlying the function of these ChRs, including the roles of specific residues in the retinal-binding pocket. Finally, this study validated the functionality of these ChRs in both mouse brain slices (for AnsACR and FtACR) and in vivo in Caenorhabditis elegans (for AnsACR), demonstrating the versatility of these tools across different experimental systems.

      In summary, this work provides a potentially valuable addition to the optogenetic toolkit by identifying and characterizing novel blue-shifted ChRs with unique properties.

      Strengths:

      This study provides a thorough characterization of the biophysical properties of the ChRs and demonstrates the versatility of these tools in different ex vivo and in vivo experimental systems. The mutagenesis experiments also revealed the roles of key residues in the photoactive site that can affect the spectral and kinetic properties of the channel.

      We thank the Reviewer for his/her positive evaluation of our work.

      Weaknesses:

      While the novel ChRs identified in this work are spectrally blue-shifted, there still seems to be some spectral overlap with other optogenetic tools. The authors should provide more evidence to support the claim that they can be used for multiplex optogenetics and help potential end-users assess if they can be used together with other commonly applied ChRs. Additionally, further engineering or combination with other tools may be required to achieve truly orthogonal control in multiplexed experiments.

      To demonstrate the usefulness of ancyromonad ChRs for multiplex optogenetics as a proof of principle, we co-expressed AnsACR with the red-shifted cation-conducting ChR Chrimson and measured net photocurrent generated by this combination as a function of the wavelength. We found that it is hyperpolarizing in the blue region of the spectrum, and depolarizing at the red region. In the revision, we added a new panel (Figure 1D) showing these results and the following paragraph to the main text:

      “To test the possibility of using AnsACR in multiplex optogenetics, we co-expressed it with the red-shifted CCR Chrimson (Klapoetke et al., 2014) fused to an EYFP tag in HEK293 cells. We measured the action spectrum of the net photocurrents with 4 mM Cl<sup>-</sup> in the pipette, matching the conditions in the neuronal cytoplasm (Doyon, Vinay et al. 2016). Figure 1D, black shows that the direction of photocurrents was hyperpolarizing upon illumination with λ<500 nm and depolarizing at longer wavelengths. A shoulder near 520 nm revealed a FRET contribution from EYFP (Govorunova, Sineshchekov et al. 2020), which was also observed upon expression of the Chrimson construct alone (Figure 1D, red)”.

      In the C. elegans experiments, partial recovery of pharyngeal pumping was observed after prolonged illumination, indicating potential adaptation. This suggests that the effectiveness of these ChRs may be limited by cellular adaptation mechanisms, which could be a drawback in long-term experiments. A thorough discussion of this challenge in the application of optogenetics tools would prove very valuable to the readership.

      We added the following paragraph to the revised Discussion:

      “One possible explanation of the partial recovery of pharyngeal pumping that we observed after 15-s illumination, even at the highest tested irradiance, is continued attenuation of photocurrent during prolonged illumination (desensitization). However, the rate of AnsACR desensitization (Figure 1 – figure supplement 4A and Figure 1 – figure supplement 5A) is much faster than the rate of the pumping recovery, reducing the likelihood that desensitization is driving this phenomenon. Another possible reason for the observed adaptation is an increase in the cytoplasmic Cl<sup>-</sup> concentration owing to AnsACR activity and hence a breakdown of the Cl<sup>-</sup> gradient on the neuronal membrane. The C. elegans pharynx is innervated by 20 neurons, 10 of which are cholinergic (Pereira, Kratsios et al. 2015). A pair of MC neurons is the most important for regulation of pharyngeal pumping, but other pharyngeal cholinergic neurons, including I1, M2, and M4, also play a role (Trojanowski, Padovan-Merhar et al. 2014). Moreover, the pharyngeal muscles generate autonomous contractions in the presence of acetylcholine tonically released from the pharyngeal neurons (Trojanowski, Raizen et al. 2016). Given this complexity, further elucidation of pharyngeal pumping adaptation mechanisms is beyond the scope of this study.”

      Reviewer #2 (Public review):

      Summary:

      Govorunova et al present three new anion opsins that have potential applications in silencing neurons. They identify new opsins by scanning numerous databases for sequence homology to known opsins, focusing on anion opsins. The three opsins identified are uncommonly fast, potent, and are able to silence neuronal activity. The authors characterize numerous parameters of the opsins.

      Strengths:

      This paper follows the tradition of the Spudich lab, presenting and rigorously characterizing potentially valuable opsins. Furthermore, they explore several mutations of the identified opsin that may make these opsins even more useful for the broader community. The opsins AnsACR and FtACR are particularly notable, having extraordinarily fast onset kinetics that could have utility in many domains. Furthermore, the authors show that AnsACR is usable in multiphoton experiments having a peak photocurrent in a commonly used wavelength. Overall, the author's detailed measurements and characterization make for an important resource, both presenting new opsins that may be important for future experiments, and providing characterizations to expand our understanding of opsin biophysics in general.

      We thank the Reviewer for his/her positive evaluation of our work.

      Weaknesses:

      First, while the authors frequently reference GtACR1, a well-used anion opsin, there is no side-by-side data comparing these new opsins to the existing state-of-the-art. Such comparisons are very useful to adopt new opsins.

      GtACR1 exhibits the peak sensitivity at 515 nm and therefore is poorly suited for combination with red-shifted CCRs or fluorescent sensors, unlike blue-light-absorbing ancyromonad ACRs. Nevertheless, we conducted side-by-side comparison of ancyromonad ChRs, GtACR1 and GtACR2, the latter of which has the spectral maximum at 470 nm. The results are shown in the new Figures 1E and F, and the new multipanel Figure 1 – figure supplement 4 added in the revision. We also added the following text, describing these results, to the revised Results section:

      “Figures 1E and F show the dependence of the peak photocurrent amplitude and reciprocal peak time, respectively, on the photon flux density for ancyromonad ChRs and GtACRs. The current amplitude saturated earlier than the time-to-peak for all tested ChRs. Figure 1 – figure supplement 4A-E shows normalized photocurrent traces recorded at different photon densities. Quantitation of desensitization at the end of 1-s illumination revealed a complex light dependence (Figure 1, Figure Supplement 4F). Figure 1 – figure supplement 5 shows normalized photocurrent traces recorded in response to a 5-s light pulse of the maximal available intensity and the magnitude of desensitization at its end.”

      Next, multiphoton optogenetics is a promising emerging field in neuroscience, and I appreciate that the authors began to evaluate this approach with these opsins. However, a few additional comparisons are needed to establish the user viability of this approach, principally the photocurrent evoked using the 2p process, for given power densities. Comparison across the presented opsins and GtACR1 would allow readers to asses if these opsins are meaningfully activated by 2P.

      We carried out additional 2P experiments in ancyromonad ChRs, GtACR1 and GtACR2 and added their results to a new main-text Figure 6 and Figure 6 – figure supplement 1. We added the new section describing these results, “Two-photon excitation”, to the main text in the revision:

      “To determine the 2P activation range of AnsACR, FtACR, and NlCCR, we conducted raster scanning using a conventional 2P laser, varying the excitation wavelength between 800 and 1,080 nm (Figure 6 – figure supplement 1). All three ChRs generated detectable photocurrents with action spectra showing maximal responses at ~925 nm for AnsACR, 945 nm for FtACR, and 890 nm for NlCCR (Figure 6A). These wavelengths fall within the excitation range of common Ti:Sapphire lasers, which are widely used in neuroscience laboratories and can be tuned between ~700 nm and 1,020-1,300 nm. To assess desensitization, cells expressing AnsACR, FtACR, or NlCCR were illuminated at the respective peak wavelength of each ChR at 15 mW for 5 seconds. GtACR1 and GtACR2, previously used in 2P experiments (Forli, Vecchia et al. 2018, Mardinly, Oldenburg et al. 2018), were included for comparison. The normalized photocurrent traces recorded under these conditions are shown in Figure 6B-F. The absolute amplitudes of 2P photocurrents at the peak time and at the end of illumination are shown in Figure 6G and H, respectively. All five tested variants exhibited comparable levels of desensitization at the end of illumination (Figure 6I).”

      Reviewer #3 (Public review):

      Summary:

      The authors aimed to develop Channelrhodopsins (ChRs), light-gated ion channels, with high potency and blue action spectra for use in multicolor (multiplex) optogenetics applications. To achieve this, they performed a bioinformatics analysis to identify ChR homologues in several protist species, focusing on ChRs from ancyromonads, which exhibited the highest photocurrents and the most blue-shifted action spectra among the tested candidates. Within the ancyromonad clade, the authors identified two new anion-conducting ChRs and one cation-conducting ChR. These were characterized in detail using a combination of manual and automated patch-clamp electrophysiology, absorption spectroscopy, and flash photolysis. The authors also explored sequence features that may explain the blue-shifted action spectra and differences in ion selectivity among closely related ChRs.

      Strengths:

      A key strength of this study is the high-quality experimental data, which were obtained using well-established techniques such as manual patch-clamp and absorption spectroscopy, complemented by modern automated patch-clamp approaches. These data convincingly support most of the claims. The newly characterized ChRs expand the optogenetics toolkit and will be of significant interest to researchers working with microbial rhodopsins, those developing new optogenetic tools, as well as neuro- and cardioscientists employing optogenetic methods.

      We thank the Reviewer for his/her positive evaluation of our work.

      Weaknesses:

      This study does not exhibit major methodological weaknesses. The primary limitation of the study is that it includes only a limited number of comparisons to known ChRs, which makes it difficult to assess whether these newly discovered tools offer significant advantages over currently available options.

      We conducted side-by-side comparison of ancyromonad ChRs and GtACRs, wildly used for optical inhibition of neuronal activity. The results are shown in the new Figures 1E and F, and the new multipanel Figure 1 – figure supplement 4 and Figure 1 – figure supplement 5 added in the revision. We also added the following text, describing these results, to the revised Results section:

      “Figures 1E and F show the dependence of the peak photocurrent amplitude and reciprocal peak time, respectively, on the photon flux density for ancyromonad ChRs and GtACRs. The current amplitude saturated earlier than the time-to-peak for all tested ChRs. Figure 1 – figure supplement 4A-E shows normalized photocurrent traces recorded at different photon densities. Quantitation of desensitization at the end of 1-s illumination revealed a complex light dependence (Figure 1, Figure Supplement 4F). Figure 1 – figure supplement 5 shows normalized photocurrent traces recorded in response to a 5-s light pulse of the maximal available intensity and the magnitude of desensitization at its end.”

      Additionally, although the study aims to present ChRs suitable for multiplex optogenetics, the new ChRs were not tested in combination with other tools. A key requirement for multiplexed applications is not just spectral separation of the blue-shifted ChR from the red-shifted tool of interest but also sufficient sensitivity and potency under low blue-light conditions to avoid cross-activation of the respective red-shifted tool. Future work directly comparing these new ChRs with existing tools in optogenetic applications and further evaluating their multiplexing potential would help clarify their impact.

      As a proof of principle, we co-expressed AnsACR with the red-shifted cation-conducting CCR Chrimson and demonstrated that the net photocurrent generated by this combination is hyperpolarizing in the blue region of the spectrum, and depolarizing at the red region. In the revision, we added a new panel (Figure 1D) showing these results and the following paragraph to the main text:

      “To test the possibility of using AnsACR in multiplex optogenetics, we co-expressed it with the red-shifted CCR Chrimson (Klapoetke et al., 2014) fused to an EYFP tag in HEK293 cells. We measured the action spectrum of the net photocurrents with 4 mM Cl<sup>-</sup> in the pipette, matching the conditions in the neuronal cytoplasm (Doyon, Vinay et al. 2016). Figure 1D, black shows that the direction of photocurrents was hyperpolarizing upon illumination with λ<500 nm and depolarizing at longer wavelengths. A shoulder near 520 nm revealed a FRET contribution from EYFP (Govorunova, Sineshchekov et al. 2020), which was also observed upon expression of the Chrimson construct alone (Figure 1D, red)”.

      Reviewing Editor Comments:

      The reviewers suggest that direct comparison to GtACR1 is the most important step to make this work more useful to the community.

      We followed the Reviewers’ recommendations and carried out side-by-side comparison of ancyromonad ChRs and GtACR1 as well as GtACR2 (Figure 1E and F, Figure 1 – figure supplement 4, Figure 1 – figure supplement 5, and Figure 6). Note, however, that GtACR1’s spectral maximum is at 515 nm, which makes it poorly suitable for blue light excitation. Also, ChRs are known to perform very differently in different cell types and upon expression of their genes in different vector backbones, so our results cannot be generalized for all experimental systems. Each ChR user needs to select the most appropriate tool for his/her purpose by testing several candidates in his/her own experimental setting.

      Reviewer #1 (Recommendations for the authors):

      (1) The figure legend for Figure 2D-I appears to be incomplete. Please provide a detailed explanation of the panels.

      In the revision, we have expanded the legend of Figure 2 to explain all individual panels.

      (2) The meaning of the Vr shift (Y-axis in Figure 2H-I) should be clarified in the main text to aid reader understanding.

      In the revision, we added the phrase “which indicated higher relative permeability to NO<sub>3</sub> than to Cl<sup>-“</sup> to explain the meaning of the Vr shift upon replacement of Cl<sup>-</sup> with NO<sub>3</sub>-.

      (3) Adding statistical analysis for the peak and end photocurrent values in Figure 2D-F would strengthen the claim that there is minimal change in relative permeability during illumination.

      In the revision, we added the V<sub>r</sub> values for the peak photocurrent to Figure 2H-I, which already contained the V<sub>r</sub> values for the end photocurrent, and carried out a statistical analysis of their comparison. The following sentence was added to the text in the revision:

      “The V<sub>r</sub> values of the peak current and that at the end of illumination were not significantly different by the two-tailed Wilcoxon signed-rank test (Fig. 2G), indicating no change in the relative permeability during illumination.”

      (4) Figure 4H and I seem out of place in Figure 4, as the title suggests a focus on wild-proteins and AnsACR mutants. The authors could consider moving these panels to Figure 3 for better alignment with the content.

      As noted below, we changed the panel order in Figure 4 upon the Reviewer’s request. In particular, former Figure 4I is Figure 4C in the revision, and former Figure 4H is now panel C in Figure 3 – figure supplement 1 in the revision. We rearranged the corresponding section of the text (highlighted yellow in the manuscript).

      (5) The characterization section could be strengthened by including data on the pH sensitivity of FtACR, which is currently missing from the main figures.

      Upon the Reviewer’s request, we carried out pH titration of FtACR absorbance and added the results as Figure 4B in the revision.

      (6) The logic in Figure 4A-G appears somewhat disjointed. For example, Figure 4A shows pH sensitivity for WT AnsACR and the G86E mutant, while Figure 4 B-D shifts to WT AnsACR and the D226N mutant, and Figure 4E returns to the G86E mutant. Reorganizing or clarifying the flow would improve readability.

      We followed the Reviewer’s advice and changed the panel order in Figure 4. In the revised version, the upper row (panels A-C) shows the pH titration data of the three WTs, the middle row (panels D-F) shows analysis of the AnsACR_D226N mutant, and the lower row (panels G-I) shows analysis of the AnsACR_G88E mutant. We also rearranged accordingly the description of these panels in the text.

      (7) In Figure 5A, "NIACR" should likely be corrected to "NlCCR".

      We corrected the typo in the revision.

      (8) The statistical significance in Figure 6C and D is somewhat confusing. Clarifying which groups are being compared and using consistent symbols would improve interoperability.

      In the revision, we improved the figure panels and legend to clarify that the comparisons are between the dark and light stimulation groups within the same current injection.

      (9) The authors pointed out that at rest or when a small negative current was injected, the neurons expressing Cl- permeable ChRs could generate a single action potential at the beginning of photostimulation, as has been reported before. The authors could help by further discussing if and how this phenomenon would affect the applicability of such tools.

      We mentioned in the revised Discussion section that activation of ACRs in the axons could depolarize the axons and trigger synaptic transmission at the onset of light stimulation, and this undesired excitatory effect need to be taken into consideration when using ACRs.

      Reviewer #2 (Recommendations for the authors):

      Govorunova et al present three new anion opsins that have potential applications in silencing neurons. This paper follows the tradition of the Spudich lab, presenting and rigorously characterizing potentially valuable opsins. Furthermore, they explore several mutations of the identified opsin that may make these opsins even more useful for the broader community. In general, I feel positively about this manuscript. It presents new potentially useful opsins and provides characterization that would enable its use. I have a few recommendations below, mostly centered around side-by-side comparisons to existing opsins.

      (1) My primary concern is that while there is a reference to GtACR1, a highly used opsin first described by this team, they do not present any of this data side by side.

      When evaluating opsins to use, it is important to compare them to the existing state of the art. As a potential user, I need to know where these opsins differ. Citing other papers does not solve this as, even within the same lab, subtle methodological differences or data plotting decisions can obscure important differences.

      As we explained in the response to the public comments, we carried out side-by-side comparison of ancyromonad ChRs and GtACRs as requested by the Reviewer. The results are shown in the new Figures 1E and F, and the new multipanel Figure 1 – figure supplement 4 and Figure 1 – figure supplement 5, added in the revision. However, we would like to emphasize a limited usefulness of such comparative analysis, as ChRs are known to perform very differently in different cell types and upon expression of their genes in different vector backbones, so our results cannot be generalized for all experimental systems. Each ChR user needs to select the most appropriate tool for his/her purpose by testing several candidates in his/her own experimental setting.

      (2) Multiphoton optogenetics is an emerging field of optogenetics, and it is admirable that the authors address it here. The authors should present more 2p characterization, so that it can be established if these new opsins are viable for use with 2P methods, the way GtACR1 is. The following would be very useful for 2P characterization:

      Photocurrents for a given power density, compared to GtACR1 and GtACR2.

      The new Figure 6 (B-F) added in the revision shows photocurrent traces recorded from the three ancyromonad ChRs and  two GtACRs upon 2P excitation of a given power density.

      Comparing NICCR and FtACR's wavelength specificity and photocurrent. If these opsins are too weak to create reasonable 2P spectra, this difference should be discussed.

      The new Figure 6A shows the 2P action spectra of all three ancyromonad ChRs.

      A Trace and calculated photocurrent kinetics to compare 1P and 2P. This need not be the flash-based absorption characterization of Figure 3, but a side-by-side photocurrent as in Figure 2.

      As mentioned above, photocurrent traces recorded from ancyromonad ChRs and GtACRs upon 2P excitation are shown in the new Figure 6 (B-F). However, direct comparison of the 2P data with the 1P data is not possible, as we used laser scanning illumination for the former and wild-field illumination for the latter.

      Characterization of desensitization. As the authors mention, many opsins undergo desensitization, presenting the ratio of peak photocurrent vs that at multiple time points (probably up to a few seconds) would provide evidence for how effectively these constructs could be used in different scenarios.

      We conducted a detailed analysis of desensitization under both 1P and 2P excitation. The new Figure 1 – figure supplement 4 and Figure 1 – figure supplement 5 show the data obtained under 1P excitation, and the new Figure 6 shows the data for 2P conditions.

      I have to admit, that by the end of the paper, I was getting confused as to which of the three original constructs had which property, and how that was changing with each mutation. I would suggest that a table summarizing each opsin and mutation with its onset and offset kinetics, peak wavelength, photocurrent, and ion selectivity would greatly increase the ability to select and use opsins in the future.

      In the revision, we added a table of the spectroscopic properties of all tested mutants as Supplementary File 2. This study did not aim to analyze other parameters listed by the Reviewer. We added the following sentence referring to this table to the main text:

      “Supplementary File 2 contains the λ values of the half-maximal amplitude of the long-wavelength slope of the spectrum, which can be estimated more accurately from the action spectra than the λ of the maximum.”

      It may be out of the scope of this manuscript, but if a soma localization sequence can be shown to remove the 'axonal spiking' (as described in line 441), this would be a significant addition to the paper.

      Our previous study (Messier et al., 2018, doi: 10.7554/eLife.38506) showed that a soma localization sequence can reduce, but not eliminate, the axonal spiking. We plan to test these new ACRs with the trafficking motifs in the future.

      NICCR appears to have the best photocurrents of all tested opsins in this paper. It seems odd that it was omitted from the mouse cortical neurons experiments.

      We have not included analysis of NlCCR behavior in neurons because we are preparing a separate manuscript on this ChR.

      Figure 6 would benefit from more gradation in the light powers used to silence and would benefit from comparison to GtACR. I suggest using a fixed current with a series of illumination intensities to see which of the three opsins (or GtACR) is most effective at silencing. At present, it looks binary, and a user cannot evaluate if any of these opsins would be better than what is already available.

      In the revision, we added the data comparing the light sensitivity of AnsACR and FtACR with previously identified GtACR1 and GtACR2 (new Figure 1E and F) to help users compare these ACRs. Although they are less sensitive to light comparing to GtACR1 and GtACR2, they could still be activated by commercially available light sources if the expression levels are similar. Less sensitive ACRs may have less unwanted activation when using with other optogenetic tools.

      Reviewer #3 (Recommendations for the authors):

      Suggested Improvements to Experiments, Data, or Analyses:

      (1) Line 25: "significantly exceeding those by previously known tools" and Line 408: "NlCCR is the most blue-shifted among ancyromonad ChRs and generates larger photocurrents than the earlier known CCRs with a similar absorption maximum." As noted in the public review, this statement applies only to a very specific subgroup of ChRs with spectral maxima below 450 nm. If the goal was to claim that NlCCR is a superior tool among a broader range of blue-light-activated ChRs, direct comparisons with state-of-the-art ChRs such as ChR2 T159C (Berndt et al., 2011), CatCh (Kleinlogel et al., 2014), CoChR (Klapoetke et al., 2014), CoChR-3M (Ganjawala et al., 2019), or XXM 2.0 (Ding et al., 2022) would be beneficial. If the goal was to demonstrate superiority among tools with spectra below 450 nm, I suggest explicitly stating this in the paper.

      The Reviewer correctly inferred that we emphasized the superiority of NlCCR among tools with similar spectral maxima, not all blue-light-activated ChRs available for neuronal photoexcitation, most of which exhibit absorption maxima at longer wavelengths. To clarify this, we added “with similar spectral maxima” to the sentence in the original Line 25. The sentence in Line 408 already contains this clarification: “with a similar absorption maximum”.

      (2) Lines 111-113: "The absorption spectra of the purified proteins were slightly blue-shifted from the respective photocurrent action spectra (Figure 1D), likely due to the presence of non-electrogenic cis-retinal-bound forms." I would be skeptical of this statement. The spectral shifts in NlCCR and AnsACR are small and may fall within the range of experimental error. The shift in FtACR is more apparent; however, if two forms coexist in purified protein, this should be reflected as two Gaussian peaks in the absorption spectrum (or at least as a broader total peak reflecting two states with close maxima and similar populations). On the contrary, the action spectrum appears to have two peaks, one potentially below 465 nm. Generally, neither spectrum appears significantly broader than a typical microbial rhodopsin spectrum. This question could be clarified by quantifying the widths of the absorption and action spectra or by overlaying them on the same axis. In my opinion, the two spectra seem very similar, and just appearance of the "bump" in the action spectum shifts the apparent maximum of the action spectrum to the red. If there were two states, then they should both be electrogenic, and the slight difference in spectra might be explained by something else (e.g. by a slight difference in the quantum yields of the two states).

      As the Reviewer suggested, in the revision we added a new figure (Figure 1 – figure supplement 2), showing the overlay of the absorption and action spectra of each ancyromonad ChR. This figure shows that the absorption spectra are wider than the action spectra (especially in AnsACR and FtACR), which confirms our interpretation (contribution of the non-electrogenic blue-shifted cis-retinal-bound forms to the absorption spectrum). Note that the presence of such forms explaining a blue shift of the absorption spectrum has been experimentally verified in HcKCR1 (doi: 10.1016/j.cell.2023.08.009; 10.1038/s41467-025-56491-9). Therefore, we revised the text as follows:

      “The absorption spectra of the purified proteins (Figure 1C) were slightly blue-shifted from the respective photocurrent action spectra (Figure 1 – figure supplement 3), likely due to the presence of non-electrogenic cis-retinal-bound forms. The presence of such forms, explaining the discrepancy between the absorption and the action spectra, was verified by HPLC in KCRs (Tajima et al. 2023, Morizumi et al., 2025).”

      (3) Lines 135-136: "The SyncroPatch enables unbiased estimation of the photocurrent amplitude because the cells are drawn into the wells without considering their tag fluorescence." While SyncroPatch does allow unbiased selection of patched cells, it does not account for the fraction of transfected cells. Without a method to exclude non-transfected cells, which are always present in transient transfections, the comparison of photocurrents may be affected by the proportion of untransfected cells, which could vary between constructs. To clarify whether the statistically significant difference in the Kolmogorov-Smirnov test could indicate that the fraction of transfected cells after 48-72h differs between constructs, I suggest analyzing only transfected cells or reporting fractions of transfected cells by each construct.

      The Reviewer correctly states that non-transfected cells are always present in transiently transfected cell populations. However, his/her suggestion to “exclude non-transfected cells” is not feasible in the absence of a criterion for such exclusion. As it is evident from our data, transient transfection results in a continuum of the amplitude values, and it is not possible to distinguish a small photocurrent from no photocurrent, considering the noise level. We would like, however, to emphasize that not excluding any cells provides an estimate of the overall potency of each ChR variant, which depends on both the fraction of transfected cells and their photocurrents. This approach mimics the conditions of in vivo experiments, when non-expressing cells also cannot be excluded.

      (4) Line 176: "AnsACR and FtACR photocurrents exhibited biphasic rise." The fastest characteristic time is very close to the typical resolution of a patch-clamp experiment (RC = 50 μs for a 10 pF cell with a 5 MΩ series resistance). Thus, I am skeptical that the faster time constant of the biphasic opening represents a protein-specific characteristic time. It may not be fully resolved by patch-clamp and could simply result from low-pass filtering of a specific cell. I suggest clarifying this for the reader.

      The Reviewer is right that the patch clamp setup acts as a lowpass filter. Earlier, we directly measured its time resolution (~15 μs) by recording the ultrafast (occurring on the ps time scale) charge movements related to the trans-cis isomerization (doi: 10.1111/php.12558). However, the lowpass filter of the setup can only slow the entire signal, but cannot lead to the appearance of a separate kinetic component (i.e. a monophasic process cannot become biphasic). Therefore, we believe that the biphasic photocurrent rise reflects biphasic channel opening rather than a measurement artifact. Two phases in the channel opening have also been detected in GtACR1 (doi: 10.1073/pnas.1513602112) and CrChR2 (10.1073/pnas.1818707116).

      (5) Line 516: "The forward LED current was 900 mA." It would be more informative to report the light intensity rather than the forward current, as many readers may not be familiar with the specific light output of the used LED modules at this forward current.

      We have added the light intensity value in the revision:

      “The forward LED current was 900 mA (which corresponded to the irradiance of ~2 mW mm<sup>-2</sup>)…”

      (6) Lines 402-403: "The NlCCR ... contains a neutral residue in the counterion position (Asp85 in BR), which is typical of all ACRs. Yet, NlCCR does not conduct anions, instead showing permeability to Na+." This is not atypical for CCRs and has been demonstrated in previous works of the authors (CtCCR in Govorunova et al. 2021, ChvCCR1 in Govorunova et al. 2022). What is unique is the absence of negatively charged residues in TM2, as noted later in the current study. However, the absence of negatively charged residues in TM2 appears to be rare for ACRs as well. Not as a strong point of criticism, but to enhance clarity, I suggest analyzing the frequency of carboxylate residues in TM2 of ACRs to determine whether the unique finding is relevant to ion selectivity or to another property.

      The Reviewer is correct that some CCRs lack a carboxylate residue in the D85 position, so this feature alone cannot be considered as a differentiating criterion. However, the complete absence of glutamates in TM2 is not rare in ACRs and is found, for example, in HfACR1 and CarACR2. We have discussed this issue in our earlier review (doi: 10.3389/fncel.2021.800313) and do not think that repeating this discussion in this manuscript is appropriate.

      Recommendations for Writing and Presentation:

      (1) Some figures contain incomplete or missing labels:

      Figure 2: Panels D to I lack labels.

      In the revision, we have expanded the legend of Figure 2 to explain all individual panels.

      Figure 3 - Figure Supplement 1: Missing explanations for each panel.

      In the revision, we changed the order of panes and explained all individual panels in the legend.

      Figure 5 - Figure Supplement 1: Missing explanations for each panel.

      No further explanation for individual panels in this Figure is needed because all panels show the action spectra of various mutants, the names of which are provided in the panels themselves. Repeating this information in the figure legend would be redundant.

      (2) In Figure 2, "sem" is written in lowercase, whereas "SEM" is capitalized in other figures. Standardizing the format would improve consistency.

      In the revision, we changed the font of the SEM abbreviation to the uppercase in all instances.

      (3) Line 20: "spectrally separated molecules must be found in nature." There is no proof that they cannot be developed synthetically; rather, it is just difficult. I suggest softening this statement, as the findings of this study, together with others, will probably allow designing molecules with specified spectral properties in the future.

      In the revision, we changed the cited sentence to the following:

      “Multiplex optogenetic applications require spectrally separated molecules, which are difficult to engineer without disrupting channel function”.

      (4) Line 216-219: "Acidification increased the amplitude of the fast current ~10-fold (Figure 4F) and shifted its Vr ~100 mV (Figure 3 - figure supplement 1D), as expected of passive proton transport. The number of charges transferred during the fast peak current was >2,000 times smaller than during the channel opening, from which we concluded that the fast current reflects the movement of the RSB proton." The claim about passive transport of the RSB proton should be clarified, as typically, passive transport is not limited to exactly one proton per photocycle, and the authors observe the increase in the fast photocurrents upon acidification.

      We thank the Reviewer for pointing out the confusing character of our description. To clarify the matter, we added a new photocurrent trace to Figure 4I in the revision recorded from AnsACR_G86E at 0 mV and pH 7.4. We have rewritten the corresponding section of Results as follows:

      “Its rise and decay τ corresponded to the rise and decay τ of the fast positive current recorded from AnsACR_G86E at 0 mV and neutral pH, superimposed on the fast negative current reflecting the chromophore isomerization (Figure 4I, upper black trace). We interpret this positive current as an intramolecular proton transfer to the mutagenetically introduced primary acceptor (Glu86), which was suppressed by negative voltage (Figure 4I, lower black trace). Acidification increased the amplitude of the fast negative current ~10-fold (Figure 4I, black arrow) and shifted its V<sub>r</sub> ~100 mV to more depolarized values (Figure 4 – figure supplement 2A). This can be explained by passive inward movement of the RSB proton along the large electrochemical gradient.”

      Minor Corrections:

      (1) Line 204: Missing bracket in "phases in the WT (Figure 4D."

      The quoted sentence was deleted during the revision.

      (2) Line 288: Typo-"This Ala is conserved" should probably be "This Met is conserved."

      We mean here the Ala four residues downstream from the first Ala. To avoid confusion, we changed the cited sentence to the following:

      “The Ala corresponding to BR’s Gly122 is also found in AnsACR and NlCCR (Figure 5A)…”

      (3) Lines 702-704: Missing Addgene plasmid IDs in "(plasmids #XXX and #YYY, respectively)."

      In the revision, we added the missing plasmid IDs.

  4. Aug 2025
    1. Author response:

      General Statements:

      The formation of three-dimensional tubes is a fundamental process in the development of organs and aberrant tube size leads to common diseases and congenital disorders, such as polycystic kidney disease, asthma, and lung hypoplasia. The apical (luminal) extracellular matrix (ECM) plays a critical role in epithelial tube morphogenesis during organ formation, but its composition and organization remain poorly understood. Using the Drosophila embryonic salivary gland as a model, we reveal a critical role for the PAPS Synthetase (Papss), an enzyme that synthesizes the universal sulfate donor PAPS, as a critical regulator of tube lumen expansion. Additionally, we identify two zona pellucida (ZP) domain proteins, Piopio (Pio) and Dumpy (Dpy) as key apical ECM components that provide mechanical support to maintain a uniform tube diameter.

      The apical ECM has a distinct composition compared to the basal ECM, featuring a diverse array of components. Many studies of the apical ECM have focused on the role of chitin and its modification, but the composition of the non-chitinous apical ECM and its role, and how modification of the apical ECM affects organogenesis remain elusive. The main findings of this manuscript are listed below.

      (1) Through a deficiency screen targeting ECM-modifying enzymes, we identify Papss as a key enzyme regulating luminal expansion during salivary gland morphogenesis. 

      (2) Our confocal and transmission electron microscopy analyses reveal that Papss mutants exhibit a disorganized apical membrane and condensed aECM, which are at least partially linked to disruptions in Golgi structures and intracellular trafficking. Papss is also essential for cell survival and basal ECM integrity, highlighting the role of sulfation in regulating both apical and basal ECM.

      (3) Salivary gland-specific overexpression of wild-type Papss rescues all defects in Papss mutants, but the catalytically inactive mutant form does not, suggesting that defects in sulfation are the underlying cause of the phenotypes.

      (4) We identify two ZP domain proteins, Piopio (Pio) and Dumpy (Dpy), as key components of the salivary gland aECM. In the absence of Papss, Pio is progressively lost from the aECM, while the Dpy-positive aECM structure is condensed and detaches from the apical membrane, resulting in a narrowed lumen. 

      (5) Mutations in pio or dpy, or in Notopleural (Np), which encodes a matriptase that cleaves Pio, cause the salivary gland lumen to develop alternating bulges and constrictions. Additionally, loss of pio results in loss of Dpy in the salivary gland lumen, suggesting that the Dpycontaining filamentous structures of the aECM is critical for maintaining luminal diameter, with Pio playing an essential role in organizing this structure.

      (6) We further reveal that the cleavage of the ZP domain of Pio by Np is critical for the role of Pio in organizing the aECM structure.

      Overall, our findings underscore the essential role of sulfation in organizing the aECM during tubular organ formation and highlight the mechanical support provided by ZP domain proteins in maintaining tube diameter. Mammals have two isoforms of Papss, Papss1 and Papss2. Papss1 shows ubiquitous expression, with higher levels in glandular cells and salivary duct cells, suggesting a high requirement for sulfation in these cell types. Papss2 shows a more restricted expression, such as in cartilage, and mutations in Papss2 have been associated with skeletal dysplasia in humans. Our analysis of the Drosophila Papss gene, a single ortholog of human Papss1 and Papss2, reveals its multiple roles during salivary gland development. We expect that these findings will provide valuable insights into the function of these enzymes in normal development and disease in humans. Our findings on the key role of two ZP proteins, Pio and Dpy, as major components of the salivary gland aECM also provide valuable information on the organization of the non-chitinous aECM during organ formation.

      We believe that our results will be of broad interest to many cell and developmental biologists studying organogenesis and the ECM, as well as those investigating the mechanisms underlying human diseases associated with conserved mutations.

      Point-by-point description of the revisions:

      We are delighted that all three reviewers were enthusiastic about the work. Their comments and suggestions have improved the paper. The details of the changes we have made in response to each reviewer’s comments are included in italicized text below.

      Reviewer #1 (Evidence, reproducibility and clarity):

      PAPS is required for all sulfotransferase reactions in which a sulfate group is covalently attached to amino acid residues of proteins or to side chains of proteoglycans. This sulfation is crucial for properly organizing the apical extracellular matrix (aECM) and expanding the lumen in the Drosophila salivary gland. Loss of Papss potentially leads to decreased sulfation, disorganizing the aECM, and defects in lumen formation. In addition, Papss loss destabilizes the Golgi structures.

      In Papss mutants, several changes occur in the salivary gland lumen of Drosophila. The tube lumen is very thin and shows irregular apical protrusions. There is a disorganization of the apical membrane and a compaction of the apical extracellular matrix (aECM). The Golgi structures and intracellular transport are disturbed. In addition, the ZP domain proteins Piopio (Pio) and Dumpy (Dpy) lose their normal distribution in the lumen, which leads to condensation and dissociation of the Dpy-positive aECM structure from the apical membrane. This results in a thin and irregularly dilated lumen.

      (1) The authors describe various changes in the lumen in mutants, from thin lumen to irregular expansion. I would like to know the correct lumen diameter, and length, besides the total area, by which one can recognize thin and irregular.

      We have included quantification of the length and diameter of the salivary gland lumen in the stage 16 salivary glands of control, Papss mutant, and salivary gland-specific rescue embryos (Figure 1J, K). As described, Papss mutant embryos have two distinct phenotypes, one group with a thin lumen along the entire lumen and the other group with irregular lumen shapes. Therefore, we separated the two groups for quantification of lumen diameter. Additionally, we have analyzed the degree of variability for the lumen diameter to better capture the range of phenotypes observed (Figure 1K’). These quantifications enable a more precise assessment of lumen morphology, allowing readers to distinguish between thin and irregular lumen phenotypes.

      (2) The rescue is about 30%, which is not as good as expected. Maybe the wrong isoform was taken. Is it possible to find out which isoform is expressed in the salivary glands, e.g., by RNA in situ Hyb? This could then be used to analyze a more focused rescue beyond the paper.

      Thank you for this point, but we do not agree that the rescue is about 30%. In Papss mutants, about 50% of the embryos show the thin lumen phenotype whereas the other 50% show irregular lumen shapes. In the rescue embryos with a WT Papss, few embryos showed thin lumen phenotypes. About 40% of the rescue embryos showed “normal, fully expanded” lumen shapes, and the remaining 60% showed either irregular (thin+expanded) or slightly overexpanded lumen. It is not uncommon that rescue with the Gal4/UAS system results in a partial rescue because it is often not easy to achieve the balance of the proper amount of the protein with the overexpression system. 

      To address the possibility that the wrong isoform was used, we performed in situ hybridization to examine the expression of different Papss spice forms in the salivary gland. We used probes that detect subsets of splice forms: A/B/C/F/G, D/H, and E/F/H, and found that all probes showed expression in the salivary gland, with varying intensities. The original probe, which detects all splice forms, showed the strongest signals in the salivary gland compared to the new probes which detect only a subset. However, the difference in the signal intensity may be due to the longer length of the original probe (>800 bp) compared to other probes that were made with much smaller regions (~200 bp). Digoxigenin in the DIG labeling kit for mRNA detection labels the uridine nucleotide in the transcript, and the probes with weaker signals contain fewer uridines (all: 147; ABCFG, 29; D, 36; EFH, 66). We also used the Papss-PD isoform, for a salivary gland-specific rescue experiment and obtained similar results to those with Papss-PE (Figure 1I-L, Figure 4D and E). 

      Furthermore, we performed additional experiments to validate our findings. We performed a rescue experiment with a mutant form of Papss that has mutations in the critical rescues of the catalytic domains of the enzyme, which failed to rescue any phenotypes, including the thin lumen phenotype (Figure 1H, J-L), the number and intensity of WGA puncta (Figure 3I, I’), and cell death (Figure 4D, E). These results provide strong evidence that the defects observed in Papss mutants are due to the lack of sulfation.  

      (3) Crb is a transmembrane protein on the apicolateral side of the membrane. Accordingly, the apicolateral distribution can be seen in the control and the mutant. I believe there are no apparent differences here, not even in the amount of expression. However, the view of the cells (frame) shows possible differences. To be sure, a more in-depth analysis of the images is required. Confocal Z-stack images, with 3D visualization and orthogonal projections to analyze the membranes showing Crb staining together with a suitable membrane marker (e.g. SAS or Uif). This is the only way to show whether Crb is incorrectly distributed. Statistics of several papas mutants would also be desirable and not just a single representative image. When do the observed changes in Crb distribution occur in the development of the tubes, only during stage 16? Is papss only involved in the maintenance of the apical membrane? This is particularly important when considering the SJ and AJ, because the latter show no change in the mutants.

      We appreciate your suggestion more thoroughly analyze Crb distribution. We adapted a method from a previous study (Olivares-Castiñeira and Llimargas, 2017) to quantify Crb signals in the subapical region and apical free region of salivary gland cells. Using E-Cad signals as a reference, we marked the apical cell boundaries of individual cells and calculated the intensity of Crb signals in the subapical region (along the cell membrane) and in the apical free region. We focused on the expanded region of the SG lumen in Papss mutants for quantification, as the thin lumen region was challenging to analyze. This quantification is included in Figure 2D. Statistical analysis shows that Crb signals were more dispersed in SG cells in Papss mutants compared to WT.

      (4) A change in the ECM is only inferred based on the WGA localization. This is too few to make a clear statement. WGA is only an indirect marker of the cell surface and glycosylated proteins, but it does not indicate whether the ECM is altered in its composition and expression. Other important factors are missing here. In addition, only a single observation is shown, and statistics are missing.

      We understand your concern that WGA localization alone may not be sufficient to conclude changes in the ECM. However, we observed that luminal WGA signals colocalize with Dpy-YFP in the WT SG (Figure 5-figure supplement 2C), suggesting that WGA detects the aECM structure containing Dpy. The similar behavior of WGA and Dpy-YFP signals in multiple genotypes further supports this idea. In Papss mutants with a thin lumen phenotype, both WGA and Dpy-YFP signals are condensed (Figure 5E-H), and in pio mutants, both are absent from the lumen (Figure 6B, D). We analyzed WGA signals in over 25 samples of WT and Papss mutants, observing consistent phenotypes. We have included the number of samples in the text. While we acknowledge that WGA is an indirect marker, our data suggest that it is a reliable indicator of the aECM structure containing Dpy. 

      (5) Reduced WGA staining is seen in papss mutants, but this could be due to other circumstances. To be sure, a statistic with the number of dots must be shown, as well as an intensity blot on several independent samples. The images are from single confocal sections. It could be that the dots appear in a different Z-plane. Therefore, a 3D visualization of the voxels must be shown to identify and, at best, quantify the dots in the organ.

      We have quantified cytoplasmic punctate WGA signals. Using spinning disk microscopy with super-resolution technology (Olympus SpinSR10 Sora), we obtained high-resolution images of cytoplasmic punctate signals of WGA in WT, Papss mutant, and rescue SGs with the WT and mutant forms of Papss-PD. We then generated 3D reconstructed images of these signals using Imaris software (Figure 3E-H) and quantified the number and intensity of puncta. Statistical analysis of these data confirms the reduction of the number and intensity of WGA puncta in Papss mutants (Figure 3I, I’). The number of WGA puncta was restored by expressing WT Papss but not the mutant form. By using 3D visualization and quantification, we have ensured that our results are not limited to a single confocal section and account for potential variations in Z-plane localization of the dots.

      (6) A colocalization analysis (statistics) should be shown for the overlap of WGA with ManII-GFP.

      Since WGA labels multiple structures, including the nuclear envelope and ECM structures, we focused on assessing the colocalization of the cytoplasmic WGA punctate signals and ManIIGFP signals. Standard colocalization analysis methods, such as Pearson’s correlation coefficient or Mander’s overlap coefficient, would be confounded by WGA signals in other tissues. Therefore, we used a fluorescent intensity line profile to examine the spatial relationship between WGA and ManII-GFP signals in WT and Papss mutants (Figure 3L, L’). 

      (7) I do not understand how the authors describe "statistics of secretory vesicles" as an axis in Figure 3p. The TEM images do not show labeled secretory vesicles but empty structures that could be vesicles.

      Previous studies have analyzed “filled” electron-dense secretory vesicles in TEM images of SG cells (Myat and Andrew, 2002, Cell; Fox et al., 2010, J Cell Biol; Chung and Andrew, 2014, Development). Consistent with these studies, our WT TEM images show these vesicles. In contrast, Papss mutants show a mix of filled and empty structures. For quantification, we specifically counted the filled electron-dense vesicles (now Figure 3W). A clear description of our analysis is provided in the figure legend.

      (8) The quality of the presented TEM images is too low to judge any difference between control and mutants. Therefore, the supplement must present them in better detail (higher pixel number?).

      We disagree that the quality of the presented TEM images is too low. Our TEM images have sufficient resolution to reveal details of many subcellular structures, such as mitochondrial cisternae. The pdf file of the original submission may not have been high resolution. To address this concern, we have provided several original high-quality TEM images of both WT and Papss mutants at various magnifications in Figure 2-figure supplement 2. Additionally, we have included low-magnification TEM images of WT and Papss mutants in Figure 2H and I to provide a clearer view of the overall SG lumen morphology. 

      (9) Line 266: the conclusion that apical trafficking is "significantly impaired" does not hold. This implies that Papss is essential for apical trafficking, but the analyzed ECM proteins (Pio, Dumpy) are found apically enriched in the mutants, and Dumpy is even secreted. Moreover, they analyze only one marker, Sec15, and don't provide data about the quantification of the secretion of proteins.

      We agree and have revised our statement to “defective sulfation affects Golgi structures and multiple routes of intracellular trafficking”. 

      (10) DCP-1 was used to detect apoptosis in the glands to analyze acellular regions. However, the authors compare ST16 control with ST15 mutant salivary glands, which is problematic. Further, it is not commented on how many embryos were analyzed and how often they detect the dying cells in control and mutant embryos. This part must be improved.

      Thank you for the comment. We agree and have included quantification. We used stage 16 samples from WT and Papss mutants to quantify acellular regions. Since DCP-1 signals are only present at a specific stage of apoptosis, some acellular regions do not show DCP-1 signals. Therefore, we counted acellular regions regardless of DCP-1 signals. We also quantified this in rescue embryos with WT and mutant forms of Papss, which show complete rescue with WT and no rescue with the mutant form, respectively. The graph with a statistical analysis is included (Figure 4D, E).

      (11) WGA and Dumpy show similar condensed patterns within the tube lumen. The authors show that dumpy is enriched from stage 14 onwards. How is it with WGA? Does it show the same pattern from stage 14 to 16? Papss mutants can suffer from a developmental delay in organizing the ECM or lack of internalization of luminal proteins during/after tube expansion, which is the case in the trachea.

      Dpy-YFP and WGA show overlapping signals in the SG lumen throughout morphogenesis. DpyYFP is SG enriched in the lumen from stage 11, not stage 14 (Figure 5-figure supplement 2). WGA is also detected in the lumen throughout SG morphogenesis, similar to Dpy. In the original supplemental figure, only a stage 16 SG image was shown for co-localization of Dpy-YFP and WGA signals in the SG lumen. We have now included images from stage 14 and 15 in Figure 5figure supplement 2C. 

      Given that luminal Pio signals are lost at stage 16 only and that Dpy signals appear as condensed structures in the lumen of Papss mutants, it suggests that the internalization of luminal proteins is not impaired in Papss mutants. Rather, these proteins are secreted but fail to organize properly. 

      (12) Line 366. Luminal morphology is characterized by bulging and constrictions. In the trachea, bulges indicate the deformation of the apical membrane and the detachment from the aECM. I can see constrictions and the collapsed tube lumen in Fig. 6C, but I don't find the bulges of the apical membrane in pio and Np mutants. Maybe showing it more clearly and with better quality will be helpful.

      Since the bulging phenotype appears to vary from sample to sample, we have revised the description of the phenotype to “constrictions” to more accurately reflect the consistent observations. We quantified the number of constrictions along the entire lumen in pio and Np mutants and included the graph in Figure 6F.

      (13) The authors state that Papss controls luminal secretion of Pio and Dumpy, as they observe reduced luminal staining of both in papss mutants. However, the mCh-Pio and Dumpy-YFP are secreted towards the lumen. Does papss overexpression change Pio and Dumpy secretion towards the lumen, and could this be another explanation for the multiple phenotypes? 

      Thank you for the comment. To clarify, we did not observe reduced luminal staining of Pio and Dpy in Papss mutants, nor did we state that Papss controls luminal secretion of Pio and Dpy. In Papss mutants, Pio luminal signals are absent specifically at stage 16 (Figure 5H), whereas strong luminal Pio signals are present until stage 15 (Figure 5G). For Dpy-YFP, the signals are not reduced but condensed in Papss mutants from stages 14-16 (Figure 5D, H). 

      It remains unclear whether the apparent loss of Pio signals is due to a loss of Pio protein in the lumen or due to epitope masking resulting from protein aggregation or condensation. As noted in our response to Comment 11 internalization of luminal proteins seems unaffected in Papss mutants; proteins like Pio and Dpy are secreted into the lumen but fail to properly organize. Therefore, we have not tested whether Papss overexpression alters the secretion of Pio or Dpy.

      In our original submission, we incorrectly stated that uniform luminal mCh-Pio signals were unchanged in Papss mutants. Upon closer examination, we found these signals are absent in the expanded luminal region in stage 16 SG (where Dpy-YFP is also absent), and weak mCh-Pio signals colocalize with the condensed Dpy-YFP signals (Figure 5C, D). We have revised the text accordingly. 

      Regulation of luminal ZP protein level is essential to modulate the tube expansion; therefore, Np releases Pio and Dumpy in a controlled manner during st15/16. Thus, the analysis of Pio and Dumpy in NP overexpression embryos will be critical to this manuscript to understand more about the control of luminal ZP matrix proteins.

      Thanks for the insightful suggestion. We overexpressed both the WT and mutant form of Np using UAS-Np.WT and UAS-Np.S990A lines (Drees et al., 2019) and analyzed mCh-Pio, Pio antibody, and Dpy-YFP signals. It is important to note that these overexpression experiments were done in the presence of the endogenous WT Np. 

      Overexpression of Np.WT led to increased levels of mCh-Pio, Pio, and Dpy-YFP signals in the lumen and at the apical membrane. In contrast, overexpression of Np.S990A resulted in a near complete loss of luminal mCh-Pio signals. Pio antibody signals remained strong at the apical membrane but was weaker in the luminal filamentous structures compared to WT. 

      Due to the GFP tag present in the UAS-Np.S990A line, we could not reliably analyze Dpy-YFP signals because of overlapping fluorescent signals in the same channel. However, the filamentous Pio signals in the lumen co-localized with GFP signals, suggesting that these structures might also include Dpy-YFP, although this cannot be confirmed definitively. 

      These results suggest that overexpressed Np.S990A may act in a dominant-negative manner, competing with endogenous Np and impairing proper cleavage of Pio (and mCh-Pio). Nevertheless, some level of cleavage by endogenous Np still appears to occur, as indicated by the residual luminal filamentous Pio signals. These new findings have been incorporated into the revised manuscript and are shown in Figure 6H and 6I.

      (14) Minor:

      Fig. 5 C': mChe-Pio and Dumpy-YFP are mixed up at the top of the images.

      Thanks for catching this error.  It has been corrected.

      Sup. Fig7. A shows Pio in purple but B in green. Please indicate it correctly.

      It has been corrected.

      Reviewer #1 (Significance):

      In 2023, the functions of Pio, Dumpy, and Np in the tracheal tubes of Drosophila were published. The study here shows similar results, with the difference that the salivary glands do not possess chitin, but the two ZP proteins Pio and Dumpy take over its function. It is, therefore, a significant and exciting extension of the known function of the three proteins to another tube system. In addition, the authors identify papss as a new protein and show its essential function in forming the luminal matrix in the salivary glands. Considering the high degree of conservation of these proteins in other species, the results presented are crucial for future analyses and will have further implications for tubular development, including humans.

      Reviewer #2 (Evidence, reproducibility and clarity):

      Summary:

      There is growing appreciation for the important of luminal (apical) ECM in tube development, but such matrices are much less well understood than basal ECMs. Here the authors provide insights into the aECM that shapes the Drosophila salivary gland (SG) tube and the importance of PAPSS-dependent sulfation in its organization and function.

      The first part of the paper focuses on careful phenotypic characterization of papss mutants, using multiple markers and TEM. This revealed reduced markers of sulfation (Alcian Blue staining) and defects in both apical and basal ECM organization, Golgi (but not ER) morphology, number and localization of other endosomal compartments, plus increased cell death. The authors focus on the fact that papss mutants have an irregular SG lumen diameter, with both narrowed regions and bulged regions. They address the pleiotropy, showing that preventing the cell death and resultant gaps in the tube did not rescue the SG luminal shape defects and discussing similarities and differences between the papss mutant phenotype and those caused by more general trafficking defects. The analysis uses a papss nonsense mutant from an EMS screen - I appreciate the rigorous approach the authors took to analyze transheterozygotes (as well as homozygotes) plus rescued animals in order to rule out effects of linked mutations.

      The 2nd part of the paper focuses on the SG aECM, showing that Dpy and Pio ZP protein fusions localize abnormally in papss mutants and that these ZP mutants (and Np protease mutants) have similar SG lumen shaping defects to the papss mutants. A key conclusion is that SG lumen defects correlate with loss of a Pio+Dpy-dependent filamentous structure in the lumen. These data suggest that ZP protein misregulation could explain this part of the papss phenotype.

      Overall, the text is very well written and clear. Figures are clearly labeled. The methods involve rigorous genetic approaches, microscopy, and quantifications/statistics and are documented appropriately. The findings are convincing, with just a few things about the fusions needing clarification.

      Minor comments

      (1) Although the Dpy and Qsm fusions are published reagents, it would still be helpful to mention whether the tags are C-terminal as suggested by the nomenclature, and whether Westerns have been performed, since (as discussed for Pio) cleavage could also affect the appearance of these fusions.

      Thanks for the comment. Dpy-YFP is a knock-in line in which YFP is inserted into the middle of the dpy locus (Lye et al., 2014; the insertion site is available on Flybase). mCh-Qsm is also a knock-in line, with mCh inserted near the N-terminus of the qsm gene using phi-mediated recombination using the qsm<sup>MI07716</sup> line (Chu and Hayashi, 2021; insertion site available on Flybase). Based on this, we have updated the nomenclature from Qsm-mCh to mCh-Qsm throughout the manuscript to accurately reflect the tag position. To our knowledge, no western blot has been performed on Dpy-YFP or mCh-Qsm lines. We have mentioned this explicitly in the Discussion.  

      (2) The Dpy-YFP reagent is a non-functional fusion and therefore may not be a wholly reliable reporter of Dpy localization. There is no antibody confirmation. As other reagents are not available to my knowledge, this issue can be addressed with text acknowledgement of possible caveats.

      Thanks for raising this important point. We have added a caveat in the Discussion noting this limitation and the need for additional tools, such as an antibody or a functional fusion protein, to confirm the localization of Dpy.

      (3) TEM was done by standard chemical fixation, which is fine for viewing intracellular organelles, but high pressure freezing probably would do a better job of preserving aECM structure, which looks fairly bad in Fig. 2G WT, without evidence of the filamentous structures seen by light microscopy. Nevertheless, the images are sufficient for showing the extreme disorganization of aECM in papss mutants.

      We agree that HPF is a better method and intent to use the HPF system in future studies. We acknowledge that chemical fixation contributes to the appearance of a gap between the apical membrane and the aECM, which we did not observe in the HPF/FS method (Chung and Andrew, 2014). Despite this, the TEM images still clearly reveal that Papss mutants show a much thinner and more electron-dense aECM compared to WT (Figure 2H, I), consistent to the condensed WGA, Dpy, and Pio signals in our confocal analyses. As the reviewer mentioned, we believe that the current TEM data are sufficient to support the conclusion of severe aECM disorganization and Golgi defects in Papss mutants.

      (4) The authors may consider citing some of the work that has been done on sulfation in nematodes, e.g. as reviewed here: https://pubmed.ncbi.nlm.nih.gov/35223994/ Sulfation has been tied to multiple aspects of nematode aECM organization, though not specifically to ZP proteins.

      Thank you for the suggestion. Pioneering studies in C. elegans have highlighted the key role of sulfation in diverse developmental processes, including neuronal organization, reproductive tissue development, and phenotypic plasticity. We have now cited several works.  

      Reviewer #2 (Significance):

      This study will be of interest to researchers studying developmental morphogenesis in general and specifically tube biology or the aECM. It should be particularly of interest to those studying sulfation or ZP proteins (which are broadly present in aECMs across organisms, including humans).

      This study adds to the literature demonstrating the importance of luminal matrix in shaping tubular organs and greatly advances understanding of the luminal matrix in the Drosophila salivary gland, an important model of tubular organ development and one that has key matrix differences (such as no chitin) compared to other highly studied Drosophila tubes like the trachea.

      The detailed description of the defects resulting from papss loss suggests that there are multiple different sulfated targets, with a subset specifically relevant to aECM biology. A limitation is that specific sulfated substrates are not identified here (e.g. are these the ZP proteins themselves or other matrix glycoproteins or lipids?); therefore it's not clear how direct or indirect the effects of papss are on ZP proteins. However, this is clearly a direction for future work and does not detract from the excellent beginning made here.

      My expertise: I am a developmental geneticist with interests in apical ECM

      Reviewer #3 (Evidence, reproducibility and clarity):

      In this work Woodward et al focus on the apical extracellular matrix (aECM) in the tubular salivary gland (SG) of Drosophila. They provide new insights into the composition of this aECM, formed by ZP proteins, in particular Pio and Dumpy. They also describe the functional requirements of PAPSS, a critical enzyme involved in sulfation, in regulating the expansion of the lumen of the SG. A detailed cellular analysis of Papss mutants indicate defects in the apical membrane, the aECM and in Golgi organization. They also find that Papss control the proper organization of the Pio-Dpy matrix in the lumen. The work is well presented and the results are consistent.

      Main comments

      - This work provides a detailed description of the defects produced by the absence of Papss. In addition, it provides many interesting observations at the cellular and tissular level. However, this work lacks a clear connection between these observations and the role of sulfation. Thus, the mechanisms underlying the phenotypes observed are elusive. Efforts directed to strengthen this connection (ideally experimentally) would greatly increase the interest and relevance of this work.

      Thank you for this thoughtful comment. To directly test whether the phenotypes observed in Papss mutants are due to the loss of sulfation activity, we generated transgenic lines expressing catalytically inactive forms of Papss, UAS-PapssK193A, F593P, in which key residues in the APS kinase and ATP sulfurylase domains are mutated. Unlike WT UAS-Papss (both the Papss-PD or Papss-PE isoforms), the catalytically inactive UAS-Papssmut failed to rescue any of the phenotypes, including the thin lumen phenotype (Figure 1I-L), altered WGA signals (Figure I, I’) and the cell death phenotype (Figure 4D, E). These findings strongly support the conclusion that the enzymatic sulfation activity of Papss is essential for the developmental processes described in this study.  

      - A main issue that arises from this work is the role of Papss at the cellular level. The results presented convincingly indicate defects in Golgi organization in Papss mutants. Therefore, the defects observed could stem from general defects in the secretion pathway rather than from specific defects on sulfation. This could even underly general/catastrophic cellular defects and lead to cell death (as observed).

      This observation has different implications. Is this effect observed in SGs also observed in other cells in the embryo? If Papss has a general role in Golgi organization this would be expected, as Papss encodes the only PAPs synthatase in Drosophila.

      Can the authors test any other mutant that specifically affect Golgi organization and investigate whether this produces a similar phenotype to that of Papss?

      Thank you for the comment. To address whether the defects observed in Papss mutants stem from general disruption of the secretory pathway due to Golgi disorganization, we examined mutants of two key Golgi components: Grasp65 and GM130. 

      In Grasp65 mutants, we observed significant defects in SG lumen morpholgy, including highly irregular SG lumen shape and multiple constrictions (100%; n=10/10). However, the lumen was not uniformly thin as in Papss mutants. In contrast, GM130 mutants–although this line was very sick and difficult to grow–showed relatively normal salivary glands morphology in the few embryos that survived to stage 16 (n=5/5). It is possible that only embryos with mild phenotypes progressed to this stages, limiting interpretation. These data have now been included in Figure 3-figure supplement 2. Overall, while Golgi disruption can affect SG morphology, the specific phenotypes seen in Papss mutants are not fully recapitulated by Grasp65 or GM130 loss. 

      - A model that conveys the different observations and that proposes a function for Papss in sulfation and Golgi organization (independent or interdependent?) would help to better present the proposed conclusions. In particular, the paper would be more informative if it proposed a mechanism or hypothesis of how sulfation affects SG lumen expansion. Is sulfation regulating a factor that in turn regulates Pio-Dpy matrix? Is it regulating Pio-Dpy directly? Is it regulating a

      product recognized by WGA?

      For instance, investigating Alcian blue or sulfotyrosine staining in pio, dpy mutants could help to understand whether Pio, Dpy are targets of sulfation.

      Thank you for the comment. We’re also very interested in learning whether the regulation of the Pio-Dpy matrix is a direct or indirect consequence of the loss of sulfation on these proteins. One possible scenario is that sulfation directly regulates the Pio-Dpy matrix by regulating protein stability through the formation of disulfide bonds between the conserved Cys residues responsible for ZP module polymerization. Additionally, the Dpy protein contains hundreds of EGF modules that are highly susceptible to O-glycosylation. Sulfation of the glycan groups attached to Dpy may be critical for its ability to form a filamentous structure. Without sulfation, the glycan groups on Dpy may not interact properly with the surrounding materials in the lumen, resulting in an aggregated and condensed structure. These possibilities are discussed in the Discussion.

      We have not analyzed sulfation levels in pio or dpy mutants because sulfation levels in mutants of single ZP domain proteins may not provide much information. A substantial number of proteoglycans, glycoproteins, and proteins (with up to 1% of all tyrosine residues in an organism’s proteins estimated to be sulfated) are modified by sulfation, so changes in sulfation levels in a single mutant may be subtle. Especially, the existing dpy mutant line is an insertion mutant of a transposable element; therefore, the sulfation sites would still remain in this mutant. 

      - Interpretation of Papss effects on Pio and Dpy would be desired. The results presented indicate loss of Pio antibody staining but normal presence of cherry-Pio. This is difficult to interpret. How are these results of Pio antibody and cherry-Pio correlating with the results in the trachea described recently (Drees et al. 2023)?

      In our original submission, we stated that the uniform luminal mCh-Pio signals were not changed in Papss mutants, but after re-analysis, we found that these signals were actually absent from the expanded luminal region in stage 16 SG (where Dpy-YFP is also absent), and weak mCh-Pio signals colocalize with the condensed Dpy-YFP signals (Figure 5C, D). We have revised the text accordingly. 

      After cleavages by Np and furin, the Pio protein should have three fragments. The Nterminal region contains the N-terminal half of the ZP domain, and mCh-Pio signals show this fragment. The very C-terminal region should localize to the membrane as it contains the transmembrane domain. We think the middle piece, the C-terminal ZP domain, is recognized by the Pio antibody. The mCh-Pio and Pio antibody signals in the WT trachea (Drees et al., 2023) are similar to those in the SG. mCh-Pio signals are detected in the tracheal lumen as uniform signals, at the apical membrane, and in cytoplasmic puncta. Pio antibody signals are exclusively in the tracheal lumen and show more heterogenous filamentous signals. 

      In Papss mutants, the middle fragment (the C-terminal ZP domain) seems to be most affected because the Pio antibody signals are absent from the lumen. The loss of Pio antibody signals could be due to protein degradation or epitope masking caused by aECM condensation and protein misfolding. This fragment seems to be key for interacting with Dpy, since Pio antibody signals always colocalize with Dpy-YFP. The N-terminal mCh-Pio fragment does not appear to play a significant role in forming a complex with Dpy in WT (but still aggregated together in Papss mutants), and this can be tested in future studies.

      In response to Reviewer 1’s comment, we performed an additional experiment to test the role of Np in cleaving Pio to help organize the SG aECM. In this experiment, we overexpressed the WT and mutant form of Np using UAS-Np.WT and UAS-Np.S990A lines (Drees et al., 2019) and analyzed mCh-Pio, Pio antibody, and Dpy-YFP signals. Np.WT overexpression resulted in increased levels of mCh-Pio, Pio, and Dpy-YFP signals in the lumen and at the apical membrane. However, overexpression of Np.S990A resulted in the absence of luminal mCh-Pio signals. Pio antibody signals were strong at the apical membrane but rather weak in the luminal filamentous structures. Since the UAS-Np.S990A line has the GFP tag, we could not reliably analyze Dpy-YFP signals due to overlapping Np.S990A.GFP signals in the same channel. However, the luminal filamentous Pio signals co-localized with GFP signals, and we assume that these overlapping signals could be Dpy-YFP signals. 

      These results suggest that overexpressed Np.S990A may act in a dominant-negative manner, competing with endogenous Np and impairing proper cleavage of Pio (and mCh-Pio). Nevertheless, some level of cleavage by endogenous Np still appears to occur, as indicated by the residual luminal filamentous Pio signals. These new findings have been incorporated into the revised manuscript and are shown in Figure 6H and 6I. 

      A proposed model of the Pio-Dpy aECM in WT, Papss, pio, and Np mutants has now been included in Figure 7.

      -  What does the WGA staining in the lumen reveal? This staining seems to be affected differently in pio and dpy mutants: in pio mutants it disappears from the lumen (as dpy-YFP does), but in dpy mutants it seems to be maintained. How do the authors interpret these findings? How does the WGA matrix relate to sulfated products (using Alcian blue or sulfotyrosine)?

      WGA binds to sialic acid and N-acetylglucosamine (GlcNAc) residues on glycoproteins and glycolipids. GlcNAc is a key component of the glycosaminoglycan (GAG) chains that are covalently attached to the core protein of a proteoglycan, which is abundant in the ECM. We think WGA detects GlcNAc residues in the components of the aECM, including Dpy as a core component, based on the following data. 1) WGA and Dpy colocalize in the lumen, both in WT (as thin filamentous structures) and Papss mutant background (as condensed rod-like structures), and 2) are absent in pio mutants. WGA signals are still present in a highly condensed form in dpy mutants. That’s probably because the dpy mutant allele (dpyov1) has an insertion of a transposable element (blood element) into intron 11 and this insertion may have caused the Dpy protein to misfold and condense. We added the information about the dpy allele to the Results section and discussed it in the Discussion.

      Minor points:

      - The morphological phenotypic analysis of Papss mutants (homozygous and transheterozygous) is a bit confusing. The general defects are higher in Papss homozygous than in transheterozygotes over a deficiency. Maybe quantifying the defects in the heterozygote embryos in the Papss mutant collection could help to figure out whether these defects relate to Papss mutation.

      We analyzed the morphology of heterozygous Papss mutant embryos. They were all normal. The data and quantifications have now been added to Figure 1-figure supplement 3. 

      - The conclusion that the apical membrane is affected in Papss mutants is not strongly supported by the results presented with the pattern of Crb (Fig 2). Further evidences should be provided. Maybe the TEM analysis could help to support this conclusion

      We quantified Crb levels in the sub-apical and medial regions of the cell and included this new quantification in Figure 2D. TEM images showed variation in the irregularity of the apical membrane, even in WT, and we could not draw a solid conclusion from these images.

      - It is difficult to understand why in Papss mutants the levels of WGA increase. Can the authors elaborate on this?

      We think that when Dpy (and many other aECM components) are condensed and aggregated into the thin, rod-like structure in Papss mutants, the sugar residues attached to them must also be concentrated and shown as increased WGA signals.   

      - The explanation about why Pio antibody and mcherry-Pio show different patterns is not clear. If the antibody recognizes the C-t region, shouldn't it be clearly found at the membrane rather than the lumen?

      The Pio protein is also cleaved by furin protease (Figure 5B). We think the Pio fragment recognized by the antibody should be a “C-terminal ZP domain”, which is a middle piece after furin + Np cleavages. 

      - The qsm information does not seem to provide any relevant information to the aECM, or sulfation.

      Since Qsm has been shown to bind to Dpy and remodel Dpy filaments in the muscle tendon (Chu and Hayashi, 2021), we believe that the different behavior of Qsm in the SG is still informative. As mentioned briefly in the Discussion, the cleaved Qsm fragment may localize differently, like Pio, and future work will need to test this. We have shortened the description of the Qsm localization in the manuscript and moved the details to the figure legend of Figure 5-figure supplement 3.

      Reviewer #3 (Significance):

      Previous reports already indicated a role for Papss in sulfation in SG (Zhu et al 2005). Now this work provides a more detailed description of the defects produced by the absence of Papss. In addition, it provides relevant data related to the nature and requirements of the aECM in the SG. Understanding the composition and requirements of aECM during organ formation is an important question. Therefore, this work may be relevant in the fields of cell biology and morphogenesis.

    1. ☑️ peer.gos.ck-editor needs to set title so that annotations can show it

      currently it is done by manually adding a title tag in the source code for the document that is saved in Peergos

      where all the html and javascript encluses the source of the HTML document so the editor/capbiity gets loaded wwith the saved HTML content

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Manuscript number: RC- 2025-03073

      Corresponding author(s): Shaul Yogev

      1. General Statements [optional]

      We kindly thank our reviewers for their enthusiasm, thoughtful feedback, and constructive suggestions on how to strengthen our manuscript. Below, we provide a point-by-point response to reviewer comments and outline the experiments we will do to address every concern that has been raised.

      2. Description of the planned revisions

      • *

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      This interesting study uses an unbiased genetic screen in C. elegans to identify SAX-1/NDR kinase as a regulator of dendritic branch elimination. Loss of SAX-1 results in an excess branching phenotype that is striking and highly penetrant. The authors identify several additional regulators of branch elimination (SAX-2, MOB-1, RABI-1, RAB-11.2) by using a candidate genetic screen aimed at factors that interact physically or genetically with SAX-1. They propose that SAX-1 acts by promoting membrane retrieval based on the nature of these interactors and the results of an imaging-based in vivo assay for endocytic puncta.

      Major comments.

      1. My biggest concern is that the phenotypes are only observed in temperature-sensitive dauer-constitutive mutant backgrounds, and not in wild-type dauers. That is, wild-type animals exiting dauer do not require SAX-1 for dendrite elimination. While this does not undermine the importance of the results, it does require more explanation. The authors write that "the requirement for sax-1... relies on specific physiological states of the dauer stage," but I do not understand what this means. Are they saying that daf-7 and daf-2 dauers are in a different "physiological state" than wild-type dauers? In what way? What is the evidence for this? A more rigorous explanation is needed. We agree that this is puzzling, and we thank the reviewer for recognizing that this does not undermine the importance of the results. There is ample evidence that daf-2 and daf-7 differ from starvation-induced dauers. For example, a recent preprint finds that the transcriptomes of these two mutants at dauer cluster much closer to each other than to starvation-induced dauers (Corchado et al. 2024). Older work has noted other differences, such as the time the dauer entry decision is made (Swanson and Riddle 1981), the synchronicity of dauer exit, the ability to force dauer entry in daf-d mutants, as well as additional dauer-unrelated phenotypes (reviewed in Karp 2018). We agree with the reviewer that this merits further clarifications and will perform the experiments suggested by the reviewer below:

      To me, the simplest genetic explanation is that daf-7 and daf-2 are partially required for branch retraction in a manner redundant with sax-1, and the ts mutants are not fully wild-type at 15C. Thus, the sax-1 requirement is revealed only in these mutant backgrounds. Can the authors examine starvation-induced dauers of daf-7 or daf-2 raised continuously at 15C?

      We will do this experiment.

      daf-7 and daf-2 ts strains can form "partial dauers" that have a dauer-like appearance but are not SDS resistant. Could the difference between partial dauers and full dauers account for the difference in sax-1-dependence? The authors could use SDS selection of the daf-7 strain at 25C to ensure they are examining full dauers.

      We tested daf-7 mutants with 1% SDS when we set up the system – they are fully dauer at 25°C and are SDS sensitive after exit. We will repeat this important control with daf-7; sax-1 double mutants.

      The Bargmann lab has created a daf-2 FLP-OUT strain (ky1095ky1087) that allows cell-type-specific removal of daf-2. Could this be used to test for a cell-autonomous role of daf-2 in IL2Q related to branch elimination?

      We can attempt this experiment. However, since IL2 promoters turn on prior to dauer, the interpretation would not be straightforward – it would be hard to exclude that a cell autonomous defect in dauer entry does not account for the IL2 dauer exit phenotype, even if branching appears normal.

      These ideas are not a list of specific experiments the authors need to complete, rather they are meant to illustrate some possible approaches to the question. Whatever approach they use, it is important for them to more rigorously explain why SAX-1 is not required for branch removal in wild-type animals.

      We completely agree. We will carry out the 15°C experiment, examine morphological characteristics and test SDS resistance. In addition, we will test neuronal markers that differ between dauers and non-dauers to determine whether the mutants are full or partial dauers at the relevant timepoints.

      The SAX-2 localization (Fig. 4) and endocytosis assay (Fig. 6) results were not clear to me from the data shown. Overall a more rigorous analysis and presentation of the data would be important to make these conclusions convincing. This may involve refining the data presentation in the figures, modifying the claims (e.g., "we propose" vs "we find"), or saving some of the data to be more fully explored in a future paper. In my view, these figures are the biggest weak point of the manuscript and also are not important for the central conclusions (which are well supported and convincing), indeed these results are barely mentioned in the Abstract or last paragraph of Introduction.

      We agree that the analysis and presentation of Figures 4 and 6 need to be improved. The presentation has already been updated, and the figures are clearer now. In the revision, we will increase sample size to provide stronger conclusions, consolidate some of the analysis and further improve presentation. While we agree with the reviewer that conclusions from these figures are not as strong as those drawn from genetic experiments, they do complement and support the conclusions of those other figures.

      • In Fig. 4D, why is SAX-2 visible throughout the entire neuron and why is the "punctum" marked with an arrow also seen in the tagRFP channel? One gets the impression that some of the puncta may be background, bleed-through, or artifacts due to cell varicosities.

      There is no bleed-through: this is most evident by looking at the brightest signals in the cell body (now labelled with an asterisk in a zoomed-out image) and noting that they do not bleed between channels. In sax-1 mutants, the SAX-2::GFP puncta are very obvious and distinguishable from the tagRFP channel. In control, SAX-2::GFP is very faint in the dendrite, so we increased the contrast to allow visualization. The reviewer is correct that under these conditions, some puncta look like the cytosolic fill. In the revision, we will re-analyze the data and will not consider these as bona-fide SAX-2 puncta, but rather cytosolic SAX-2 that accumulates due to constrictions and varicosities in the dendrite.

      • Related to both Fig. 4 and Fig. 6, where does SAX-1 localize in IL2Q in dauer and post-dauer? Does its expression or localization change during branch retraction? Does it co-localize with SAX-2 or endocytic puncta?

      We generated an endogenously tagged sax-1 with a 7xspGFP11 tag; however, this was below detection in the IL2s. For the revisions, we can test an overexpressed cDNA construct.

      **Referee cross-commenting**

      I think we all touched on similar points. I wanted to follow up on Reviewer 3's comment, "Is the failure to eliminate branches an indication of incomplete dauer recovery? Do sax-1 mutants retain additional characteristics of dauer morphology in post dauer adults." I thought this was an excellent point. It made me wonder if that might explain why the defect is only seen in daf-7 and daf-2 mutant backgrounds - maybe these strains retain partial dauer traits even after exit. Is there a specific experiment that they could do? Did you have specific characteristics of dauer morphology in mind for them to check? (Ideally something in the nervous system that can be scored quantitatively.)

      Please see response to point #1 regarding experiments we will do to confirm the “dauer state” of daf-7 and daf-7; sax-1 double mutants.

      Reviewer #1 (Significance (Required)):

      A major strength of this work is the pioneering use of a novel system to study neuronal branch retraction. C. elegans has provided a powerful model for studying how dendrite branches form, but much less attention has been paid to how excess neuronal branches are removed. The post-dauer remodeling of IL2Q neurons provides an exciting and dramatic physiological example to explore this question.

      This paper is notable for taking the first steps towards developing this innovative model. It does exactly what is needed at the outset of a new exploration - a forward genetic screen to discover the main regulators of the process. Using a combination of classical and modern genetic approaches, the authors bootstrap their way to a sizeable list of factors and a solid understanding of the properties of this system, for example that retraction of higher vs lower order dendrites show different genetic requirements.

      We thank the reviewer for recognizing the novelty and significance of our work.

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      In this manuscript, the authors establish C. elegans IL2 neurons as a system in which to study dendrite pruning. They use the system to perform a genetic screen for pruning regulators and find an allele of sax-1. Unexpectedly sax-1 is only required for post-dauer pruning in two different genetic backgrounds that induce dauer formation, but not starvation-induced dauer formation. Sax-1/NDR kinase reduction has previously been associated with increased outgrowth and branching in other systems, so this is a new role for this protein. However, the authors show that proteins that work with Sax-1 in other systems, like sax-2/fry, also play a role in this pathway. The genetic experiments are beautiful and the findings are all clearly explained and strongly supported. The authors also examine sax-2 localization, which localizes sax-1 in other systems, and show it in puncta in dendrites that increase with dauer exit, consistent with function at the time of pruning. They also show that membrane trafficking regulators associated with NDR kinases function in the same pathway here, hinting that endocytosis may play a role during pruning as in Drosophila. The link to endocytosis was a little weak (see Major point below). Overall, this study describes a new system to study pruning and identifies NDR/fry/Rabs as regulators of pruning during dauer exit. The work is very high quality and both the imaging and genetics are extremely well done.

      We thank the reviewer for their positive assessment of the manuscript.

      Major points

      1. The only place where there were any questions about the data was the last figure (6G and I). Here they use uptake of GFP secreted from muscle as a readout of endocytosis in IL2 neurons. They nicely show that more internalized puncta accumulate as animals exit dauer. The claim that this is reduced in sax-1 mutants doesn't seem to match the images shown well. In the image there are many more puncta in the GFP channel and much more accumulation of the RFP-tagged receptor everywhere. It seems like some additional analysis of this data is important to fully capture what is going on and whether this really represents an endocytic defect. We agree and will provide additional data in Figure 6. The specific discrepancy between the image and the quantification is because we showed a single focal plane rather than a projection. This does not capture all the puncta in a neurite. The current version shows a projection, making it evident that the mutants has fewer puncta compared to the control.

      Reviewer #2 (Significance (Required)):

      Neurite pruning is important in all animals with neurons. Genetic approaches have primarily been applied to the problem using Drosophila, so identifying a new model system in which to study it is an important step. Using this system, a pathway known to function in a different context is linked to pruning. Thus the study provides new insights into both pruning and this pathway.

      We thank the reviewer for the positive assessment of our study’s significance.

      __Reviewer #3 (Evidence, reproducibility and clarity (Required)): __

      Summary: Figueroa-Delgado et al. use a C. elegans neuro plasticity model to examine how dendrites are eliminated upon recovery from the stress induced larval stage, dauer. The authors performed a mutagenesis screen to identify novel regulators of dendrite elimination and revealed some surprising results. Branch elimination mechanism varies between 2{degree sign}, 3{degree sign}, and 4{degree sign} branches. The NDR kinase, SAX-1 and it's interactors (SAX-2 and MOB-2) are required for elimination of second and third order branches but not fourth order branches. Interestingly they showed that branch elimination varies depending on the stimulus of dendrite outgrowth such that the NDR kinase is required for branch elimination after genetically inducing the dauer stage but is not required if dauers are produced through food deprivation. The authors go a step further to include a small candidate screen looking at various pathways of membrane remodeling and identify additional regulators of dendrite elimination related to membrane trafficking including RABI-1, RAB-8, RAB-10, and RAB-11.2.

      We thank the reviewer for their time and suggestions below

      Major comments:

      • While I find the data promising and exciting, several of the experiments have concerningly low sample sizes. Fig 3G, Fig 4G, Fig 5J and L, and Fig 6I all contain data sets that are fewer than 10 animals. Sample sizes should be stated specifically in the figure legends for all data represented in the graphs. We thank the reviewer for finding the data exciting. We agree that the sample sizes in some panels is low and will increase it in the revised version. Sample sizes are now specifically listed in the figure legends.

      • All statements based on data not shown should be amended to include the data as a supplemental figure or edited to omit the statement based on withheld data. We agree. Some “not shown” data are already added to the current version of the manuscript and the rest will be added to the fully revised version, or the statements will be omitted.

      • Rescue experiments (Fig 2J) should demonstrate failure to rescue from neighboring tissue types (hypodermis and muscle) to conclude cell autonomous rescue rather than a broadly acting factor. Thank you for the suggestion. We will use a hypodermal promoter and a muscle promoter driving SAX-1 cDNA expression to strengthen the claim of cell autonomy.

      • Fig 4 needs quantification of higher order branches and SAX-2 proximity to branch nodes as these are discussed in the text. We will add this quantification.

      Minor comments:

      • Fig 1C-F, It appears like the shy87 allele produces animals of significantly different body sizes. It would improve rigor to normalize the dendrite coverage to body size in the quantification. We do not see a biologically meaningful size difference between shy87 and control, it may be the specific image shown. We will confirm this by measuring animal size for the final revision.

      • Is the failure to eliminate branches an indication of incomplete dauer recovery? Do sax-1 mutants retain additional characteristics of dauer morphology in post dauer adults. This important point was also raised by Reviewer 1. We will test SDS sensitivity, morphological markers, and molecular markers to determine the dauer “state” of the mutants used in this study. The results will be included in the final revision.

      • The text references multiple transgenic lines tested in Fig 2I-J but only one line is shown. Additional lines were visually examined under a fluorescent compound microscope but not imaged or quantified. We will add this quantification to the final revision.

      • Fig 4F, Additional timepoints would enhance the sax-1 localization result and might provide insight into mechanism of action for sax-1. We will add the localization in post-dauer adults.

      • Fig 6I Control and sax-1(ky491) example images should be provided in the supplement. We will add these images to the final revision.

      **Referee cross-commenting**

      I agree that we shared many of the same concerns.

      There are several general assays for dauer characteristics that could be used here to determine if the post-dauer animals retain other characteristics of the dauer stage in addition to IL2 branches (SDS resistance, alae remodeling, pharyngeal bulb morphology, nictation behavior). The nictation behavior has been connected very nicely with IL2 neurons (Junho Lee's group). Additionally, FLP dendrites occupy the same space as the IL2 branches and outgrowth in post-dauers occurs in coordination with IL2 branch elimination - this might be another optional experiment, to check if FLP growth is impeded by persistent IL2 branches. All of these could be quantified similar to how the authors have already established with their IL2 model (FLP dendrite branches) or with a binary statistic.

      Please see responses to Reviewer 1 and 3 above for the list of experiments to determine whether the animals fail to completely enter or exit dauer.

      Reviewer #3 (Significance (Required)):

      SIGNIFICANCE ============ These results describe a new role for the NDR kinase complex in dendrite pruning that has clinical significance to our understanding of human brain development and human health concerns in which pruning is dysregulated, such as observed in the case of autism. The authors use an established neuro-plasticity, C. elegans model (Schroeder et al. 2013) which provides a tractable and reproduceable platform for discovering the mechanism of dendrite pruning. These results would influence future work in the fields of cell biology of the neuron and disease models of brain development.

      My expertise is in the field of C. elegans neuroscience and stress biology and have sufficient expertise to evaluate all aspects of this work.

      3. Description of the revisions that have already been incorporated in the transferred manuscript

      Reviewer #1

      • In Fig. 4C, the distinction between puncta in the primary or higher-order dendrites is not clear to me, and several puncta that I would have scored as primary are marked as higher-order.

      We apologize for a mistake in the arrowhead color and overall presentation of this figure. It has been fixed in the current version.

      • Related to this, in Fig. 4B are the two arrows meant to be white as in the top panel, or yellow as in the bottom panel?

      We thank Reviewer #1 for their observation, and we apologize for our oversight. We fixed this in the current version.

      • In Fig. 4, where in the head are we looking? It would help to show a more low-magnification view of the entire cell.

      We added zoomed-out images and indicated where the zoomed in insets are taken from. We thank the reviewer for helping us improve the clarity of the data.

      • The main sax-1 phenotype is increased SAX-2 puncta in dauer, but the branch retraction defect is in post-dauers. How is this relevant to the phenotype?

      This is a very good point. The increase in SAX-2 puncta in sax-1 mutants is stronger during dauer-exit than in dauer, consistent with this being the time when SAX-1 functions. We agree that some earlier activity of SAX-1 cannot be excluded, and we do not assume that the effect on SAX-2 completely accounts for the pruning defects. This is now acknowledged in the text. However, given that both proteins function together in pruning, and given that the effect is strongest during dauer exit, we do believe that this data is informative and worth showing.


      • The number of SAX-2 puncta in sax-1 mutants decreases almost to normal in post dauers. Is there a correlation between the number of remaining branches and the number of SAX-2 puncta? That is, do the many wild-type animals with "excess" SAX-2 puncta also fail to retract branches?

      There is no correlation. In other words, the number of SAX-2 puncta does not instruct the extent of pruning. Please note the quantifications underestimate the number of SAX-2 puncta in the mutants, since they were only done on the primary dendrite. This is necessary because the mutant and control have different arbor size, so only branch order that can be appropriately compared are primary dendrites.

      • The control post-dauer data in Fig. 4F and 4H are identical (re-used data) but the corresponding control dauer data in Fig. 4F and 4G are different. What is going on here?

      We thank the reviewer for raising this point and apologize for the oversight in data presentation. In the revised manuscript, we now show all control and experimental data integrated into a single graph, ensuring that each dataset is represented accurately to provide a comparison between dauer and post dauer recovery conditions.


      • Why are sample sizes so small for both strains in Fig. 4G compared to Fig. 4F and 4H?

      We sincerely apologize for this mistake, some of the data was erroneously grouped in the original submission. The revised version contains an updated number of neurons, presented on the same graph, and in the final revision we will further increase sample size. We apologize again for this error.

      • In Fig. 6C, why are the tagRFP (blue) puncta larger than the neurite? Aren't these meant to represent vesicles inside the surrounding neurite? One gets the impression that this is bleed-through from the GFP channel.

      Based on EM, both an endocytic punctum and the diameter of the neuron are smaller than a single pixel. The apparent difference in size in fluorescence microscopy is because the puncta are brighter (they contain more membrane) and thus appear larger. In the current version, the improved presentation of the figure contains zoomed out images that clearly show that there is no bleed-through.

      • In Fig. 6E and 6F, why are there no tagRFP (blue) puncta? Is CD8 not endocytosed at all if it lacks the nanobody sequence? One would expect the tagRFP (blue) signal to be the same in both strains and simply to lack yellow if the nanobody is not present.

      CD8 lacks clear endocytosis motifs, which is why it is advantageous for labelling neurites and testing endocytosis when paired with an endocytic signal (Lee and Luo 1999; Kozik et al. 2010). Conversely, extracellular GFP binding to a membrane GFP antibody can induce endocytosis (for example, see (Tang et al., 2020)), likely by inducing clustering, although we are not familiar with work that explored the mechanism. In the updated version we included a rare example of an mCD8 punctum.

      • The authors report a decrease in endocytic events in sax-1, but qualitatively it looks like there are vastly more puncta inside the neuron in Fig. 6H than in 6G.

      We apologize for the presentation in the original version of Figure 6. This impression was because we showed single focal planes that only captured some of the signal. In the revised version we show projections, which makes it evident that there are fewer endocytic events in the mutant.

      • In Fig. 6E and 6H, why are there so many GFP (yellow) puncta outside the neuron? What are these structures and why are they absent in the strain with the nanobody?

      These puncta are secreted or muscle-associated GFP that has not been internalized by IL2Q neurons. They are present in all strains in this figure, this can be clearly seen in the zoomed-out images that have been added to the updated figure.

      • What is the large central blue structure in Fig. 6H - is this the soma? - and why are puncta in this region not counted?

      This is indeed the soma. In the updated version this can be clearly seen in the zoom-out. The large puncta in the soma were not counted because they may arise from the fusion of an unknown number of smaller puncta, and their precise number cannot be determined at the resolution of fluorescence microscopy.

      • minor: there is text reading "40-" in the bottom panel of Fig. 6H. It is visible when printed but not on screen - adjust levels in Photoshop to reveal it.

      We thank the reviewer for catching this oversight, it is now fixed.

      Minor points:

      1. At several points the authors emphasize the relationship of neurite remodeling to stress, e.g. Abstract and Discussion: "we adapted C. elegans IL2 sensory dendrites as a model [of...] stress-mediated dendrite pruning". It seems unnecessary and potentially misleading to treat this as a neuronal stress response. First, it conflates organismal and cellular stress - there is no reason to think that IL2 neurons are under cellular stress in dauer. In fact parasitic nematodes go through dauer-like stages as part of healthy development and probably have similar remodeling of IL2. Second, dendrite pruning occurs during dauer exit, which is the opposite of a stress response - it reflects a return to favorable conditions. We agree. We modified the abstract and discussion to avoid conflating organismal stress (the alleviation of which is relevant for triggering pruning) and cellular stress. Thank you for pointing this out.

      In Fig. 1A, C. elegans is shown going directly from L1 to dauer in response to unfavorable conditions, which is incorrect. Animals proceed through L2 (in many cases actually an alternative L2d pre-dauer) and then molt into dauer (an alternative L3 stage) after completing L2.

      We updated the schematic to include the L2d stage where commitment to dauer entry or resumption to reproductive development is made.

      In Fig. 1B, please check if it is correct that hypodermis contacts the pharynx basement membrane as drawn. The schematic in the top panel makes it look like there is a single secondary branch and the quaternary branches are similar in length to the primary dendrite. The schematic in the bottom panel makes it look like the entire neuron is a small fraction of the length of the pharynx. Could these be drawn closer to scale?

      The hypodermis does contact the pharynx basement membrane. We redrew the schematic for clarity.

      Reviewer #2

      For context, it might be helpful to know whether branching of other dendrites is increased in sax-1 mutants (as expected based on phenotypes in other animals) or decreased like IL2 neurons.

      We examined the branching pattern of PVD, a polymodal nociceptive neuron (new Supplemental Figure 3). We find no significant difference between control and sax-1 or sax-2 mutants, suggesting that these genes function in the context of pruning. Recent work (Zhao et al. 2022) confirms that sax-1 is not required for PVD branching.

      Minor:

      "shy87 mutant dauers showed a minor reduction in secondary and tertiary branches compared to control (Figure 1G). These results indicate that shy87 is specifically required for the elimination of dauer-generated dendrite branches." Maybe temper the specificity claim some as the reduction in branches is definitely there.

      We agree, the claim was tempered.

      "three complimentary approaches" should be complementary

      Thank you for noticing. We fixed this.

      "In control animals, SAX-2 was mostly concentrated in the cell body (data not shown)" It might be nice to include some overview images that show the cell body for completeness.

      We added zoomed-out images to the revised figure, thank you for the suggestion.

      Reviewer #3


      Minor comments:


      • Fig 1G-H, are shy87 second and third order branch counts statistically different between dauer and post dauer adults? This comparison would strengthen the claim that these order branches fail to eliminate all together rather than undergo a partial elimination. We added this to Figure S2. The shy87 mutants show a complete failure in eliminating secondary branches (i.e. no difference between dauer and post-dauer) and a strong but incomplete defect in eliminating tertiary branches.

      • Fig 4B-E Indicate branch order in the images, this is unclear and a point that is focused on in the text. Done.

      • Discussion of Fig 1G from the text claims that shy87 is specifically required for branch elimination yet the data shows significant defects in branch outgrowth as well. This raises the question, are the branches abnormally stabilized that results in early underdevelopment and late atrophy? Authors should acknowledge alternative hypotheses. We agree and will revise the text accordingly. The difference between shy87 and control dauers, while statistically significant, is relatively minor and can only be detected by careful quantification, it is not apparent from looking at the images (in contrast for example to rab-8 and rab-10 mutants, where we acknowledge in the text that their branching defects might affect subsequent pruning.

      • Authors reference a branch elimination process but don't outline what this would entail and where their results fit in. We apologize for being unclear. Given that sax-1 and sax-2 function together, one would intuitively expect to see SAX-2 being reduced in sax-1 mutants, yet the opposite is observed. On potential explanation is that SAX-1 does not directly control SAX-2 abundance, but that clearance of SAX-2 is part of the pruning process that both proteins regulate. This would explain the enrichment of SAX-2 in sax-1 mutants. However, additional models cannot be excluded, and we acknowledge this in the revised text.

      References:

      Corchado, Johnny Cruz, Abhishiktha Godthi, Kavinila Selvarasu, and Veena Prahlad. 2024. “Robustness and Variability in Caenorhabditis Elegans Dauer Gene Expression.” Preprint, bioRxiv, August 26. https://doi.org/10.1101/2024.08.15.608164.

      Karp, Xantha. 2018. “Working with Dauer Larvae.” WormBook, August 9, 1–19. https://doi.org/10.1895/wormbook.1.180.1.

      Kozik, Patrycja, Richard W Francis, Matthew N J Seaman, and Margaret S Robinson. 2010. “A Screen for Endocytic Motifs.” Traffic (Copenhagen, Denmark) 11 (6): 843–55. https://doi.org/10.1111/j.1600-0854.2010.01056.x.

      Lee, T., and L. Luo. 1999. “Mosaic Analysis with a Repressible Cell Marker for Studies of Gene Function in Neuronal Morphogenesis.” Neuron 22 (3): 451–61.

      Swanson, M. M., and D. L. Riddle. 1981. “Critical Periods in the Development of the Caenorhabditis Elegans Dauer Larva.” Developmental Biology 84 (1): 27–40. https://doi.org/10.1016/0012-1606(81)90367-5.

      Tang, Rui, Christopher W Murray, Ian L Linde, et al. n.d. “A Versatile System to Record Cell-Cell Interactions.” eLife 9: e61080. https://doi.org/10.7554/eLife.61080.

      Zhao, Ting, Liying Guan, Xuehua Ma, Baohui Chen, Mei Ding, and Wei Zou. 2022. “The Cell Cortex-Localized Protein CHDP-1 Is Required for Dendritic Development and Transport in C. Elegans Neurons.” PLOS Genetics 18 (9): e1010381. https://doi.org/10.1371/journal.pgen.1010381.


      4. Description of analyses that authors prefer not to carry out

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      The investigators undertook detailed characterization of a previously proposed membrane targeting sequence (MTS), a short N-terminal peptide, of the bactofilin BacA in Caulobacter crescentus. Using light microscopy, single molecule tracking, liposome binding assays, and molecular dynamics simulations, they provide data to suggest that this sequence indeed does function in membrane targeting and further conclude that membrane targeting is required for polymerization. While the membrane association data are reasonably convincing, there are no direct assays to assess polymerization and some assays used lack proper controls as detailed below. Since the MTS isn't required for bactofilin polymerization in other bacterial homologues, showing that membrane binding facilitates polymerization would be a significant advance for the field.

      We agree that additional experiments were required to consolidate our results and conclusions. Please see below for a description of the new data included in the revised version of the manuscript.

      Major concerns

      (1) This work claims that the N-termina MTS domain of BacA is required for polymerization, but they do not provide sufficient evidence that the ∆2-8 mutant or any of the other MTS variants actually do not polymerize (or form higher order structures). Bactofilins are known to form filaments, bundles of filaments, and lattice sheets in vitro and bundles of filaments have been observed in cells. Whether puncta or diffuse labeling represents different polymerized states or filaments vs. monomers has not been established. Microscopy shows mis-localization away from the stalk, but resolution is limited. Further experiments using higher resolution microscopy and TEM of purified protein would prove that the MTS is required for polymerization.

      We do not propose that the MTS is directly involved in the polymerization process and state this more clearly now in the Results and Discussion sections of the revised manuscript. To address this point, we performed transmission electron microscopy studies comparing the polymerization behavior of wild-type and mutant BacA variants. The results clearly show that the MTS-free BacA variant (∆2-8) forms polymers that are indistinguishable from those formed by the wild-type protein, when purified from an E. coli overproduction strain (new Figure 1–figure supplement 1). This finding is consistent with structural work showing that bactofilin polymerization is exclusively mediated by the conserved bactofilin domain (Deng et al, Nat Microbiol, 2019). However, at native expression levels, BacA only accumulates to ~200 molecules per cell (Kühn et al, EMBO J, 2006). Under these conditions, the MTS-mediated increase in the local concentration of BacA at the membrane surface and, potentially, steric constraints imposed by membrane curvature, may facilitate the polymerization process. This hypothesis has now been stated more clearly in the Results and Discussion sections.

      For polymer-forming proteins, defined localized signals are typically interpreted as slow-moving or stationary polymeric complexes. A diffuse localization, by contrast, suggests that a protein exists in a monomeric or, at most, (small) oligomeric state in which it diffuses rapidly within the cell and is thus no longer detected as distinct foci by widefield microscopy. Our single-molecule data show that BacA variants that are no longer able to interact with the membrane (as verified by cell fractionation studies and in vitro liposome binding assays) have a high diffusion rate, similar to that measured for the non-polymerizing and non-membrane-bound F130R variant. These results demonstrate that a defect in membrane binding strongly reduces the ability of BacA to form polymeric assemblies. To support this hypothesis, we have now repeated all single-particle tracking experiments and included mVenus as a freely diffusible reference protein. Our data confirm that the mobilities of the ∆2-8 and F130R variants are similar and approach those of free mVenus, supporting the idea that the deficiency to interact with the membrane prevents the formation of extended polymeric structures (which should show much lower mobilities). To underscore the relevance of membrane binding for BacA assembly, we have now included a new experiment, in which we used the PbpC membrane anchor (PbpC<sub>1-132</sub>-mcherry) to restore the recruitment of the ∆2-8 variant to the membrane (Figure 9 and Figure 9–figure supplement 1). The results obtained show that the ∆2-8 variant transitions from a diffuse localization to polar foci upon overproduction of PbpC<sub>1-132</sub>-mcherry. The polymerization-impaired F130R variant, by contrast, remains evenly distributed throughout the cytoplasm under all conditions. These findings further support the idea that polymerization and membrane-association are mutually interdependent processes.

      (2) Liposome binding data would be strengthened with TEM images to show BacA binding to liposomes. From this experiment, gross polymerization structures of MTS variants could also be characterized.

      We do not have the possibility to perform cryo-electron microscopy studies of liposomes bound to BacA. However, the results of the cell fractionation and liposome sedimentation assays clearly support a critical role of the MTS in membrane binding.

      (3) The use of the BacA F130R mutant throughout the study to probe the effect of polymerization on membrane binding is concerning as there is no evidence showing that this variant cannot polymerize. Looking through the papers the authors referenced, there was no evidence of an identical mutation in BacA that was shown to be depolymerized or any discussion in this study of how the F130R mutation might to analogous to polymerization-deficient variants in other bactofilins mentioned in these references.

      Residue F130 in the C-terminal polymerization interface of BacA is conserved among bactofilin homologs, although its absolute position in the protein sequence may vary, depending on the length of the N-terminal unstructured tail. The papers cited in our manuscript show that an exchange of this conserved phenylalanine residue abolishes polymer formation. Nevertheless, we agree that it is important to verify the polymerization defect of the F130R variant in the system under study. We have now included size-exclusion chromatography data showing that BacA-F130R forms a low-molecular-weight complex, whereas the wild-type protein largely elutes in the exclusion volume, indicating the formation of large, polymeric species (new Figure 1–figure supplement 1). In addition, we performed transmission electron microscopy analyses of BacA-F130R, which verified the absence of larger oligomers (new Figure 1–figure supplement 2).

      (4) Microscopy shows that a BacA variant lacking the native MTS regains the ability to form puncta, albeit mis-localized, in the cell when fused to a heterologous MTS from MreB. While this swap suggests a link between puncta formation and membrane binding the relationship between puncta and polymerization has not been established (see comment 1).

      We show that a BacA variant lacking the MTS (∆2-8) regains the ability to form membrane-associated foci when fused to the MTS of MreB. By contrast, a similar variant that additionally carries the F130R exchange (preventing its polymerization) shows a diffuse cytoplasmic localization. In addition, we show that the F130R exchange leads to a loss of membrane binding and to a considerable increase in the mobility of the variants carrying the MTS of E. coli MreB. As described above, we now provide additional data demonstrating that elevated levels of the PbpC membrane anchor can reinstate polar localization for the ∆2-8 variant, whereas it fails to do so for the polymerization-deficient F130R variant (Figure 9 and Figure 9–figure supplement 1). Together, these results support the hypothesis that membrane association and polymerization act synergistically to establish localized bactofilin assemblies at the stalked cell pole.

      (5) The authors provide no primary data for single molecule tracking. There is no tracking mapped onto microscopy images to show membrane localization or lack of localization in MTS deletion/ variants. A known soluble protein (e.g. unfused mVenus) and a known membrane bound protein would serve as valuable controls to interpret the data presented. It also is unclear why the authors chose to report molecular dynamics as mean squared displacement rather than mean squared displacement per unit time, and the number of localizations is not indicated. Extrapolating from the graph in figure 4 D for example, it looks like WT BacA-mVenus would have a mobility of 0.5 (0.02/0.04) micrometers squared per second which is approaching diffusive behavior. Further justification/details of their analysis method is needed. It's also not clear how one should interpret the finding that several of the double point mutants show higher displacement than deleting the entire MTS. These experiments as they stand don't account for any other cause of molecular behavior change and assume that a decrease in movement is synonymous with membrane binding.

      We now provide additional information on the single-particle analysis. A new supplemental figure now shows a mapping of single-particle tracks onto the cells in which they were recorded for all proteins analyzed (Figure 2–figure supplement 1). Due to the small size of C. crescentus, it is difficult to clearly differentiate between membrane-associated and cytoplasmic protein species. However, overall, slow-diffusing particles tend to be localized to the cell periphery, supporting the idea that membrane-associated particles form larger assemblies (apart from diffusing more slowly due to their membrane association). In addition, we have included a movie that shows the single-particle diffusion dynamics of all proteins in representative cells (Figure 2-video 1). Finally, we have included a table that gives an overview of the number of cells and tracks analyzed for all proteins investigated (Supplementary file 1). Figure 2A and 4D show the mean squared displacement as a function of time, which makes it possible to assess whether the particles observed move by normal, Brownian diffusion (which is the case here). We repeated the entire single-particle tracking analysis to verify the data obtained previously and obtained very similar results. Among the different mutant proteins, only the K4E-K7E variant consistently shows a higher mobility than the MTS-free ∆2-8 variant, with MSD values similar to that of free mVenus. The underlying reason remains unclear. However, we believe that an in-depth analysis of this phenomenon is beyond the scope of this paper. We re-confirmed the integrity of the construct encoding the K4E/K7E variant by DNA sequencing and once again verified the size and stability of the fusion protein by Western blot analysis, excluding artifacts due to errors during cloning and strain construction.

      We agree that the single-molecule tracking data alone are certainly not sufficient to draw firm conclusions on the relationship between membrane binding and protein mobility. However, they are consistent with the results of our other in vivo and in vitro analyses, which together indicate a clear correlation between the mobility of BacA and its ability to interact with the membrane and polymerize (processes that promote each other synergistically).

      (6) The experiments that map the interaction surface between the N-terminal unstructured region of PbpC and a specific part of the BacA bactofilin domain seem distinct from the main focus of the paper and the data somewhat preliminary. While the PbpC side has been probed by orthogonal approaches (mutation with localization in cells and affinity in vitro), the BacA region side has only been suggested by the deuterium exchange experiment and needs some kind of validation.

      The results of the HDX analysis per se are not preliminary and clearly show a change in the solvent accessibility of backbone amides in the C-terminal region in the bactofilin domain in the presence of the PbpC<sub>1-13</sub> peptide. However, we agree that additional experiments would be required to verify the binding site suggested by these data. We agree that further research is required to precisely map and verify the PbpC binding site. However, as this is not the main focus of the paper, we would like to proceed without conducting further experiments in this area.

      We now provide additional data showing that elevated levels of the PbpC membrane anchor are able to recruit the MTS-free BacA variant (∆2-8) to the cytoplasmic membrane and stimulate its assembly at the stalked pole (Figure 9). These results now integrate Figure 8 more effectively into the overall theme of the paper.

      Reviewer #2 (Public review):

      Summary:

      The authors of this study investigated the membrane-binding properties of bactofilin A from Caulobacter crescentus, a classic model organism for bacterial cell biology. BacA was the progenitor of a family of cytoskeletal proteins that have been identified as ubiquitous structural components in bacteria, performing a range of cell biological functions. Association with the cell membrane is a common property of the bactofilins studied and is thought to be important for functionality. However, almost all bactofilins lack a transmembrane domain. While membrane association has been attributed to the unstructured N-terminus, experimental evidence had yet to be provided. As a result, the mode of membrane association and the underlying molecular mechanics remained elusive.

      Liu at al. analyze the membrane binding properties of BacA in detail and scrutinize molecular interactions using in-vivo, in-vitro and in-silico techniques. They show that few N-terminal amino acids are important for membrane association or proper localization and suggest that membrane association promotes polymerization. Bioinformatic analyses revealed conserved lineage-specific N-terminal motifs indicating a conserved role in protein localization. Using HDX analysis they also identify a potential interaction site with PbpC, a morphogenic cell wall synthase implicated in Caulobacter stalk synthesis. Complementary, they pinpoint the bactofilin-interacting region within the PbpC C-terminus, known to interact with bactofilin. They further show that BacA localization is independent of PbpC.

      Strengths:

      These data significantly advance the understanding of the membrane binding determinants of bactofilins and thus their function at the molecular level. The major strength of the comprehensive study is the combination of complementary in vivo, in vitro and bioinformatic/simulation approaches, the results of which are consistent.

      Thank you for this positive feedback.

      Weaknesses:

      The results are limited to protein localization and interaction, as there is no data on phenotypic effects. Therefore, the cell biological significance remains somewhat underrepresented.

      We agree that it is interesting to investigate the phenotypic effects caused by the reduced membrane binding activity of BacA variants with defects in the MTS. We have now included phenotypic analyses that shed light on the role of region C1 in the localization of PbpC and its function in stalk elongation under phosphate-limiting conditions (see below).

      Recommendations for the authors:

      Reviewer #2 (Recommendations for the authors):

      To address the missing estimation of biological relevance, some additional experiments may be carried out.

      For example, given that BacA localizes PbpC by direct interaction, one might expect an effect on stalk formation if BacA is unable to bind the membrane or to polymerize. The same applies to PbpC variants lacking the C1 region. As the mutant strains are available, these data are not difficult to obtain but would help to compare the effect of the deletions with previous data (e.g. Kühn et al.) even if the differences are small.

      We have now analyzed the effect of the removal of region C1 on the ability of mVenus-PbpC to promote stalk elongation in C. crescentus under phosphate starvation. Interestingly, our results show that the lack of the BacA-interaction motif impairs the recruitment of the fusion protein to the stalked pole, but it does not interfere with its stimulatory effect on stalk biogenesis. Thus, the polar localization of PbpC does not appear to be critical for its function in localized peptidoglycan synthesis at the stalk base. These results are now shown in Figure 8–Figure supplement 4. The results obtained may be explained by residual transient interactions of mVenus-PbpC with proteins other than BacA at the stalked pole. Notably, PbpC has also been implicated in the attachment of the stalk-specific protein StpX to components of the outer membrane at the stalk base. The polar localization of PbpC may therefore be primarily required to ensure proper StpX localization, consistent with previous work by Hughes et al. (Mol Microbiol, 2013) showing that StpX is partially mislocalized in a strain producing an N-terminally truncated PbpC variant that no longer localizes to the stalk base.

      We have also attempted to investigate the ability of the Δ2-8 and F130R variants of BacA-mVenus to promote stalk elongation under phosphate starvation. However, the levels of the WT, Δ2-8 and F130R proteins and their stabilities were dramatically different after prolonged incubation of the cells in phosphate-limited medium, so that it was not possible to draw any firm conclusions from the results obtained (not shown).

      In addition, the M23-like endopeptidase LdpA is proposed to be a client protein of BacA (in C. crescentus, Billini et al. 2018, and H. neptunium or R. rubrum, Pöhl et al. 2024). In H. neptunium, it is suggested that the interaction is mediated by a cytoplasmic peptide of LmdC reminiscent of PbpC. This should at least be commented on. It would be interesting to see, if LpdA in C. crescentus is also delocalized and if so, this could identify another client protein of BacA.

      We agree that it would be interesting to study the role of BacA in LdpA function. However, we have not yet succeeded in generating a stable fluorescent protein fusion to LdpA, which currently makes it impossible to study the interplay between these two proteins in vivo. The focus of the present paper is on the mode of interaction between bactofilins and the cytoplasmic membrane and on the mutual interdependence of membrane binding and bactofilin polymerization. Given that PbpC is so far the only verified interaction partner of BacA in C. crescentus, we would like to limit our analysis to this client protein.

      Further comments:

      L105: analyze --> analyzed

      Done.

      L169: Is there any reason why the MTS of E. coli MreB was doubled?

      Previous work has shown that two tandem copies of the N-terminal amphiphilic helix of E. coli MreB were required to partially target a heterologous fusion partner protein (GFP) to the cytoplasmic membrane of E. coli cells (Salje et al, 2011).

      Fig. S3:

      a) Please decide which tag was used (mNG or mVenus) and adapt the figure or legend accordingly.<br /> b) In the legend for panel (C), please describe how the relative amounts were calculated, as the fractions arithmetically cannot add to > 100%. I guess each band was densiometrically rated and independently normalized to the whole-cell signal?

      The fluorescent tag used was mNeonGreen, as indicated in the figure. We have now corrected the legend accordingly. Thank you for making us aware of the wrong labeling of the y-axis. We have now corrected the figure and describe the method used to calculate the plotted values in the legend.

      Legend of Fig 1b: It is not clear to me, to which part of panel B the somewhat cryptic LY... strain names belong. I suggest putting them either next to the images, to delete them, or at least to unify the layout (compare, e.g. to Fig S7). (I would delete the LY numbers and stay with the genes/mutations throughout. This is just a suggestion).

      These names indicate the strains analyzed in panel B, and we have now clarified this in the legend. It is more straightforward to label the images according to the mutations carried by the different strains. Nevertheless, we would like to keep the strain names in the legend, so that the material used for the analysis can be clearly identified.

      Fig. 2a: As some of the colors are difficult to distinguish, I suggest sorting the names in the legend within the graph according to the slope of the curves (e.g. K4E K7E (?) on top and WT being at the bottom).

      Thank you for this suggestion. We have now rearranged the labels as proposed.

      In the legend (L924), correct typo "panel C" to "panel B".

      Done.

      Fig. 3: In the legend, I suggest deleting the abbreviations "S" and "P" as they do not show up in the image. In line 929, I suggest adding: average "relative" amount... or even more precisely: "average relative signal intensities obtained..."

      We have removed the abbreviations and now state that the bars indicate the “average relative signal intensities” obtained for the different fractions.

      Fig 4d: same suggestion as for Fig. 2a.

      Done.

      Fig 8: In the legend (L978), delete 1x "the"

      Done.

      L258 and Fig. S5: The expression "To account for biases in the coverage of bacterial species" seems somewhat unclear. I suggest rephrasing and adding information from the M+M section here (e.g. from L593, if this is meant).

      We now state that this step in the analysis pipeline was performed “To avoid biases arising from the over-representation of certain bacterial species in UniProt”.

      I appreciate the outline of the workflow in panel (a) of Fig. S5. It would be even more useful when some more details about the applied criteria for filtering would be provided (e.g. concerning what is meant with "detailed taxonomic information" or "filter out closely related sequences". Does the latter mean that only one bactofilin sequence per species was used? (As quite many bacteria have more than one but similar bactofilins.)

      We removed sequences from species with unclear phylogeny (e.g. candidate species whose precise taxonomic position has not yet been determined). For many pathogenic species, numerous strains have been sequenced. To account for this bias, only one sequence from clusters of highly similar bactofilin sequences (>90% identity) was retained per species. This information has now been included in the diagram. It is true that many bacteria have more than one bactofilin homolog. However, the sequences of these proteins are typically quite different. For instance, the BacA and BacB from C. crescentus only share 52% identity. Therefore, our analysis does not systematically eliminate bactofilin paralogs that coexist in the same species.

      L281: Although likely, I am not sure if membrane binding has ever been shown for a bactofilin from these phyla. (See also L 380.) Is there an example? Otherwise, membrane binding may not be a property of these bactofilins.

      To our knowledge, the ability of bactofilins from these clades to interact with membranes has not been investigated to date. We agree that the absence of an MTS-like motif may indicate that they lack membrane binding activity, and we have now stated this possibility in the Results and Discussion.

      L285: See comment above concerning the M23-like peptidase LpdA. Although not yet directly shown for C. crescentus, it seems likely that BacACc does also localize this peptidase in addition to PbpC. I suggest rephrasing, e.g. "known" --> "shown"

      We now use the word “reported”.

      L295 and Fig S8: PbpC is ubiquitous. Which criteria/filters have been applied to select the shown sequences?

      C. crescentus PbpC is different from E. coli Pbp1C. It is characterized by distinctive, conserved N- and C-terminal tails and only found in C. crescentus and close relatives. The C. crescentus homolog of E. coli PbpC is called PbpZ (Yakhnina et al, J Bacteriol, 2013; Strobel et al, J Bacterol, 2014), whereas C. crescentus PbpC is related to E. coli PBP1A. We have now added this information to the text to avoid confusion.

      L311: may replace "assembly" by "polymerization"

      Done.

      L320: bactofilin --> bactofilin domain?

      Yes, this was supposed to read “bactofilin domain”. Thank you for spotting this issue.

      L324: The HDX analysis of BacA suggests that the exchange is slowed down in the presence of the PbpC peptide, which is indicative of a physical interaction between these two molecules. To corroborate the claim that BacA polymerization is critical for interaction with the peptide (resp. PbpC), this experiment should be carried out with the polymerization defective BacA version F130R.

      (Or tone this statement down, e.g. show --> suggest.)

      “suggest”

      L386: undergoes --> undergo

      Done.

      L391-400: This idea is tempting but the suggested mechanism then would be restricted to bactofilins of C. crescentus and close relatives. The bactofilin of Rhodomicrobium, for example, was shown to localize dynamically and not to stick to a positively curved membrane.

      In the vast majority of species investigated so far, bactofilins were found to associate with specifically curved membrane regions and to contribute to the establishment of membrane curvature. Unfortu­nately, the sequences of the three co-polymerizing bactofilin paralogs of R. vannielii DSM 166 studied by Richter et al (2023) have not been reported and the genome sequence of this strain is not publicly available. However, in related species with three bactofilin paralogs, only one paralog shows an MTS-like N-terminal peptide and another paralog typically contains an unusual cadherin-like domain of unknown function, as also reported for R. vannielii DSM 166. Therefore, the mechanism controlling the localization dynamics of bactofilins may be complex in the Rhodomicrobium lineage. Nevertheless, at native expression levels, the major bactofilin (BacA) of R. vannielii DSM 166 was shown to localize predominantly to the hyphal tips and the (incipient) bud necks, suggesting that regions of distinct membrane curvature could also play a role in its recruitment. We do not claim that all bactofilins recognize positive membrane curvature, which is clearly not the case. It rather appears as though the curvature preference of bactofilins varies depending on their specific function.

      L405-406: I agree that localization of BacA has been shown to be independent of PbpC. However, this does not generally preclude an effect on BacA localization by other "client" or interacting proteins. (See also comment above about the putative BacA interactor LpdA). I suggest either to corroborate or to change this statement from "client binding" to "PbpC binding".

      Thank you for pointing out the imprecision of this statement. We now conclude that “PbpC binding” is not critical for BacA assembly and positioning.

      Suppl. Fig. S11: In the legend, please correct the copy-paste mismatch (...VirB...).

      Done.

      L482: delete 1x "at"

      Done.

      L484: may be better "soluble and insoluble fractions"?

      We now describe the two fractions as “soluble and membrane-containing insoluble fractions” to make clear to all readers that membrane vesicles are found in the pellet after ultracentrifugation.

      L489-490: check spelling immunoglobulin – immuneglobulin

      Done.

      L500 and 504: º_C --> ºC

      Done.

      Suppl. file X (HDX data): please check the table headline, table should be included in Suppl. file 1

      We have now included a headline in this file (now Supplementary file 3).

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      *The authors have a longstanding focus and reputation on single cell sequencing technology development and application. In this current study, the authors developed a novel single-cell multi-omic assay termed "T-ChIC" so that to jointly profile the histone modifications along with the full-length transcriptome from the same single cells, analyzed the dynamic relationship between chromatin state and gene expression during zebrafish development and cell fate determination. In general, the assay works well, the data look convincing and conclusions are beneficial to the community. *

      Thank you for your positive feedback.

      *There are several single-cell methodologies all claim to co-profile chromatin modifications and gene expression from the same individual cell, such as CoTECH, Paired-tag and others. Although T-ChIC employs pA-Mnase and IVT to obtain these modalities from single cells which are different, could the author provide some direct comparisons among all these technologies to see whether T-ChIC outperforms? *

      In a separate technical manuscript describing the application of T-ChIC in mouse cells (Zeller, Blotenburg et al 2024, bioRxiv, 2024.05. 09.593364), we have provided a direct comparison of data quality between T-ChIC and other single-cell methods for chromatin-RNA co-profiling (Please refer to Fig. 1C,D and Fig. S1D, E, of the preprint). We show that compared to other methods, T-ChIC is able to better preserve the expected biological relationship between the histone modifications and gene expression in single cells.

      *In current study, T-ChIC profiled H3K27me3 and H3K4me1 modifications, these data look great. How about other histone modifications (eg H3K9me3 and H3K36me3) and transcription factors? *

      While we haven't profiled these other modifications using T-ChIC in Zebrafish, we have previously published high quality data on these histone modifications using the sortChIC method, on which T-ChIC is based (Zeller, Yeung et al 2023). In our comparison, we find that histone modification profiles between T-ChIC and sortChIC are very similar (Fig. S1C in Zeller, Blotenburg et al 2024). Therefore the method is expected to work as well for the other histone marks.

      *T-ChIC can detect full length transcription from the same single cells, but in FigS3, the authors still used other published single cell transcriptomics to annotate the cell types, this seems unnecessary? *

      We used the published scRNA-seq dataset with a larger number of cells to homogenize our cell type labels with these datasets, but we also cross-referenced our cluster-specific marker genes with ZFIN and homogenized the cell type labels with ZFIN ontology. This way our annotation is in line with previous datasets but not biased by it. Due the relatively smaller size of our data, we didn't expect to identify unique, rare cell types, but our full-length total RNA assay helps us identify non-coding RNAs such as miRNA previously undetected in scRNA assays, which we have now highlighted in new figure S1c .

      *Throughout the manuscript, the authors found some interesting dynamics between chromatin state and gene expression during embryogenesis, independent approaches should be used to validate these findings, such as IHC staining or RNA ISH? *

      We appreciate that the ISH staining could be useful to validate the expression pattern of genes identified in this study. But to validate the relationships between the histone marks and gene expression, we need to combine these stainings with functional genomics experiments, such as PRC2-related knockouts. Due to their complexity, such experiments are beyond the scope of this manuscript (see also reply to reviewer #3, comment #4 for details).

      *In Fig2 and FigS4, the authors showed H3K27me3 cis spreading during development, this looks really interesting. Is this zebrafish specific? H3K27me3 ChIP-seq or CutTag data from mouse and/or human embryos should be reanalyzed and used to compare. The authors could speculate some possible mechanisms to explain this spreading pattern? *

      Thanks for the suggestion. In this revision, we have reanalysed a dataset of mouse ChIP-seq of H3K27me3 during mouse embryonic development by Xiang et al (Nature Genetics 2019) and find similar evidence of spreading of H3K27me3 signal from their pre-marked promoter regions at E5.5 epiblast upon differentiation (new Figure S4i). This observation, combined with the fact that the mechanism of pre-marking of promoters by PRC1-PRC2 interaction seems to be conserved between the two species (see (Hickey et al., 2022), (Mei et al., 2021) & (Chen et al., 2021)), suggests that the dynamics of H3K27me3 pattern establishment is conserved across vertebrates. But we think a high-resolution profiling via a method like T-ChIC would be more useful to demonstrate the dynamics of signal spreading during mouse embryonic development in the future. We have discussed this further in our revised manuscript.

      Reviewer #1 (Significance (Required)):

      *The authors have a longstanding focus and reputation on single cell sequencing technology development and application. In this current study, the authors developed a novel single-cell multi-omic assay termed "T-ChIC" so that to jointly profile the histone modifications along with the full-length transcriptome from the same single cells, analyzed the dynamic relationship between chromatin state and gene expression during zebrafish development and cell fate determination. In general, the assay works well, the data look convincing and conclusions are beneficial to the community. *

      Thank you very much for your supportive remarks.

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      *Joint analysis of multiple modalities in single cells will provide a comprehensive view of cell fate states. In this manuscript, Bhardwaj et al developed a single-cell multi-omics assay, T-ChIC, to simultaneously capture histone modifications and full-length transcriptome and applied the method on early embryos of zebrafish. The authors observed a decoupled relationship between the chromatin modifications and gene expression at early developmental stages. The correlation becomes stronger as development proceeds, as genes are silenced by the cis-spreading of the repressive marker H3k27me3. Overall, the work is well performed, and the results are meaningful and interesting to readers in the epigenomic and embryonic development fields. There are some concerns before the manuscript is considered for publication. *

      We thank the reviewer for appreciating the quality of our study.

      *Major concerns: *

        • A major point of this study is to understand embryo development, especially gastrulation, with the power of scMulti-Omics assay. However, the current analysis didn't focus on deciphering the biology of gastrulation, i.e., lineage-specific pioneer factors that help to reform the chromatin landscape. The majority of the data analysis is based on the temporal dimension, but not the cell-type-specific dimension, which reduces the value of the single-cell assay. *

      We focused on the lineage-specific transcription factor activity during gastrulation in Figure 4 and S8 of the manuscript and discovered several interesting regulators active at this stage. During our analysis of the temporal dimension for the rest of the manuscript, we also classified the cells by their germ layer and "latent" developmental time by taking the full advantage of the single-cell nature of our data. Additionally, we have now added the cell-type-specific H3K27-demethylation results for 24hpf in response to your comment below. We hope that these results, together with our openly available dataset would demonstrate the advantage of the single-cell aspect of our dataset.

      1. *The cis-spreading of H3K27me3 with developmental time is interesting. Considering H3k27me3 could mark bivalent regions, especially in pluripotent cells, there must be some regions that have lost H3k27me3 signals during development. Therefore, it's confusing that the authors didn't find these regions (30% spreading, 70% stable). The authors should explain and discuss this issue. *

      Indeed we see that ~30% of the bins enriched in the pluripotent stage spread, while 70% do not seem to spread. In line with earlier observations(Hickey et al., 2022; Vastenhouw et al., 2010), we find that H3K27me3 is almost absent in the zygote and is still being accumulated until 24hpf and beyond. Therefore the majority of the sites in the genome still seem to be in the process of gaining H3K27me3 until 24hpf, explaining why we see mostly "spreading" and "stable" states. Considering most of these sites are at promoters and show signs of bivalency, we think that these sites are marked for activation or silencing at later stages. We have discussed this in the manuscript ("discussion"). However, in response to this and earlier comment, we went back and searched for genes that show H3K27-demethylation in the most mature cell types (at 24 hpf) in our data, and found a subset of genes that show K27 demethylation after acquiring them earlier. Interestingly, most of the top genes in this list are well-known as developmentally important for their corresponding cell types. We have added this new result and discussed it further in the manuscript (Fig. 2d,e, , Supplementary table 3).

      *Minors: *

        • The authors cited two scMulti-omics studies in the introduction, but there have been lots of single-cell multi-omics studies published recently. The authors should cite and consider them. *

      We have cited more single-cell chromatin and multiome studies focussed on early embryogenesis in the introduction now.

      *2. T-ChIC seems to have been presented in a previous paper (ref 15). Therefore, Fig. 1a is unnecessary to show. *

      Figure 1a. shows a summary of our Zebrafish TChIC workflow, which contains the unique sample multiplexing and sorting strategy to reduce batch effects, which was not applied in the original TChIC workflow. We have now clarified this in "Results".

      1. *It's better to show the percentage of cell numbers (30% vs 70%) for each heatmap in Figure 2C. *

      We have added the numbers to the corresponding legends.

      1. *Please double-check the citation of Fig. S4C, which may not relate to the conclusion of signal differences between lineages. *

      The citation seems to be correct (Fig. S4C supplements Fig. 2C, but shows mesodermal lineage cells) but the description of the legend was a bit misleading. We have clarified this now.

      *5. Figure 4C has not been cited or mentioned in the main text. Please check. *

      Thanks for pointing it out. We have cited it in Results now.

      Reviewer #2 (Significance (Required)):

      *Strengths: This work utilized a new single-cell multi-omics method and generated abundant epigenomics and transcriptomics datasets for cells covering multiple key developmental stages of zebrafish. *

      *Limitations: The data analysis was superficial and mainly focused on the correspondence between the two modalities. The discussion of developmental biology was limited. *

      *Advance: The zebrafish single-cell datasets are valuable. The T-ChIC method is new and interesting. *

      *The audience will be specialized and from basic research fields, such as developmental biology, epigenomics, bioinformatics, etc. *

      *I'm more specialized in the direction of single-cell epigenomics, gene regulation, 3D genomics, etc. *

      Thank you for your remarks.

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      *This manuscript introduces T‑ChIC, a single‑cell multi‑omics workflow that jointly profiles full‑length transcripts and histone modifications (H3K27me3 and H3K4me1) and applies it to early zebrafish embryos (4-24 hpf). The study convincingly demonstrates that chromatin-transcription coupling strengthens during gastrulation and somitogenesis, that promoter‑anchored H3K27me3 spreads in cis to enforce developmental gene silencing, and that integrating TF chromatin status with expression can predict lineage‑specific activators and repressors. *

      *Major concerns *

      1. *Independent biological replicates are absent, so the authors should process at least one additional clutch of embryos for key stages (e.g., 6 hpf and 12 hpf) with T‑ChIC and demonstrate that the resulting data match the current dataset. *

      Thanks for pointing this out. We had, in fact, performed T-ChIC experiments in four rounds of biological replicates (independent clutch of embryos) and merged the data to create our resource. Although not all timepoints were profiled in each replicate, two timepoints (10 and 24hpf) are present in all four, and the celltype composition of these replicates from these 2 timepoints are very similar. We have added new plots in figure S2f and added (new) supplementary table (#1) to highlight the presence of biological replicates.

      2. *The TF‑activity regression model uses an arbitrary R² {greater than or equal to} 0.6 threshold; cross‑validated R² distributions, permutation‑based FDR control, and effect‑size confidence intervals are needed to justify this cut‑off. *

      Thank you for this suggestion. We did use 10-fold cross validation during training and obtained the R2 values of TF motifs from the independent test set as an unbiased estimate. However, the cutoff of R2 > 0.6 to select the TFs for classification was indeed arbitrary. In the revised version, we now report the FDR-adjusted p-values for these R2 estimates based on permutation tests, and select TFs with a cutoff of padj supplementary table #4 to include the p-values for all tested TFs. However, we see that our arbitrary cutoff of 0.6 was in fact, too stringent, and we can classify many more TFs based on the FDR cutoffs. We also updated our reported numbers in Fig. 4c to reflect this. Moreover, supplementary table #4 contains the complete list of TFs used in the analysis to allow others to choose their own cutoff.

      3. *Predicted TF functions lack empirical support, making it essential to test representative activators (e.g., Tbx16) and repressors (e.g., Zbtb16a) via CRISPRi or morpholino knock‑down and to measure target‑gene expression and H3K4me1 changes. *

      We agree that independent validation of the functions of our predicted TFs on target gene activity would be important. During this revision, we analysed recently published scRNA-seq data of Saunders et al. (2023) (Saunders et al., 2023), which includes CRISPR-mediated F0 knockouts of a couple of our predicted TFs, but the scRNAseq was performed at later stages (24hpf onward) compared to our H3K4me1 analysis (which was 4-12 hpf). Therefore, we saw off-target genes being affected in lineages where these TFs are clearly not expressed (attached Fig 1). We therefore didn't include these results in the manuscript. In future, we aim to systematically test the TFs predicted in our study with CRISPRi or similar experiments.

      4. *The study does not prove that H3K27me3 spreading causes silencing; embryos treated with an Ezh2 inhibitor or prc2 mutants should be re‑profiled by T‑ChIC to show loss of spreading along with gene re‑expression. *

      We appreciate the suggestion that indeed PRC2-disruption followed by T-ChIC or other forms of validation would be needed to confirm whether the H3K27me3 spreading is indeed causally linked to the silencing of the identified target genes. But performing this validation is complicated because of multiple reasons: 1) due to the EZH2 contribution from maternal RNA and the contradicting effects of various EZH2 zygotic mutations (depending on where the mutation occurs), the only properly validated PRC2-related mutant seems to be the maternal-zygotic mutant MZezh2, which requires germ cell transplantation (see Rougeot et al. 2019 (Rougeot et al., 2019)) , and San et al. 2019 (San et al., 2019) for details). The use of inhibitors have been described in other studies (den Broeder et al., 2020; Huang et al., 2021), but they do not show a validation of the H3K27me3 loss or a similar phenotype as the MZezh2 mutants, and can present unwanted side effects and toxicity at a high dose, affecting gene expression results. Moreover, in an attempt to validate, we performed our own trials with the EZH2 inhibitor (GSK123) and saw that this time window might be too short to see the effect within 24hpf (attached Fig. 2). Therefore, this validation is a more complex endeavor beyond the scope of this study. Nevertheless, our further analysis of H3K27me3 de-methylation on developmentally important genes (new Fig. 2e-f, Sup. table 3) adds more confidence that the polycomb repression plays an important role, and provides enough ground for future follow up studies.

      *Minor concerns *

      1. *Repressive chromatin coverage is limited, so profiling an additional silencing mark such as H3K9me3 or DNA methylation would clarify cooperation with H3K27me3 during development. *

      We agree that H3K27me3 alone would not be sufficient to fully understand the repressive chromatin state. Extension to other chromatin marks and DNA methylation would be the focus of our follow up works.

      *2. Computational transparency is incomplete; a supplementary table listing all trimming, mapping, and peak‑calling parameters (cutadapt, STAR/hisat2, MACS2, histoneHMM, etc.) should be provided. *

      As mentioned in the manuscript, we provide an open-source pre-processing pipeline "scChICflow" to perform all these steps (github.com/bhardwaj-lab/scChICflow). We have now also provided the configuration files on our zenodo repository (see below), which can simply be plugged into this pipeline together with the fastq files from GEO to obtain the processed dataset that we describe in the manuscript. Additionally, we have also clarified the peak calling and post-processing steps in the manuscript now.

      *3. Data‑ and code‑availability statements lack detail; the exact GEO accession release date, loom‑file contents, and a DOI‑tagged Zenodo archive of analysis scripts should be added. *

      We have now publicly released the .h5ad files with raw counts, normalized counts, and complete gene and cell-level metadata, along with signal tracks (bigwigs) and peaks on GEO. Additionally, we now also released the source datasets and notebooks (.Rmarkdown format) on Zenodo that can be used to replicate the figures in the manuscript, and updated our statements on "Data and code availability".

      *4. Minor editorial issues remain, such as replacing "critical" with "crucial" in the Abstract, adding software version numbers to figure legends, and correcting the SAMtools reference. *

      Thank you for spotting them. We have fixed these issues.

      Reviewer #3 (Significance (Required)):

      The method is technically innovative and the biological insights are valuable; however, several issues-mainly concerning experimental design, statistical rigor, and functional validation-must be addressed to solidify the conclusions.

      Thank you for your comments. We hope to have addressed your concerns in this revised version of our manuscript.

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #1

      Evidence, reproducibility and clarity

      The authors have a longstanding focus and reputation on single cell sequencing technology development and application. In this current study, the authors developed a novel single-cell multi-omic assay termed "T-ChIC" so that to jointly profile the histone modifications along with the full-length transcriptome from the same single cells, analyzed the dynamic relationship between chromatin state and gene expression during zebrafish development and cell fate determination. In general, the assay works well, the data look convincing and conclusions are beneficial to the community.

      There are several single-cell methodologies all claim to co-profile chromatin modifications and gene expression from the same individual cell, such as CoTECH, Paired-tag and others. Although T-ChIC employs pA-Mnase and IVT to obtain these modalities from single cells which are different, could the author provide some direct comparisons among all these technologies to see whether T-ChIC outperforms?

      In current study, T-ChIC profiled H3K27me3 and H3K4me1 modifications, these data look great. How about other histone modifications (eg H3K9me3 and H3K36me3) and transcription factors?

      T-ChIC can detect full length transcription from the same single cells, but in FigS3, the authors still used other published single cell transcriptomics to annotate the cell types, this seems unnecessary?

      Throughout the manuscript, the authors found some interesting dynamics between chromatin state and gene expression during embryogenesis, independent approaches should be used to validate these findings, such as IHC staining or RNA ISH?

      In Fig2 and FigS4, the authors showed H3K27me3 cis spreading during development, this looks really interesting. Is this zebrafish specific? H3K27me3 ChIP-seq or CutTag data from mouse and/or human embryos should be reanalyzed and used to compare. The authors could speculate some possible mechanisms to explain this spreading pattern?

      Significance

      The authors have a longstanding focus and reputation on single cell sequencing technology development and application. In this current study, the authors developed a novel single-cell multi-omic assay termed "T-ChIC" so that to jointly profile the histone modifications along with the full-length transcriptome from the same single cells, analyzed the dynamic relationship between chromatin state and gene expression during zebrafish development and cell fate determination. In general, the assay works well, the data look convincing and conclusions are beneficial to the community.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Manuscript number: RC-2025-02879 Corresponding author(s): Matteo Allegretti; Alia dos Santos

      1. General Statements

      In this study, we investigated the effects of paclitaxel on both healthy and cancerous cells, focusing on alterations in nuclear architecture. Our novel findings show that:

      • Paclitaxel-induced microtubule reorganisation during interphase alters the perinuclear distribution of actin and vimentin. The formation of extensive microtubule bundles, in paclitaxel or following GFP-Tau overexpression, coincides with nuclear shape deformation, loss of regulation of nuclear envelope spacing, and alteration of the nuclear lamina.

      • Paclitaxel treatment reduces Lamin A/C protein levels via a SUN2-dependent mechanism. SUN2, which links the lamina to the cytoskeleton, undergoes ubiquitination and consequent degradation following paclitaxel exposure.

      • Lamin A/C expression, frequently dysregulated in cancer cells, is a key determinant of cellular sensitivity to, and recovery from, paclitaxel treatment.

      Collectively, our data support a model in which paclitaxel disrupts nuclear architecture through two mechanisms: (i) aberrant nuclear-cytoskeletal coupling during interphase, and (ii) multimicronucleation following defective mitotic exit. This represents an additional mode of action for paclitaxel beyond its well-established mechanism of mitotic arrest.

      We thank the reviewers for their time and constructive feedback. We have carefully considered all comments and have carried out a full revision. The updated manuscript now includes additional data showing:

      • Overexpression of microtubule-associated protein Tau causes similar nuclear aberration phenotypes to paclitaxel. This supports our hypothesis that increased microtubule bundling directly leads to nuclear disruption in paclitaxel during interphase.

      • Paclitaxel's effects on nuclear shape and Lamin A/C and SUN2 expression levels occur independently of cell division.

      • Reduced levels of Lamin A/C and SUN2 upon paclitaxel treatment occur at the protein level via ubiquitination of SUN2.

      • The effects of paclitaxel on the nucleus are conserved in breast cancer cells.

      Full Revision

      We have also edited our text and added further detail to clarify points raised by the reviewers. We believe that our revised manuscript is overall more complete, solid and compelling thanks to the reviewers' comments.

      1. Point-by-point description of the revisions

      Reviewer #1 Evidence, reproducibility and clarity

      This description of the down-regulation of the expression of lamin A/C upon treatment with paclitaxel and its sensitivity to SUN2 is quite interesting but still somehow preliminary. It is unclear whether this effect involves the regulation of gene expression, or of the stability of the proteins. How SUN2 mediates this effect is still unknown.

      We thank the reviewer for this valuable comment. To elucidate the mechanism behind the decrease in Lamin A/C and SUN2 levels, we have now performed several additional experiments. First, we performed RT-qPCR to quantify mRNA levels of these genes, relative to the housekeeping gene GAPDH (Supplementary Figure 3B and O). The levels of SUN2 and LMNA mRNA remained the same between control and paclitaxel-treated cells, indicating that this effect instead occurs at the protein level. We have also tested post-translational modifications as a potential regulatory mechanism for Lamin A/C and SUN2. In addition to the phosphorylation of Ser404 which we had already tested (Supplementary Figure 3C), we have now included additional Phos-tag gel and Western blotting data showing that the overall phosphorylation status of Lamin A/C is not affected by paclitaxel (Supplementary Figure 3E and F). We also pulled-down Lamin A/C from cell lysates and then Western blotted for polyubiquitin and acetyl-lysine, which showed that the ubiquitination and acetylation states of Lamin A/C are also not affected by paclitaxel (Supplementary Figure 3G-I). However, Western blots for polyubiquitin of SUN2 pulled down from cell lysates showed that paclitaxel treatment results in significant SUN2 ubiquitination (Figure 3M and N). Therefore, we propose that the downregulation of SUN2 following paclitaxel treatment occurs by ubiquitin-mediated proteolysis.

      The roles of free tubulins and polymerized microtubules, and thus the potential role of paclitaxel, need to be uncovered.

      We addressed this important point by using an alternative method to stabilise/bundle microtubules in interphase, namely by overexpressing GFP-Tau, as suggested by reviewer 2. Following GFP- Tau overexpression, large microtubule bundles were observed throughout the cytoplasm (Figure 4A), and this resulted in a significant decrease in nuclear solidity (Figure 4B). Furthermore, in cells where microtubule bundles extensively contacted the nucleus, the nuclear lamina became unevenly distributed and appeared patchy (Figure 4C). This supports our hypothesis that the aberrations to nuclear shape and Lamin A/C localisation in paclitaxel-treated cells are due to the presence of microtubules bundles surrounding the nucleus.

      The doses of paclitaxel at which occur the effects described in the paper are not fully consistent with all the conclusions. Most experiments have been done at 5 nM. However, at this dose the effect of lamin A/C over or down expression on the growth (differences in the slopes of the curves in Figure 4A) are not fully convincing and not fully consistent with the clear effect on viability as well (in addition, duration of treatments before assessing vialbility are not specified). At 1 nM, cell growth is reduced and the rescuing effect of lamin over-expression is much more clear (Fig 4A), and the nucleus deformation clear (Fig 2A) but this dose has no effect on lamin A/C expression (Fig 3C), which questions how lamins impact nucleus shape and cell survival. Cytoskeleton reorganisation in these conditions is not described although it could clarify the respective role of force production (suggested in figure 1) and nuclei resistance (shown in figure 2) in paclitaxel sensitivity.

      We thank the reviewer for raising this important point. We have addressed this by conducting additional repeats for the cell confluency measurements to increase the statistical power of our experiments (Figure 5A). Our data now show that GFP-lamin A/C had a statistically significant effect on rescuing cell growth at both 1 nM and 5 nM paclitaxel, while Lamin A/C knockdown exacerbated the inhibition of cell growth at 5 nM paclitaxel but not 1 nM paclitaxel (Figure 5A). In addition, we note that the duration of paclitaxel treatment before assessing viability was specified in the figure legend: "Bar graph comparing cell viability between wild-type (red), GFP-Lamin A/C overexpression (green), and Lamin A/C knockdown (blue) cells following 20 h incubation in 0, 1, 5, or 10 nM paclitaxel." We also repeated cell viability analysis after 48 h incubation in paclitaxel instead of 20 h to allow for a longer time for differences to take effect (Figure 5B).

      We also added figures showing the cytoskeletal reorganisation at both 1 and 10 nM in addition to 0 and 5 nM (Supplementary Figure 1A) showing that microtubule bundling and condensation of actin into puncta correlated with increased paclitaxel concentration. Vimentin colocalised well with microtubules at all concentrations.

      We have also included in our results section further clarification for the use of 5nM paclitaxel in this study. The new section reads as follows: "Experiments were performed at 5 nM paclitaxel (with additional experiments to determine dose relationships at 1 and 10 nM) because this aligns with previous studies7,14,24. Furthermore, previous analysis of patient plasma reveals that typical concentrations are within the low nanomolar range8, and concentrations of 5-10 nM are required in cell culture to reach the same intracellular concentrations observed in vivo in patient tumours9. This aligns with in vitro cytotoxic studies of paclitaxel in eight human tumour cell lines which show that paclitaxel's IC50 ranges between 2.5 and 7.5 nM41."

      Finally, although the absence of role of mitotic arrest is clear from the data, the defective reorganisation of the nucleus after mitosis still suggest that the effect of paclitaxel is not independent of mitosis.

      We thank the reviewer for pointing out the need for clarification in the wording of our manuscript. We have reworded the title and relevant sections of our abstract, introduction, and discussion to make it clearer that the effects of paclitaxel on the nucleus are due to a combination of aberrant nuclear cytoskeletal coupling during interphase and multimicronucleation following mitotic slippage. We have also added additional data in support of the effect of paclitaxel on nuclear architecture during interphase. For this, we used serum-starved cells (which divide only very slowly such that the majority of cells do not pass through mitosis during the 16 h incubation in paclitaxel [Supplementary Figure 2D]). Our new data confirmed that paclitaxel's effects on nuclear solidity, and Lamin A/C and SUN2 proteins levels can occur independently of cell division (Figure 2C; Figure 3H-J). Finally, when we overexpressed GFP-Tau (as discussed above) we observed similar aberrations to nuclear solidity and Lamin A/C localisation. This indicates that these effects occur due to microtubule bundling in interphase, especially as in our study GFP-Tau did not lead to multimicronucleation or appear to affect mitosis (Figure 4).

      Below are the main changes to the text regarding the interphase effect of paclitaxel:

      • Title: "Paclitaxel compromises nuclear integrity in interphase through SUN2-mediated cytoskeletal coupling"

      • Abstract: "Overall, our data supports nuclear architecture disruption, caused by both aberrant nuclear-cytoskeletal coupling during interphase and exit from defective mitosis, as an additional mechanism for paclitaxel beyond mitotic arrest."

      • Introduction: "Here we propose that cancer cells have increased vulnerability to paclitaxel both during interphase and following aberrant mitosis due to pre-existing defects in their NE and nuclear lamina."

      • Discussion: "Overall, our work builds on previous studies investigating loss of nuclear integrity as an anti-cancer mechanism of paclitaxel separate from mitotic arrest14,20,21. We propose that cancer cells show increased sensitivity to nuclear deformation induced by aberrant nuclear-cytoskeletal coupling and multimicronucleation following mitotic slippage. Therefore, we conclude that paclitaxel functions in interphase as well as mitosis, elucidating how slowly growing tumours are targeted."

      minor: a more thorough introduction of known data about dose response of cells in culture and in vivo would help understanding the range of concentrations used in this study.

      As mentioned above, we have now included additional information in our Results section to clarify our paclitaxel dose range: "Experiments were performed at 5 nM paclitaxel (with additional experiments to determine dose relationships at 1 and 10 nM) because this aligns with previous studies7,14,24. Furthermore, previous analysis of patient plasma reveals that typical concentrations are within the low nanomolar range8, and concentrations of 5-10 nM are required in cell culture to reach the same intracellular concentrations observed in vivo in patient tumours9. This aligns with in vitro cytotoxic studies of paclitaxel in eight human tumour cell lines which show that paclitaxel's IC50 ranges between 2.5 and 7.5 nM41."

      Significance

      In this manuscript, Hale and colleagues describe the effect of paclitaxel on nucleus deformation and cell survival. They showed that 5nM of paclitaxel induces nucleus fragmentation, cytoskeleton reorganisation, reduced expression of LaminA/C and SUN2, and reduced cell growth and viability. They also showed that these effects could be at least partly compensated by the over-expression of lamin A/C. As fairly acknowledged by the authors, the induction of nuclear deformation in paclitaxel-treated cells, and the increased sensitivity to paclitaxel of cells expressing low level of lamin A/C are not novel (reference #14). Here the authors provided more details on the cytoskeleton changes and nuclear membrane deformation upon paclitaxel treatment. The effect of lamin A/C over and down expression on cell growth and survival are not fully convincing, as further discussed below. The most novel part is the observation that paclitaxel can induce the down-regulation of the expression of lamin A/C and that this effect is mediated by SUN2.

      We appreciate the reviewer's summary and thank them for their time. We believe our comprehensive revisions have addressed all comments, strengthening the manuscript and making it more robust and compelling.

      Reviewer #2 Evidence, reproducibility and clarity This study investigates the effects of the chemotherapeutic drug paclitaxel on nuclear-cytoskeletal coupling during interphase, claiming a novel mechanism for its anti-cancer activity. The study uses hTERT-immortalized human fibroblasts. After paclitaxel exposure, a suite of state- of-the-art imaging modalities visualizes changes in the cytoskeleton and nuclear architecture. These include STORM imaging and a large number of FIB-SEM tomograms.

      We thank the reviewer for the summary and for highlighting our efforts in using the latest imaging technical advances.

      Major comments:

      The authors make a major claim that in addition to the somewhat well-described mechanism of paclitaxel on mitosis, they have discovered 'an alternative, poorly characterised mechanism in interphase'.

      However, none of the data proves that the effects shown are independent of mitosis. To the contrary, measurements are presented 48 hours after paclitaxel treatment starts, after which it can be assumed that 100% of cells have completed at least one mitotic event. The appearance of micronuclei evidences this, as discussed by the authors shortly. It looks like most of the results shown are based on botched mitosis or, more specifically, errors on nuclear assembly upon exit from mitosis rather than a specific effect of paclitaxel on interphase. The readouts the authors show just happen to be measurements while the cells are in interphase.

      Alternative hypotheses are missing throughout the manuscript, and so are critical controls and interpretations.

      We thank the reviewer for highlighting the lack of clarity in our wording. We have revised the title, abstract and relevant sections of the introduction and discussion to clarify our message that the effects of paclitaxel on the nucleus arise from a combination of aberrant nuclear-cytoskeletal coupling during interphase and multimicronucleation following exit from defective mitosis. We have also included additional data where we used slow-dividing, serum-starved cells (under these conditions, the majority of cells do not undergo mitosis during the 16 h incubation in paclitaxel [Supplementary Figure 2D]). Our new data show that even in these cells there is a clear effect of paclitaxel on nuclear solidity, and Lamin A/C and SUN2 protein levels, further supporting our hypothesis that these phenotypes can occur independently of cell division (Figure 2C; Figure 3H-J). Furthermore, we performed additional experiments where we used overexpression of GFP-Tau as an alternative method of stabilising microtubules in interphase and observed similar aberrations to nuclear solidity and Lamin A/C localisation. As GFP-Tau overexpression did not lead to micronucleation or appear to affect mitosis, these data support the hypothesis that nuclear aberrations occur due to microtubule bundling in interphase (Figure 4). We discuss these experiments in more detail below. Finally, we have reworded the introduction to better introduce alternative hypotheses and mechanisms for paclitaxel's activity.

      The authors claim that 'Previously, the anti-cancer activity of paclitaxel was thought to rely mostly on the activation of the mitotic checkpoint through disruption of microtubule dynamics, ultimately resulting in apoptosis.' The authors may have overlooked much of the existing literature on the topic, including many recent manuscripts from Xiang-Xi Xu's and another lab.

      We would like to note that the paper from Xiang-Xi Xu's lab (Smith et al, 2021) was cited in our original manuscript (reference 14 in both the original and revised manuscripts). We have now also included additional review articles from the Xiang-Xi Xu lab (PMID:36368286 20 and PMID: 35048083 21). Furthermore, we have clarified the wording in both the introduction and discussion to better reflect the current understanding of paclitaxel's mechanism and alternative hypotheses.

      The data, e.g. in Figure 1, does not hold up to the first alternative hypothesis, e.g. that paclitaxel stabilizes microtubules and that excessive mechanical bundling of microtubules induces major changes to cell shape and mechanical stress on the nucleus. Even the simplest controls for this effect (the application of an alternative MT stabilizing drug or the overexpression of an MT stabilizer, e.g., tau).

      We thank the reviewer for suggesting this control experiment using the microtubule stabiliser Tau. We have now included these experiments in the revised version of the manuscript (Figure 4). The overexpression of GFP-Tau supports our hypothesis that cytoskeletal reorganisation in paclitaxel exerts mechanical stress on the nucleus during interphase, resulting in nuclear deformation and aberrations to the nuclear lamina. In particular, GFP-Tau overexpression resulted in large microtubule bundles throughout the cytoplasm (Figure 4A). Notably, in cells where these bundles extensively contacted the nucleus, we observed a significant decrease in nuclear solidity (Figure 4B) accompanied by changes in nuclear lamina organisation, including a patchy lamina phenotype, similar to that induced by paclitaxel (Figure 4C).

      The focus on nuclear lamina seems somewhat arbitrary and adjacent to previously published work by other groups. What would happen if the authors stained for focal adhesion markers? There would probably be a major change in number and distribution. Would the authors conclude that paclitaxel exerts a specific effect on focal adhesions? Or would the conclusion be that microtubule stabilization and the following mechanical disruption induce pleiotropic effects in cells? Which effects are significant for paclitaxel function on cancer cells?

      We thank the reviewer for raising important points regarding the specificity of paclitaxel's effects. We agree that microtubule stabilisation can induce myriad cellular changes, including alterations to focal adhesions and other cytoskeletal components. Our focus on Lamin A/C and nuclear morphology is grounded both in the established clinical relevance of nuclear mechanics in cancer and builds on mechanistic work from other groups.

      Lamin A/C expression is commonly altered in cancer, and nuclear morphology is frequently used in cancer diagnosis35. Lamin A/C also plays a crucial role in regulating nuclear mechanics32 and, importantly, determines cell sensitivity to paclitaxel14. However, the mechanism by which Lamin A/C determines sensitivity of cancer cells to paclitaxel is unclear.

      Our data are consistent with Lamin A/C being a determinant of paclitaxel survival sensitivity. We also provide evidence that paclitaxel itself reduces Lamin A/C protein levels and disrupts its organisation at the nuclear envelope. We directly link these effects to microtubule bundling around the nucleus and degradation of force-sensing LINC component SUN2, highlighting the importance of nuclear architecture and mechanics to overall cellular function. Furthermore, we show that recovery from paclitaxel treatment depends on Lamin A/C expression levels. This has clinical relevance, as unlike cancer cells, healthy tissue with non-aberrant lamina would be able to selectively recover from paclitaxel treatment.

      Minor comments:

      While I understand the difficulty of the experiments and the effort the authors have put into producing FIB-SEM tomograms, I am not sure they are helping their study or adding anything beyond the light microscopy images. Some of the images may even be in the way, such as supplementary Figure 6, which lacks in quality, controls, and interpretation. Do I see a lot of mitochondria in that slice?

      We agree with the reviewer that Supplementary Figure 6 does not add significant value to the manuscript and thank the reviewer for pointing this out. We have removed it from the manuscript accordingly.

      I may have overlooked it, but has the number of cells from which lamellae have been produced been stated?

      We thank the reviewer for pointing out the missing information. For our cryo-ET experiments, we collected data from 9 lamellae from paclitaxel-treated cells and 6 lamellae from control cells, with each lamella derived from a single cell. This information has now been added to the figure legend (Figure 2F).

      Significance

      The significance of studying the effect of paclitaxel, the most successful chemotherapy drug, should be broad and of interest to basic researchers and clinicians.

      As outlined above, I believe that major concerns about the design and interpretation of the study hamper its significance and advancements.

      We appreciate the reviewer's concerns and have performed major revisions to strengthen the significance of our study. Specifically, we conducted two key sets of experiments to validate our original conclusions: serum starvation to control for the effects of cell division, and overexpression of the microtubule stabiliser Tau to demonstrate that paclitaxel can affect the nucleus via its microtubule bundling activity in interphase.

      By elucidating the mechanistic link between microtubule stabilisation and nuclear-cytoskeletal coupling, our findings contribute to our understanding of paclitaxel's multifaceted actions in cancer cells.

      My areas of expertise could be broadly defined as Cell Biology, Cytoskeleton, Microtubules, and Structural Biology.

      Reviewer #3 Evidence, reproducibility and clarity The manuscript presents interesting new ideas for the mechanism of an old drug, taxol, which has been studied for the last 40 years.

      We thank the reviewer for the positive feedback.

      Although similar ideas are published, which may be suitable to be cited? • Paclitaxel resistance related to nuclear envelope structural sturdiness. Smith ER, Wang JQ, Yang DH, Xu XX. Drug Resist Updat. 2022 Dec;65:100881. doi: 10.1016/j.drup.2022.100881. Epub 2022 Oct 15. PMID: 36368286 Review. • Breaking malignant nuclei as a non-mitotic mechanism of taxol/paclitaxel. Smith ER, Xu XX. J Cancer Biol. 2021;2(4):86-93. doi: 10.46439/cancerbiology.2.031. PMID: 35048083 Free PMC article.

      We thank the reviewer for bringing to our attention these important review articles. In our initial manuscript, we only cited the original paper (14, also reference 14 in the original manuscript). We have now included citations to the suggested publications (20,21).

      We would also like to emphasise how our manuscript distinguishes itself from the work of Smith et al.14,20,21:

      • Cell-type focus: In their study 14, Smith et al. examined the effect of paclitaxel on malignant ovarian cancer cells and proposed that paclitaxel's effects on the nucleus are limited to cancer cells. However, our data extends these findings by demonstrating paclitaxel's effects in both cancerous and non-cancerous backgrounds.

      • Cytoskeletal reorganisation: Smith et al. show reorganisation of microtubules in paclitaxel-treated cells14. Our data show re-organisation of other cytoskeletal components, including F-actin and vimentin.

      • Multimicronucleation: Smith et al. propose that paclitaxel-induced multimicronucleation occurs independently of cell division14. Although we observe progressive nuclear abnormalities during interphase over the course of paclitaxel treatment, our data do not support this conclusion; we find that multimicronucleation occurs only following mitosis.

      • Direct link between microtubule bundling and nuclear aberrations: We show that nuclear aberrations caused by paclitaxel during interphase (distinct from multimicronucleation) are directly linked to microtubule bundling around the nucleus, suggesting they result from mechanical disruption and altered force propagation.

      • Lamin A/C regulation: Consistent with Smith et al.14, we show that Lamin A/C depletion leads to increased sensitivity to paclitaxel treatment. However, we further demonstrate that paclitaxel itself leads to reduced levels of Lamin A/C and that this effect occurs independently of mitosis and is mediated via force-sensing LINC component SUN2. Upon SUN2 knockdown, Lamin A/C levels are no longer affected by paclitaxel treatment.

      • Recovery: Finally, our work reveals that cells expressing low levels of Lamin A/C recover less efficiently after paclitaxel removal. This might help explain how cancer cells could be more susceptible to paclitaxel.

      Only one cell line was used in all the experiments? "Human telomerase reverse transcriptase (hTERT) immortalised human fibroblasts" ? The cells used are not very relevant to cancer cells (carcinomas) that are treated with paclitaxel. It is not clear if the observations and conclusions will be able to be generalized to cancer cells.

      We thank the reviewer for this comment. Our initial study aimed to understand the effects of paclitaxel on nuclear architecture in non-aberrant backgrounds. To show that the observed effects of paclitaxel are also applicable to cancer cells, we have now repeated our main experiments using MDA-MB-231 human breast cancer cells (Supplementary Figure 1B; Supplementary Figure 3P-T). Similar to our findings in human fibroblasts, paclitaxel treatment of MDA-MB-231 led to cytoskeletal reorganisation (Supplementary Figure 1B), a decrease in nuclear solidity (Supplementary Figure 3P), aberrant (patchy) localisation of Lamin A/C (Supplementary Figure 3Q), and a reduction in Lamin A/C and SUN2 levels (Supplementary Figure 3R-T).

      "Fig. 1. (B) STORM imaging of α-tubulin immunofluorescence in cells fixed after 16 h incubation in control media or 5 nM paclitaxel. Lower panels show α-tubulin clusters generated with HDBSCAN analysis. Scale bars = 10 μm." It needs explanation of what is meaning of the different color lines in the lower panels, just different filaments?

      We have added further detail to the figure legend for clarification: "Lower panels show α-tubulin clusters generated with HDBSCAN analysis. Different colours distinguish individual α-tubulin clusters, representing individual microtubule filaments or filament bundles."

      Generally, the figures need additional description to be clear.

      We have added further clarification and detail to our figure legends.

      "Figure 3 - Paclitaxel results in aberrations to the nuclear lamina." The sentence seems not to be well constructed. "Paclitaxel treatment causes ..."?

      We changed this sentence to: "Figure 3 - Paclitaxel treatment results in aberrant organisation of the nuclear lamina and decreased Lamin A/C levels via SUN2."

      Lamin A and C levels are different in different images (Fig. 3B, H): some Lamin A is higher, and sometime Lamin C is higher? This may possibly due to culture condition or subtle difference in sample handling?.

      We thank the reviewer for pointing this out and we agree that the ratio of Lamin A to Lamin C can vary with culture conditions. To confirm that paclitaxel treatment reduces total Lamin A/C levels regardless of this ratio, we repeated the Western blot analysis in three additional biological replicates using cells in which Lamin C levels exceeded Lamin A levels. These experiments confirmed a comparable decrease in total Lamin A/C levels. Figure 3B and 3C have been updated accordingly.

      Also, the effect on Lamin A/C and SUN2 levels are not significant of robust.

      Decreased Lamin A/C and SUN2 levels following paclitaxel treatment were consistently seen across three or more biological repeats (Figure 3B-C), and this could be replicated in a different cell type (MDA-MB-231) (Supplementary Figure 3R-T). Furthermore, Western blotting results are consistent with the patchy Lamin A/C distribution observed using confocal and STORM following paclitaxel treatment (Figure 3A; Supplementary Figure 3A), where Lamin A/C appears to be absent from discrete areas of the lamina.

      Any mechanisms are speculated for the reason for the reduction?

      We have now included additional data which aims to shed light on the mechanism behind the decrease in Lamin A/C and SUN2 levels following paclitaxel treatment. We found that SUN2 is selectively degraded during paclitaxel treatment. Immunoprecipitation of SUN2 followed by Western blotting against Polyubiquitin C showed increased SUN2 ubiquitination in paclitaxel (Figure 3M and N). Furthermore, in our original manuscript, we showed that Lamina A/C levels remained unaltered during paclitaxel treatment in cells where SUN2 had been knocked down. We propose that changes in microtubule organisation affect force propagation to Lamin A/C specifically via SUN2 and that this leads to Lamina A/C removal and depletion. Future work will be needed to fully understand this mechanism.

      In addition to the findings described above, we report no significant changes in mRNA levels for LMNA or SUN2 in paclitaxel (Supplementary Figure 3B and O). Phos-tag gels followed by Western blotting analysis for Lamin A/C also did not detect changes to the overall phosphorylation status of Lamin A/C due to paclitaxel treatment. This is in agreement with our initial data showing no changes to Lamin A/C Ser 404 phosphorylation levels (Supplementary Figure 3E and F). Finally, Lamin A/C immunoprecipitation experiments followed by Western blotting for Polyubiquitin C and acetyl-lysine showed no significant changes in the ubiquitination and acetylation state of Lamin A/C in paclitaxel-treated cells (Supplementary Figure 3G-I).

      Also, the about 50% reduction in protein level is difficult to be convincing as an explanation of nuclear disruption.

      The nuclear lamina and LINC complex proteins play a critical role in regulating nuclear integrity, stiffness and mechanical responsiveness to external forces28,31-33,54,75, as well as in maintaining the nuclear intermembrane distance69,74. In particular, SUN-domain proteins physically bridge the nuclear lamina to the cytoskeleton through interactions with Nesprins, thereby preserving the perinuclear space distance30,69,74. Mutations in Lamins have been shown to disrupt chromatin organization, alter gene expression, and compromise nuclear structural integrity, and experiments with LMNA knockout cells reveal that nuclear mechanical fragility is closely coupled to nuclear deformation47. Furthermore, nuclear-cytoskeletal coupling is essential during processes such as cell migration, where cells undergo stretching and compression of the nucleus; weakening or loss of the lamina in such cases compromises cell movement47,73. In our work, we show that alterations to nuclear Lamin A/C and SUN2 by paclitaxel treatment coincide with nuclear deformations (Figure 2A-D, F, G; Figure 3A-D, F, G; Supplementary Figure 3A, P-T) and that these deformations are reversible following paclitaxel removal (Supplementary Figure 4B-D). Our experiments also demonstrate that Lamin A/C expression levels significantly influence cell growth, cell viability, and cell recovery in paclitaxel (Figure 5). Therefore, drawing on current literature and our results, we propose that, during interphase, paclitaxel induces severe nuclear aberrations through the combined effects of: i) increased cytoskeletal forces on the NE caused by microtubule bundling; ii) loss of ~50% Lamin A/C and SUN2; iii) reorganisation of nucleo-cytoskeletal components.

      Significance

      The manuscript presents interesting new ideas for the mechanism of an old drug, taxol, which has been studied for the last 40 years.

      The data may be improved to provide stronger support.

      Additional cell lines (of cancer or epithelial origin) may be repeated to confirm the generality of the observation and conclusions.?

      We thank the reviewer for the feedback and valuable suggestions. In response, we have included experiments using human breast cancer cell line MDA-MB-231 to further corroborate our findings and interpretations. We believe these additions have improved the clarity, robustness and impact of our manuscript, and we are grateful for the reviewer's contributions to its improvement.

    1. The title of the article makes a simple striking claim about the state of the scientific literature with a numerical estimate of the proportion of “fake” articles. Yet, by contrast to this title, in the text of the article, Heathers is highly critical of his own work.

      James’ peer review of Heathers’ article

      James Heathers often mentions the limitations of his research thus “peer-reviewing” his own article to the extent that he admits that this work is “incomplete”, “unsystematic” and “far flung”.

      This work is too incomplete to support responsible meta-analysis, and research that could more accurately define this figure does not exist yet. ~1 in 7 papers being fake represents an existential threat to the scientific enterprise.”

      While this is highly unsystematic, it produced a substantially higher figure. Correspondents reliably estimated 1-5% of all papers contain fabricated data, and 2-10% contain falsified results.”

      These values are too disparate to meta-analyze responsibly, and support only the briefest form of numerical summary: n=12 papers return n=16 individual estimates; these have a median of 13.95%, and 9 out of 16 of these estimates are between 13.4% and 16.9%. Given this, a rough approximation is that for any given corpus of papers, 1 in 7 (i.e. 14.3%) contain errors consistent with faking in at least one identifiable element.”

      “The accumulation of papers collected here is, frankly, haphazard. It does not represent a mature body of literature. The papers use different methods of analyzing figures, data, or other features of scientific publications. They do not distinguish well between papers that have small problematic elements which are fake, or fake in their entirety. They analyze both small and large corpora of papers, which are in different areas of study and in journals of different scientific quality – and this greatly changes base rates;…”

      “As a consequence, it would be prudent to immediately reproduce the result presented here as a formal systematic review. It is possible further figures are available after an exhaustive search, and also that pre registered analytical assumptions would modify the estimations presented.”

      Heathers has also in an interview published in Retraction Watch (Chawla 2024) acknowledged pitfalls in this article such as:

      “Heathers said he decided to conduct his study as a meta-analysis because his figures are “far flung.””

      “They are a little bit from everywhere; it’s wildly nonsystematic as a piece of work,” he said.”

      “Heathers acknowledged those limitations but argued that he had to conduct the analysis with the data that exist. “If we waited for the resources necessary to be able to do really big systematic treatments of a problem like this within a specific area, I think we’d be waiting far too long,” he said. “This is crucially underfunded.”

      Built in opposition to Fanelli 2009, but it’s illogical

      Heathers states in the abstract that his article is “in opposition” to Fanelli’s 2009 PloS One article (Fanelli 2009), yet that opposition is illogical and artificially constructed since there is no contradiction between 2% of scientists self-reporting having taking part in fabrication or falsification and an eventual much higher proportion of “fake scientific outputs”. Like most of what is wrong with Heather’s article, this is in fact acknowledged by the author who notes that the 2% figure “leaves us with no estimate of how much scientific output is fake” (bias in self-reporting, possibility of prolific authors, etc).

      Fanelli 2009 is not cited in the way JH says it is cited

      Whilst the opposition discussed above is illogical, it could be that the 2% figure is mis-cited by others as representing an estimate of fake scientific outputs thus probably underestimating the extent of fraud. Heathers suggests that this may indeed be the case, but also contradicts himself about how (Fanelli 2009), or the 2% figure coming from that publication, is typically used.

      In one sentence, he writes that “the figure is overwhelmingly the salient cited fact in its 1513 citations” and that “this generally appears as some variant ofabout 2% of scientists admitted to have fabricated, falsified or modified data or results at least once” (Frank et al. 2023)

      whilst and in another sentence, he writes that “the typical phraseology used to express it – e.g. “the most serious types of misconduct, fabrication and falsification (i.e., data fraud), are relatively rare” (George 2016).

      Those two sentences cited by Heathers are fundamentally different, the first one accurately reports that the 2% figure relates to individuals self-reporting, whilst the second one appears to relate to the prevalence of misconducts in the literature itself. How Fanelli 2009 is cited in the literature is an empirical question that can be studied by looking at citation contexts beyond the two examples given by Heathers. Given that a central justification for Heathers’ piece appears to be the misuse of this 2% figure, we sought to test whether this was the case.

      A first surprise was that whilst the sentence attributed to (George 2016) can indeed be found in that publication (in the abstract), first it is not in a sentence citing (Fanelli 2009) nor the 2% figure, and, second, it is quoted selectively omitting a part of the sentence that nuances it considerably: “The evidence on prevalence is unreliable and fraught with definitional problems and with study design issues. Nevertheless, the evidence taken as a whole seems to suggest that cases of the most serious types of misconduct, fabrication and falsification (i.e., data fraud), are relatively rare but that other types of questionable research practices are quite common.” (Fanelli 2009) is discussed extensively by (George 2016), and some of the caveats, e.g. on self-reporting, are highlighted.

      To go beyond those two examples, we constructed a comprehensive corpus of citation contexts, defined as the textual environment surrounding a paper's citation, including several words or sentences before and after the citation (see Methods section below). 737 citation contexts could be analysed. Out of those, the vast majority (533, or 72%) did not cite the 2% figure. Instead, they often referred to this article as a general reference together with other articles to make a broad point, or, focused on other numbers in particular those related to questionable research practices (Bordignon, Said, and Levy 2024). The 28% (204) citation contexts that did mention the 2% figure did so accurately in the majority of cases: 83% (170) of those did mention that it was self-reporting by scientists whilst 17% (34) of those, or 5% of the total citation contexts analysed were either ambiguous or misleading in that they suggested or claimed that the 2% figure related to scientific outputs.

      Although the analysis above does not include all citation contexts, it is possible to conclude unambiguously that the 2% figure is not overwhelmingly the salient cited fact in relation to Fanelli 2009, and that when it is cited it is often accurately, i.e. as representing self-reporting by scientists. Whilst an exhaustive analysis is beyond the scope of this peer review, it is not uncommon to find in this corpus citations contexts that have an alarming tone about the seriousness of the problem of FFPs, e.g. “…a meta-analysis (Fanelli 2009) suggest that the few cases that do surface represent only the tip of a large iceberg." [DOI: 10.1177/0022034510384627]

      Thus, the rationale for Heathers’ study appears to be misguided. The supposed lack of attention for the very serious problem of FFPs is not due to a minimisation of the situation fueled by a misinterpretation of Fanelli 2009. Importantly, even if that was the case, an attempt to draw attention by claiming that 1 in 7 papers are fake, a claim which according to the author himself is not grounded in solid facts, is not how the scientific literature should be used.

      Methods for the construction of the corpus of citation contexts

      We used Semantic Scholar, an academic database encompassing over 200 million scholarly documents from diverse sources including publishers, data providers, and web crawlers. Using the specific paper identifier for Fanelli's 2009 publication (d9db67acc223c9bd9b8c1d4969dc105409c6dfef), we queried the Semantic Scholar API to retrieve available citation contexts. Citation contexts were extracted from the "contexts" field within the JSON response pages, (see technical specifications).

      The query looks like this: semanticscholar.org

      The broad coverage of Semantic Scholar does not imply that citation contexts are always retrieved. The Semantic Scholar API provided citation contexts for only 48% of the 1452 documents citing the paper. To get more, we identified open access papers among the remaining 52% citing papers, retrieved their PDF location and downloaded the files. We used Unpaywall API, which is a database to be queried with a DOI in order to get open access information about a document. The query looks like this.

      We downloaded 266 PDF files and converted them to text format using an online bulk PDF-to-text converter. These files were then processed using TXM, a specialized textual analysis tool. We used its concordancer function to identify the term "Fanelli" as a pivot term and check the reference being the good one (the 2009 paper in PlosOne). We did manual cleaning and appended the citation contexts to the previous corpus.

      Through this comprehensive methodology, we ultimately identified 824 citation contexts, representing 54% (784) of all documents citing Fanelli's 2009 paper. This corpus comprised 48% of contexts retrieved from Semantic Scholar and an additional 6% obtained through semi-manual extraction from open access documents. 87 of those contexts were excluded from the analysis for a range of reasons including: context too short to conclude, language neither English nor French (shared languages of the authors of this review), duplicate documents (e.g. preprints), etc, leaving us with 737 contexts. They were first classified manually in two categories, those mentioning the 2% figure and those which did not. Then, for the first category, they were further classified manually in two categories depending on whether the figure was appropriately assigned to self-reporting of researchers or rather misleadingly suggesting that the 2% applied to research outputs.

      Contributions

      Investigation: FB collected the citation contexts.<br /> Data curation and formal analysis: RL and MS<br /> Writing – review & editing: RL, MS and FB

      References

      Bordignon, Frederique, Maha Said, and Raphael Levy. 2024. “Citation Contexts of [How Many Scientists Fabricate and Falsify Research? A Systematic Review and Meta-Analysis of Survey Data, DOI: 10.1371/Journal.Pone.0005738].” Zenodo. https://doi.org/10.5281/zenodo.14417422.

      Chawla, Dalmeet Singh. 2024. “1 in 7 Scientific Papers Is Fake, Suggests Study That Author Calls ‘Wildly Nonsystematic.’” Retraction Watch (blog). September 24, 2024. https://retractionwatch.com/2024/09/24/1-in-7-scientific-papers-is-fake-suggests-study-that-author-calls-wildly-nonsystematic/.

      Fanelli, Daniele. 2009. “How Many Scientists Fabricate and Falsify Research? A Systematic Review and Meta-Analysis of Survey Data.” PLOS ONE 4 (5): e5738. https://doi.org/10.1371/journal.pone.0005738.

      Frank, Fabrice, Nans Florens, Gideon Meyerowitz-Katz, Jérôme Barriere, Éric Billy, Véronique Saada, Alexander Samuel, Jacques Robert, and Lonni Besançon. 2023. “Raising Concerns on Questionable Ethics Approvals - a Case Study of 456 Trials from the Institut Hospitalo-Universitaire Méditerranée Infection.” Research Integrity and Peer Review 8 (1): 9. https://doi.org/10.1186/s41073-023-00134-4.

      George, Stephen L. 2016. “Research Misconduct and Data Fraud in Clinical Trials: Prevalence and Causal Factors.” International Journal of Clinical Oncology 21 (1): 15–21. https://doi.org/10.1007/s10147-015-0887-3.

    1. Author response:

      The following is the authors’ response to the original reviews

      Reviewer #1 (Public review):

      This is a revision of a manuscript previously submitted to Review Commons. The authors have partially addressed my comments, mainly by expanding the introduction and discussion sections. Sandy Schmid, a leading expert on the AP2 adaptor and CME, has been added as a co-corresponding author. The main message of the manuscript remains unchanged. Through overexpression of fluorescently tagged CCDC32, the authors propose that, in addition to its established role in AP2 assembly, CCDC32 also follows AP2 to the plasma membrane and regulates CCP maturation. The manuscript presents some interesting ideas, but there are still concerns regarding data inconsistencies and gaps in the evidence.

      With due respect, we would argue that a role for CCDC32 in AP2 assembly is hardly ‘established’.  Rather a single publication reporting its role as a co-chaperone for AAGAP appeared while our manuscript was under review.  We find some similar and some conflicting results, which are described in our revised manuscript.  However, in combination our two papers clearly show that CCDC32, a previously unrecognized endocytic accessory protein, deserves further study.

      (1) eGFP-CCDC32 was expressed at 5-10 times higher levels than endogenous CCDC32. This high expression can artificially drive CCDC32 to the cell surface via binding to the alpha appendage domain (AD)-an interaction that may not occur under physiological conditions.

      While we acknowledge that overexpression of eGFP-CCDC32 could result in artificially driving it to CCPs, we do not believe this is the case for the following reasons:

      i. The bulk of our studies (Figures 2-4) demonstrate the effects of siRNA knockdown on CCDC32 on CCP early stages of CME, and so it is likely that these functions require the presence of endogenous CCDC32 at nascent CCPs as detected with overexpressed eGFP-CCDC32 by TIRF imaging.

      ii. At these levels of overexpression eGFP-CCDC32 fully rescues the effects of siRNA KD of endogenous CCCDC32 of Tfn uptake and CCP dynamics (Figure 6F,G). If the protein was artificially recruited to the AP2 appendage domain, one would expect it to compete with the recruitment of other EAPS to CCPs and hence exhibit defects in CCP dynamics. Indeed, we see the opposite: CCPs that are positive for eGFP-CCDC32 show normal dynamics and maturation rates, while CCPs lacking eGFP-CCDC32 are short-lived and more likely to be aborted (Figure 1C).

      iii. We have identified two modes of binding of CCDC32 to AP2 adaptors: one is through canonical AP2-AD binding motifs, the second is through an a-helix in CCDC32 that, by modeling, docks only to the open conformation of AP2.  Overexpressed CCDC32 lacking this a-helix is not recruited to CCPs (Fig. 6 D,E), indicating that the canonical AP2 binding motifs are not sufficient to recruit CCDC32 to CCPs, even when overexpressed.

      (2) Which region of CCDC32 mediates alpha AD binding? Strangely, the only mutant tested in this work, Δ78-98, still binds AP2, but shifts to binding only mu and beta. If the authors claim that CCDC32 is recruited to mature AP2 via the alpha AD, then a mutant deficient in alpha AD binding should not bind AP2 at all. Such a mutant is critical for establish the model proposed in this work.

      We understand the reviewer’s confusion and thus devoted a paragraph in the discussion to this issue.  As revealed by AlphaFold 3.0 modeling (Figure S6) binding of CCDC32 to the alpha AD likely occurs via the 2 canonical AP2-AD binding motifs encoded in CCDC32. Given the highly divergent nature of AP2-AD binding motifs, we did not identify these motifs without the AlphaFold 3.0 modeling. While these interactions could be detected by GST-pull downs, they are apparently not of sufficient affinity to recruit CCDC32 to CCPs in cells. In the text, we now describe the a-helix we identified as being essential of CCP recruitment as ‘a’ AP2 binding site on CCDC32 rather than ‘the’ AP2 binding site.  Interestingly, and also discussed, Alphafold 3.0 identifies a highly predicted docking site on a-adaptin that is only accessible in the open, cargo-bound conformation of intact AP2.  This is also consistent with the inability of CCDC32(D78-99) to bind the a:µ2 hemi-complex in cell lysates.

      We agree that further structural studies on CCDC32’s interactions with AP2 and its targeting to CCPs will be of interest for future work.

      (3) The concept of hemicomplexes is introduced abruptly. What is the evidence that such hemicomplexes exist? If CCDC32 binds to hemicomplexes, this must occur in the cytosol, as only mature AP2 tetramers are recruited to the plasma membrane. The authors state that CCDC32 binds the AD of alpha but not beta, so how can the Δ78-98 mutant bind mu and beta?

      We introduced the concept of hemicomplexes based on our unexpected (and now explicitly stated as such) finding that the CCDC32(D78-99) mutant efficiently co-IPs with a b2:µ2 hemicomplex.  As stated, the efficiency of this pulldown suggests that the presumed stable AP2 heterotetramer must indeed exist in equilibrium between the two a:s2 and b2:µ2 hemicomplexes, such that CCDC32(D78-99) can sequester and efficiently co-IP with the b2:µ2 hemicomplex.  A previous study, now cited, had shown that the b2:µ2 hemicomplex could partially rescue null mutations of a in C. elegans (PMID: 23482940).  We do not know how CCDC32 binds to the b2:µ2 hemicomplex and we did not detect these interactions using AlphaFold 3.0. However, these interactions could be indirect and involve the AAGAB chaperone.  It is also likely, based on the results of Wan et al. (PMID: 39145939), that the binding is through the µ2 subunit rather than b2. As mentioned above, and in our Discussion, further studies are needed to define the complex and multi-faceted nature of CCDC32-AP2 interactions.

      (4) The reported ability of CCDC32 to pull down AP2 beta is puzzling. Beta is not found in the CCDC32 interactome in two independent studies using 293 and HCT116 cells (BioPlex). In addition, clathrin is also absent in the interactome of CCDC32, which is difficult to reconcile with a proposed role in CCPs. Can the authors detect CCDC32 binding to clathrin?

      Based on the studies of Wan et al. (PMID: 39145939), it is likely that CCDC32 binds to µ2, rather than to the b2 in the b2:µ2 hemicomplex.  As to clathrin being absent from the CCDC32 pull down, this is as expected since the interactions of clathrin even with AP2 are weak in solution (as shown in Figure 5C, clathrin is not detected in our AP2 pull down) so as not to have spontaneous assembly of clathrin coats in the cytosol. Rather these interactions are strengthened by both the reduction in dimensionality that occurs on the membrane and by avidity of multivalent interactions.  For example, Kirchausen reported that 2 AP2 complexes are required to recruit one clathrin triskelion to the PM.

      (5) Figure 5B appears unusual-is this a chimera?

      Figure 5B shows an internal insertion of the eGFP tag into an unstructured region in the AP2 hinge. As we have previously shown (PMID: 32657003), this construct, unique among other commonly used AP2 tags, is fully functional.  We have rearranged the text in the Figure legend to make this clearer.

      Figure 5C likely reflects a mixture of immature and mature AP2 adaptor complexes.

      This is possible, but mature heterotetramers are by far the dominant species, otherwise the 4 subunits would not be immuno-precipitated at near stoichiometric levels with the a subunit.  Near stoichiometric IP with antibodies to the a-AD have been shown by many others in many cell types. 

      (6) CCDC32 is reduced by about half in siRNA knockdown. Why not use CRISPR to completely eliminate CCDC32 expression?

      Fortuitously, partial knockdown was essential to reveal this second function of CCDC32, as we have emphasized in our Discussion.  Wan et al, used CRISPR to knockout CCDC32 and reveal its essential role as a AAGAB co-chaperone.  In the complete absence of CCDC32 mature AP2 complexes fail to form.  However, under our conditions of partial CCDC32 depletion, the expression of AP2 heterotetramers is unaffected revealing a second function of CCDC32 at early stages of CME.  We expect that the co-chaperone function of CCDC32 is catalytic, while its role in CME is more structural; hence the different concentration dependencies, the former being less sensitive to KD than the latter.  This is one reason that many researchers are turning to CRISPRi for whole genome perturbation studies as many proteins play multiple roles that can be masked in KO studies.

      Reviewer #2 (Public review):

      Yang et al. describes CCDC32 as a new clathrin mediated endocytosis (CME) accessory protein. The authors show that CCDC32 binds directly to AP2 via a small alpha helical region and cells depleted for this protein show defective CME. Finally, the authors show that the CCDC32 nonsense mutations found in patients with cardio-facial-neuro-developmental syndrome (CFNDS) disrupt the interaction of this protein to the AP2 complex. The results presented suggest that CCDC32 may act as both a chaperone (as recently published) and a structural component of the AP2 complex.

      Strengths:

      The conclusions presented are generally well supported by experimental data and the authors carefully point out the differences between their results and the results by Wan et al. (PNAS 2024).

      Weaknesses:

      The experiments regarding the role of CCDC32 in CFNDS still require some clarifications to make them clearer to scientists working on this disease. The authors fail to describe that the CCDC32 isoform they use in their studies is different from the one used when CFNDS patient mutations were described. This may create some confusion. Also, the authors did not discuss that the frame-shift mutations in patients may be leading to nonsense mediated decay.

      As requested we have more clearly described our construct with regard to the human mutations and added the possibility of NMD in the context of the human mutations.

      Reviewer #3 (Public review):

      In this manuscript, Yang et al. characterize the endocytic accessory protein CCDC32, which has implications in cardio-facio-neuro-developmental syndrome (CFNDS). The authors clearly demonstrate that the protein CCDC32 has a role in the early stages of endocytosis, mainly through the interaction with the major endocytic adaptor protein AP2, and they identify regions taking part in this recognition. Through live cell fluorescence imaging and electron microscopy of endocytic pits, the authors characterize the lifetimes of endocytic sites, the formation rate of endocytic sites and pits and the invagination depth, in addition to transferrin receptor (TfnR) uptake experiments. Binding between CCDC32 and CCDC32 mutants to the AP2 alpha appendage domain is assessed by pull down experiments. While interaction between CCDC32 and the alpha appendage domain of AP2 is clearly described, a discussion of potential association with other AP2 domains would be beneficial to understand the impact of CCDC32 in endocytosis.

      The reviewer is correct. That CCDC32 also interacts with other subunits of AP2, is evident from the findings of Wan et al. and by the fact that the CCDC32(D78-99) mutant efficiently co-IPs with the b2:µ2 hemicomplex.  We expanded our discussion around this point. CCDC32 remains an, as yet, poorly characterized, but we now believe very interesting EAP worth further study.

      Together, these experiments allow deriving a phenotype of CCDC32 knock-down and CCDC32 mutants within endocytosis, which is a very robust system, in which defects are not so easily detected. A mutation of CCDC32, mimicking CFNDS mutations, is also addressed in this study and shown to have endocytic defects.

      In summary, the authors present a strong combination of techniques, assessing the impact of CCDC32 in clathrin mediated endocytosis and its binding to AP2.

      Recommendations for the authors:

      Reviewer #2 (Recommendations for the authors):

      (1) The authors must be clear about the differences between the CCDC32 isoform they used in their manuscript and the one used to describe the patient mutations. This could be done, for example, in the methods. This is essential for the capacity of other labs to reproduce, follow up and correctly cite these results.

      We have added this information to the Methods. 

      (2) I believe the authors have misunderstood what nonsense mediated decay is. NMD occurs at the mRNA level and requires a full genome context to occur (introns and exons). The fact that a mutant protein is expressed normally from a construct by no means prove that it does not happen. I believe that adding the possibility of NMD occurring would enrich the discussion.

      Thank you, we have now done more homework and have added this possibility into our discussion of the mutant phenotype.  However, if a robust NMD mechanism resulted in a complete loss of CCDC42 protein, then the essential co-chaperone function reported by Wan et al, would result in complete loss of AP2.  A more detailed characterization of the cellular phenotype of these mutations, including assessing the expression levels of AP2 would be informative.

      Reviewer #3 (Recommendations for the authors):

      - It is not clear what the authors mean by '~30s lifetime cohort' (line 159). They refer to Figure 2H, which shows the % of CCPs. Can the authors explain exactly what kind of tracks they used for this analysis, for example which lifetime variations were accepted? Do they refer to the cohorts in Figure S4? In Figure S4, the most frequent tracks have lifetimes < 20 s (in contrast to what is stated in the main text). Why was this cohort not used?

      The ‘30s cohort’ refers to CCPs with lifetimes between 25-35s which encompasses the most abundant species in control cells and CCDC32 KD cells, as shown by the probability curves in Figure 2H. Given the large number of CCPs analyzed we still have large numbers for our analyses n=5998 and 4418, for control and siRNA treated conditions, respectively.  Figure 2H shows the frequency of CCPs in cells treated with CCDC32 siRNA are shifted to shorter lifetimes. We have clarified this in the text.

      - Figure S1: It is now clear, why the mutant versions of CCDC32 are not detected in this western blot. However, data that show the resistance of these proteins to siCCDC32 is still missing (S1 A is in the absence of siCCSC32 I assume, as the legend suggests). A western blot using an anti-GFP antibody, as the one used in Figure S1, after siRNA knock-known would provide clarity.

      That these constructs all contain the same mutation in the siRNA target sequence gives us confidence that they are indeed resistant to siRNA.

      - Note that the anti-CCDC32 antibody does not detect the eGFP-CCDC32(∆78-98) as well as full-length and is unable to detect eGFP-CCDC32(1-54)'. This phrase should belong to Figure S1 (B), not (A)

      Corrected.

      - The immunoprecipitations of CCDC32 and its mutants with AP2 and its subunits are partially confusing. In Figure 5, the authors show that CCDC32 interacts specifically with the alpha-AD, but not with the beta-AD of AP2. In Figure 6B and C, on the other hand, Co-IPs are shown also with the beta and the mu domain of AP2. This is understandable in the context of the full AP2. However, when interaction with the alpha domain (and sigma) is abolished through mutation of helix 78-98, why would beta and mu still interact, when the beta-AD cannot interact with CCDC32 on its own. Are there interaction sites expected outside the ADs in the beta or mu domains?

      See responses to reviewer 1 above.  This result likely reflects the co-chaperone activity of CCDC32 as reported by Wan et al it likely due to their reported interactions of CCDC32 with the µ2 subnit of b2:µ2 hemicomplexes.

      - Figure S6 D, E and F: How much confidence do the authors have on the AlphaFold predictions? Have the same binding poses been obtained repeatedly by independent predictions?

      We provide, with a color scale, the confidence score for each interaction, which is very high (>90%). Of course, this is still a prediction that will need to be verified by further structural studies as we have stated.

    1. Reviewer #1 (Public review):

      Summary:

      The mechanism by which WNT signals are received and transduced into the cell has been the topic of extensive research. Cell surface levels of the WNT receptors of the FZD family are subject to tight control and it's well established that the transmembrane ubiquitin ligases ZNRF3 and RNF43 target FZDs for degradation and that proteins of the R-spondin family block this effect. This manuscript explores the role that WNT proteins play in receptor internalization, recycling and degradation, and the authors provide evidence that WNTs promote interactions of FZD with the ubiquitin ligases. Using cells mutant in all 3 DVL genes, the authors demonstrate that this effect of WNT on FZD is DVL-independent.

      Strengths:

      Overall, the data are of good quality and support the authors' hypothesis. Strengths of this study is the use of CRISPR-mutated cell lines to establish genetic requirements for the various components. The finding that FZD internalization and degradation is WNT dependent and does not involve DVL is novel.

      Weaknesses:

      A weakness of the work includes a heavy reliance on overexpression of FZD proteins. To detect endogenous FZDs, the authors have inserted a V5 tag into the endogenous gene, which may affect their activity(ies).

    2. Reviewer #2 (Public review):

      In this manuscript Luo et al uncover that the ZNRF3/RNF43 E3 ubiquitin ligases participate in the selective endocytosis and degradation of FZD5/8 receptors in response to Wnt stimulation. In my opinion there are three significant findings of this study: 1) Wnt proteins are required for ZNRF3/RNF43 mediated endocytosis and degradation of FZD receptors and this constitutes an important negative regulatory loop. 2) Wnt can induce FZD endocytosis in the absence of ZNRF3/RNF43 but this does not influence total or cell surface levels. 3) The ZNRF3/RNF43 substrate selectivity for FZD5/8 over the other 8 Frizzleds. Of course, many questions remain, and new ones emerge as it is often the case, but these findings challenge our dogmatic view on how the ZNRF3/RNF43 regulate Wnt signaling and emphasize their role in Wnt-dependent Frizzled endocytosis/degradation and beta-catenin signaling.

      This is an elegant study employing several CRISPR-edited cell lines to tag endogenous Frizzled receptors and to knockout ZNRF3/RNF43 and all three Dishevelled proteins. One major strength of the study is therefore the careful assessment of the roles of RNF43 and ZNFR3 in endogenous expression contexts. This is especially relevant since overexpression of membrane E3 ligases have been shown to ectopically degrade membrane proteins and could have blurred previous interpretations. A second strength is clarifying the role of Dishevelled proteins in FZD endocytosis. Indeed, although previous studies suggested that the Wnt-promoted interaction between FZD and RNF43/ZNFR3 was mediated through Dvl, the authors clearly show that this is not the case (using Dvl knockout cells and functional assays). Dvl proteins, on the other han,d are still required for ligand-independent FZD-endocytosis.

      The only weakness pertains to the difference in signaling outcome, comparing elevated signaling seen when FZD levels are upregulated following ZNFR3/RNF43 KO vs ectopic overexpression. Indeed, the authors suggest that in the absence of RNF43/ZNFR3 the receptors could be recycled back to the PM and thereby contribute to increased signaling seen in the mutant cells. This has not been directly demonstrated.

    1. Author response:

      Reviewer #1 (Public review):

      Summary:

      In this manuscript, Gerken et al examined how neurons in the human medial temporal lobe respond to and potentially code dynamic movie content. They had 29 patients watch a long-form movie while neurons within their MTL were monitored using depth electrodes. They found that neurons throughout the region were responsive to the content of the movie. In particular, neurons showed significant responses to people, places, and to a lesser extent, movie cuts. Modeling with a neural network suggests that neural activity within the recorded regions was better at predicting the content of the movies as a population, as opposed to individual neural representations. Surprisingly, a subpopulation of unresponsive neurons performed better than the responsive neurons at decoding the movie content, further suggesting that while classically nonresponsive, these neurons nonetheless provided critical information about the content of the visual world. The authors conclude from these results that low-level visual features, such as scene cuts, may be coded at the neuronal level, but that semantic features rely on distributed population-level codes.

      Strengths:

      Overall, the manuscript presents an interesting and reasonable argument for their findings and conclusions. Additionally, the large number of patients and neurons that were recorded and analyzed makes this data set unique and potentially very powerful. On the whole, the manuscript was very well written, and as it is, presents an interesting and useful set of data about the intricacies of how dynamic naturalistic semantic information may be processed within the medial temporal lobe.

      We thank the reviewer for their comments on our manuscript and for describing the strengths of our presented work

      Weaknesses:

      There are a number of concerns I have based on some of the experimental and statistical methods employed that I feel would help to improve our understanding of the current data.

      In particular, the authors do not address the issue of superposed visual features very well throughout the manuscript. Previous research using naturalistic movies has shown that low-level visual features, particularly motion, are capable of driving much of the visual system (e.g, Bartels et al 2005; Bartels et al 2007; Huth et al 2012; Çukur et al 2013; Russ et al 2015; Nentwich et al 2023). In some of these papers, low-level features were regressed out to look at the influence of semantics, in others, the influence of low-level features was explicitly modeled. The current manuscript, for the most part, appears to ignore these features with the exception of scene cuts. Based on the previous evidence that low-level features continue to drive later cortical regions, it seems like including these as regressors of no interest or, more ideally, as additional variables, would help to determine how well MTL codes for semantic features over top of these lower-order variables.

      We thank the reviewer for this insightful comment and for the relevant literature regarding visual motion in not only the primary visual system but in cortical areas as well. While we agree that the inclusion of visual motion as a regressor of no interest or as an additional variable would be overall informative in determining if single neurons in the MTL are driven by this level of feature, we would argue that our analyses already provide some insight into its role and that only the parahippocampal cortical neurons would robustly track this feature.

      As noted by the reviewer, our model includes two features derived from visual motion: Camera Cuts (directly derived from frame-wise changes in pixel values)  and Scene Cuts (a subset of Camera Cuts restricted to changes in scene). As shown in Fig. 5a, decoding performance for these features was strongest in the parahippocampal cortex (~20%), compared to other MTL areas (~10%). While the entorhinal cortex also showed some performance for Scene Cuts (15%), we interpret this as being driven by the changes in location that define a scene, rather than by motion itself.

      These findings suggest that while motion features are tracked in the MTL, the effect may be most robust in the parahippocampal cortex. We believe that quantifying more complex 3D motion in a naturalistic stimulus like a full-length movie is a significant challenge that would likely require a dedicated study. We agree this is an interesting future research direction and will update the manuscript to highlight this for the reader.

      A few more minor points that would help to clarify the current results involve the selection of data for particular analyses. For some analyses, the authors chose to appropriately downsample their data sets to compare across variables. However, there are a few places where similar downsampling would be informative, but was not completed. In particular, the analyses for patients and regions may have a more informative comparison if the full population were downsampled to match the size of the population for each patient or region of interest. This could be done with the Monte Carlo sampling that is used in other analyses, thus providing a control for population size while still sampling the full population.

      We thank the reviewer for raising this important methodological point. The decision not to downsample the patient- and region-specific analyses was deliberate, and we appreciate the opportunity to clarify our rationale.

      Generally, we would like to emphasize that due to technical and ethical limitations of human single-neuron recordings, it is currently not possible to record large populations of neurons simultaneously in individual patients. The limited and variable number of recorded neurons per subject (Fig. S1) generally requires pooling neurons into a pseudo-populations for decoding, which is a well‐established standard in human single‐neuron studies (see e.g., (Jamali et al., 2021; Kamiński et al., 2017; Minxha et al., 2020; Rutishauser et al., 2015; Zheng et al., 2022)).

      For the patient-specific analysis, our primary goal was to show that no single patient's data could match the performance of the complete pseudo-population. Crucially, we found no direct relationship between the number of recorded neurons and decoding performance; patients with the most neurons (patients 4, 13) were not top performers, and those with the fewest (patients 11, 14) were not the worst (see Fig. 4). This indicates that neuron count was not the primary limiting factor and that downsampling would be unlikely to provide additional insight.

      Similarly, for the region-specific analysis, regions with larger neural populations did not systematically outperform those with fewer neurons (Fig. 5). Given the inherent sparseness of single-neuron data, we concluded that retaining the full dataset was more informative than excluding neurons simply to equalize population sizes.

      We agree that this methodological choice should be transparent and explicitly justified in the text. We will add an explanation to the revised manuscript to justify why this approach was taken and how it differs from the analysis in Fig. 6.

      Reviewer #2 (Public review):

      Summary:

      This study introduces an exciting dataset of single-unit responses in humans during a naturalistic and dynamic movie stimulus, with recordings from multiple regions within the medial temporal lobe. The authors use both a traditional firing-rate analysis as well as a sophisticated decoding analysis to connect these neural responses to the visual content of the movie, such as which character is currently on screen.

      Strengths:

      The results reveal some surprising similarities and differences between these two kinds of analyses. For visual transitions (such as camera angle cuts), the neurons identified in the traditional response analysis (looking for changes in firing rate of an individual neuron at a transition) were the most useful for doing population-level decoding of these cuts. Interestingly, this wasn't true for character decoding; excluding these "responsive" neurons largely did not impact population-level decoding, suggesting that the population representation is distributed and not well-captured by individual-neuron analyses.

      The methods and results are well-described both in the text and in the figures. This work could be an excellent starting point for further research on this topic to understand the complex representational dynamics of single neurons during naturalistic perception.

      We thank the reviewer for their feedback and for summarizing the results of our work.

      (1) I am unsure what the central scientific questions of this work are, and how the findings should impact our understanding of neural representations. Among the questions listed in the introduction is "Which brain regions are informative for specific stimulus categories?". This is a broad research area that has been addressed in many neuroimaging studies for decades, and it's not clear that the results tell us new information about region selectivity. "Is the relevant information distributed across the neuronal population?" is also a question with a long history of work in neuroscience about localist vs distributed representations, so I did not understand what specific claim was being made and tested here. Responses in individual neurons were found for all features across many regions (e.g., Table S1), but decodable information was also spread across the population.

      We thank the reviewer for this important point, which gets to the core of our study's contribution. While concepts like regional specificity are well-established from studies on the blood-flow level, their investigation at the single-neuron level in humans during naturalistic, dynamic stimulation remains a critical open question. The type of coding (sparse vs. distributed) on the other hand cannot be investigated with blood-flow studies as the technology lacks the spatial and temporal resolution.

      Our study addresses this gap directly. The exceptional temporal resolution of single-neuron recordings allows us to move beyond traditional paradigms and examine cellular-level dynamics as they unfold in neuronal response on a frame-by-frame basis to a more naturalistic and ecologically valid stimulus. It cannot be assumed that findings from other modalities or simplified stimuli will generalize to this context.

      To meet this challenge, we employed a dual analytical strategy: combining a classic single-unit approach with a machine learning-based population analysis. This allowed us to create a bridge between prior work and our more naturalistic data. A key result is that our findings are often consistent with the existing literature, which validates the generalizability of those principles. However, the differences we observe between these two analytical approaches are equally informative, providing new insights into how the brain processes continuous, real-world information.

      We will revise the introduction and discussion to more explicitly frame our work in this context, emphasizing the specific scientific question driving this study, while also highlighting the strengths of our experimental design and recording methods.

      (2) The character and indoor/outdoor labels seem fundamentally different from the scene/camera cut labels, and I was confused by the way that the cuts were put into the decoding framework. The decoding analyses took a 1600ms window around a frame of the video (despite labeling these as frame "onsets" like the feature onsets in the responsive-neuron analysis, I believe this is for any frame regardless of whether it is the onset of a feature), with the goal of predicting a binary label for that frame. Although this makes sense for the character and indoor/outdoor labels, which are a property of a specific frame, it is confusing for the cut labels since these are inherently about a change across frames. The way the authors handle this is by labeling frames as cuts if they are in the 520ms following a cut (there is no justification given for this specific value). Since the input to a decoder is 1600ms, this seems like a challenging decoding setup; the model must respond that an input is a "cut" if there is a cut-specific pattern present approximately in the middle of the window, but not if the pattern appears near the sides of the window. A more straightforward approach would be, for example, to try to discriminate between windows just after a cut versus windows during other parts of the video. It is also unclear how neurons "responsive" to cuts were defined, since the authors state that this was determined by looking for times when a feature was absent for 1000ms to continuously present for 1000ms, which would never happen for cuts (unless this definition was different for cuts?).

      We thank the reviewer for the valuable comment regarding specifically the cut labels. The choice to label frames that lie in a time window of 520ms following a cut as positive was selected based on prior research and is intended to include the response onsets across all regions within the MTL (Mormann et al., 2008). We agree that this explanation is currently missing from the manuscript, and we will add a brief clarification in the revised version.

      As correctly noted, the decoding analysis does not rely on feature onset but instead continuously decodes features throughout the entire movie. Thus, all frames are included, regardless of whether they correspond to a feature onset.

      Our treatment of cut labels as sustained events is a deliberate methodological choice. Neural responses to events like cuts often unfold over time, and by extending the label, we provide our LSTM network with the necessary temporal window to learn this evolving signature. This approach not only leverages the sequential processing strengths of the LSTM (Hochreiter et al., 1997) but also ensures a consistent analytical framework for both event-based (cuts) and state-based (character or location) features.

      (3) The architecture of the decoding model is interesting but needs more explanation. The data is preprocessed with "a linear layer of same size as the input" (is this a layer added to the LSTM that is also trained for classification, or a separate step?), and the number of linear layers after the LSTM is "adapted" for each label type (how many were used for each label?). The LSTM also gets to see data from 800 ms before and after the labeled frame, but usually LSTMs have internal parameters that are the same for all timesteps; can the model know when the "critical" central frame is being input versus the context, i.e., are the inputs temporally tagged in some way? This may not be a big issue for the character or location labels, which appear to be contiguous over long durations and therefore the same label would usually be present for all 1600ms, but this seems like a major issue for the cut labels since the window will include a mix of frames with opposite labels.

      We thank the reviewer for their insightful comments regarding the decoding architecture. The model consists of an LSTM followed by 1–3 linear readout layers, where the exact number of layers is treated as a hyperparameter and selected based on validation performance for each label type. The initial linear layer applied to the input is part of the trainable model and serves as a projection layer to transform the binned neural activity into a suitable feature space before feeding it into the LSTM. The model is trained in an end-to-end fashion on the classification task.

      Regarding temporal context, the model receives a 1600 ms window (800 ms before and after the labeled frame), and as correctly pointed out by the reviewer, LSTM parameters are shared across time steps. We do not explicitly tag the temporal position of the central frame within the sequence. While this may have limited impact for labels that persist over time (e.g., characters or locations), we agree this could pose a challenge for cut labels, which are more temporally localized.

      This is an important point, and we will clarify this limitation in the revised manuscript and consider incorporating positional encoding in future work to better guide the model’s focus within the temporal window. Additionally, we will add a data table, specifying the ranges of hyperparameters in our decoding networks. Hyperparameters were optimized for each feature and split individually, but we agree that some more details on how these parameters were chosen are important and we will provide a data table in our revised manuscript giving more insights into the ranges of hyperparameters.

      We thank the reviewer for this important point. We will clarify this limitation in the revised manuscript and note that positional encoding is a valuable direction to better guide the model’s focus within the temporal window. To improve methodological transparency, we will also add a supplementary table detailing the hyperparameter ranges used for our optimization process.

      (4) Because this is a naturalistic stimulus, some labels are very imbalanced ("Persons" appears in almost every frame), and the labels are correlated. The authors attempt to address the imbalance issue by oversampling the minority class during training, though it's not clear this is the right approach since the test data does not appear to be oversampled; for example, training the Persons decoder to label 50% of training frames as having people seems like it could lead to poor performance on a test set with nearly 100% Persons frames, versus a model trained to be biased toward the most common class. [...]

      We thank the reviewer for this critical and thoughtful comment. We agree that the imbalanced and correlated nature of labels in naturalistic stimuli is a key challenge.

      To address this, we follow a standard machine learning practice: oversampling is applied exclusively to the training data. This technique helps the model learn from underrepresented classes by creating more balanced training batches, thus preventing it from simply defaulting to the majority class. Crucially, the test set remains unaltered to ensure our evaluation reflects the model's true generalization performance on the natural data distribution.

      For the “Persons” feature, which appears in nearly all frames, defining a meaningful negative class is particularly challenging. The decoder must learn to identify subtle variations within a highly skewed distribution. Oversampling during training helps provide a more balanced learning signal, while keeping the test distribution intact ensures proper evaluation of generalization.

      The reviewer’s comment—that we are “training the Persons decoder to label 50% of training frames as having people”—may suggest that labels were modified. We want to emphasize this is not the case. Our oversampling strategy does not alter the labels; it simply increases the exposure of the rare, underrepresented class during training to ensure the model can learn its pattern despite its low frequency.

      We will revise the Methods section to describe this standard procedure more explicitly, clarifying that oversampling is a training-only strategy to mitigate class imbalance.

      (5) Are "responsive" neurons defined as only those showing firing increases at a feature onset, or would decreased activity also count as responsive? If only positive changes are labeled responsive, this would help explain how non-responsive neurons could be useful in a decoding analysis.

      We define responsive neurons as those showing increased firing rates at feature onset; we did not test for decreases in activity. We thank the reviewer for this valuable comment and will address this point in the revised manuscript by assessing responseness without a restriction on the direction of the firing rate.

      (6) Line 516 states that the scene cuts here are analogous to the hard boundaries in Zheng et al. (2022), but the hard boundaries are transitions between completely unrelated movies rather than scenes within the same movie. Previous work has found that within-movie and across-movie transitions may rely on different mechanisms, e.g., see Lee & Chen, 2022 (10.7554/eLife.73693).

      We thank the reviewer for pointing out this distinction and for including the relevant work from Lee & Chan (2022) which further contextualizes this distinction. Indeed, the hard boundaries defined in the cited paper differ slightly from ours. The study distinguishes between (1) hard boundaries—transitions between unrelated movies—and (2) soft boundaries—transitions between related events within the same movie. While our camera cuts resemble their soft boundaries, our scene cuts do not fully align with either category. We defined scene cuts to be more similar to the study’s hard boundaries, but we recognize this correspondence is not exact. We will clarify the distinctions between our scene cuts and the hard boundaries described in Zheng et al. (2022) in the revised manuscript, and will update our text to include the finding from Lee & Chan (2022).

      Reviewer #3 (Public review):

      This is an excellent, very interesting paper. There is a groundbreaking analysis of the data, going from typical picture presentation paradigms to more realistic conditions. I would like to ask the authors to consider a few points in the comments below.

      (1) From Figure 2, I understand that there are 7 neurons responding to the character Summer, but then in line 157, we learn that there are 46. Are the other 39 from other areas (not parahippocampal)? If this is the case, it would be important to see examples of these responses, as one of the main claims is that it is possible to decode as good or better with non-responsive compared to single responsive neurons, which is, in principle, surprising.

      We thank the reviewer for pointing out this ambiguity in the text. Yes, the other 39 units are responsive neurons from other areas. We will clarify to which neuronal sets the number of responsive neurons corresponds. We will also include response plots depicting the unit activity for the mentioned units.

      (2) Also in Figure 2, there seem to be relatively very few neurons responding to Summer (1.88%) and to outdoor scenes (1.07%). Is this significant? Isn't it also a bit surprising, particularly for outdoor scenes, considering a previous paper of Mormann showing many outdoor scene responses in this area? It would be nice if the authors could comment on this.

      We thank the reviewer for this insightful point. While a low response to the general 'outdoor scene' label seems surprising at first, our findings align with the established role of the parahippocampal cortex (PHC) in processing scenes and spatial layouts. In previous work using static images, each image introduces a new spatial context. In our movie stimulus, new spatial contexts specifically emerge at scene cuts. Accordingly, our data show a strong PHC response precisely at these moments. We will revise the discussion to emphasize this interpretation, highlighting the consistency with prior work.

      Regarding the first comment, we did not originally test if the proportion of the units is significant using e.g. a binomial test. We will include the results of a binomial test for each region and feature pair in the revised manuscript.

      (3) I was also surprised to see that there are many fewer responses to scene cuts (6.7%) compared to camera cuts (51%) because every scene cut involves a camera cut. Could this have been a result of the much larger number of camera cuts? (A way to test this would be to subsample the camera cuts.)

      The decrease in responsive units for scene cuts relative to camera cuts could indeed be due to the overall decrease in “trials” from one label to the other. To test this, we will follow the reviewer’s suggestion and perform tests using sets of randomly subsampled camera cuts and will include the results in the revised manuscript.

      (4) Line 201. The analysis of decoding on a per-patient basis is important, but it should be done on a per-session basis - i.e., considering only simultaneously recorded neurons, without any pooling. This is because pooling can overestimate decoding performances (see e.g. Quian Quiroga and Panzeri NRN 2009). If there was only one session per patient, then this should be called 'per-session' rather than 'per-patient' to make it clear that there was no pooling.

      The per-patient decoding was indeed also a per-session decoding, as each patient contributed only a single session to the dataset. We will make note of this explicitly in the text to resolve the ambiguity.

      (6) Lines 406-407. The claim that stimulus-selective responses to characters did not account for the decoding of the same character is very surprising. If I understood it correctly, the response criterion the authors used gives 'responsiveness' but not 'selectivity'. So, were people's responses selective (e.g., firing only to Summer) or non-selective (firing to a few characters)? This could explain why they didn't get good decoding results with responsive neurons. Again, it would be nice to see confusion matrices with the decoding of the characters. Another reason for this is that what are labelled as responsive neurons have relatively weak and variable responses.

      We thank the reviewer for pointing out the importance of selectivity in addition to responsiveness. Indeed, our response criterion does not take stimulus selectivity into account and exclusively measures increases in firing activity after feature onsets for a given feature irrespective of other features.

      We will adjust the text to reflect this shortcoming of the response-detection approach used here. To clarify the relationship between neural populations, we will add visualizations of the overlap of responsive neurons across labels for each subregion. These figures will be included in the revised manuscript.

      In our approach, we trained separate networks for each feature to effectively mitigate the issue of correlated feature labels within the dataset (see earlier discussion). While this strategy effectively deals with the correlated features, it precluded the generation of standard confusion matrices, as classification was performed independently for each feature.

      To directly assess the feature selectivity of responsive neurons, we will fit generalized linear models to predict their firing rates from the features. This approach will enable us to quantify their selectivity and compare it to that of the broader neuronal population.

      (7) Line 455. The claim that 500 neurons drive decoding performance is very subjective. 500 neurons gives a performance of 0.38, and 50 neurons gives 0.33.

      We agree with the reviewer that the phrasing is unclear. We will adjust our summary of this analysis as given in Line 455 to reflect that the logistic regression-derived neuronal rankings produce a subset which achieve comparable performance.

      (8) Lines 492-494. I disagree with the claim that "character decoding does not rely on individual cells, as removing neurons that responded strongly to character onset had little impact on performance". I have not seen strong responses to characters in the paper. In particular, the response to Summer in Figure 2 looks very variable and relatively weak. If there are stronger responses to characters, please show them to make a convincing argument. It is fine to argue that you can get information from the population, but in my view, there are no good single-cell responses (perhaps because the actors and the movie were unknown to the subjects) to make this claim. Also, an older paper (Quian Quiroga et al J. Neurophysiol. 2007) showed that the decoding of individual stimuli in a picture presentation paradigm was determined by the responsive neurons and that the non-responsive neurons did not add any information. The results here could be different due to the use of movies instead of picture presentations, but most likely due to the fact that, in the picture presentation paradigm, the pictures were of famous people for which there were strong single neuron responses, unlike with the relatively unknown persons in this paper.

      This is an important point and we thank the reviewer for highlighting a previous paradigm in which responsive neurons did drive decoding performance. Indeed, the fact that the movie, its characters and the corresponding actors were novel to patients could explain the disparity in decoding performance by way of weaker and more variable responses. We will include additional examples in the supplement of responses to features. Additionally, we will modify the text to emphasize the point that reliable decoding is possible even in the absence of a robust set of neuronal responses. It could indeed be the case that a decoder would place more weight on responsive units if they were present (as shown in the mentioned paper and in our decoding from visual transitions in the parahippocampal cortex).

    1. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #3

      Evidence, reproducibility and clarity

      Summary:

      Cells need to adjust their gene expression pattern, including nutrient transporters and enzymes to process the available nutrient. How cells maintain the coordination between these processes is one of the most critical questions in biology. In this work authors elegantly combined a range of relevant experimental techniques, ranging from time-lapse microscopy, microfluidics, and mathematical modelling to address this question. Combining these methods, authors proposed a push-pull like mechanism, involving two pairs of repressors (Mth1, Std1 and Migs) in the glucose sensing network. In budding yeast there are multiple hexose transporter genes with varying affinity and transport rate. Authors postulated that on sensing glucose, cells switch between expressing high affinity glucose transporters (when extracellular glucose is low), and low affinity glucose transporters (in high extracellular glucose), and these processes are mediated by the pairs of repressors as mentioned earlier. Following the expressing patterns of fluorescently tagged hexose transporters and varying the extracellular glucose concentrations in media, authors proposed that pairs of repressors switch their activity depending on extracellular glucose level, and which is matched by the promoters of the hexose transporter genes to achieve optimality of glucose transport.

      This study is elegantly designed and addressed an interesting question. The mechanism (push-pull involving two pairs of repressors) is plausible and justified by the data. Authors also presented a mathematical model and made predictions, which are also verified. We will recommend the publication of this work with minor modifications.

      Major comments:

      This study is well designed and experiments performed accordingly. We have only minor comments for revision.

      Minor comments:

      1. Although authors covered a wide array of literature, but while discussing tradeoffs and nutrient sensing, it will be good to include bacterial growth law and related literature, and physiological level tradeoffs should be discussed. Moreover, authors vouched that the push-pull mechanism helps to circumvent the rate-affinity tradeoff of the transporter, whereas expressing genes to more precisely corelate with the extracellular glucose level brings out physiological optimality. This rate-affinity tradeoff and its physiological role should be discussed clearly.
      2. Authors described the ALCATRAS device in their previous publication, but for better clarity, a supplementary figure with schematic diagram and experimental plan should be included.
      3. Microscopic images of transporter expression pattern should be shown as kymographs in the supplementary, in this version of the manuscript plots from processed microscopy images are shown only.
      4. GFP was used to tag HXT1-7 as mentioned by the authors and expression of these genes are evaluated in separate experiments. We suggest including a schematic diagram describing the experimental design while using the microfluidic device and the experimental plan should be written in more detail in general. We found this part confusing. Did authors considered tagging two separate transporters with different fluorescent tag from either end of the affinity spectrum and showing the expression pattern in one experiment? Authors mentioned co expression of receptors at a particular glucose concentration over time, is this inferred from separate timelapse experiments? This need to be more clearly stated.
      5. Please mark the second phase of media glucose concentration in panel 1C, 1% glucose phase is marked, please mark the other phases for clarity.
      6. For the repressors to sense glucose and to initiate the push pull mechanism, there should be baseline glucose flux, which is not clearly mentioned in the manuscript. Authors mentioned that minimal intracellular glucose in absence of extracellular glucose and deployed a logistic function to increase intracellular glucose. The baseline glucose level is crucial, and authors should comment on this. Also, glucose mediated protection of HXT4 should be discussed in this context.
      7. Figure 3B and 3C, details of the error bars should be mentioned in the figure legend.

      Referee cross-commenting

      All other reviewers also identified this study insightful and interesting, similar to our comments. We also agree with the suggestions made by other reviewers. Suggested changes and modifications can be addressed within a month as mentioned by most of the reviewers. Excellent point raised by other reviewers on technicalities and addressing those points will improve the readability of this work even more.

      Significance

      General assessment:

      Use of innovative microfluidics platform to trap mother cells and following the gene expression pattern by fluorescence microscopy and combining the experimental approach with mathematical model are the strengths of this work. Whereas the proposed push-pull mechanism is not generalizable to other carbons. Model is merely used to fit the data, rather than making interesting predictions. Also how does the mechanism holds when cells are switched from other nutrient sources is also not clear in this work, which are the limitations of this work.

      Advance

      This work involves experimental technique and mathematical model to test the hypothesis. Use of custom-built microfluidics set up and live cell imaging to track gene expression levels in varying nutrient condition. This study links single cell level gene expression pattern to model and predict system level behavior. Nutrient sensing and subsequent rearrangement of gene regulatory network is an important question to address, and the proposed push-pull mechanism in this study adds up to the existing body of literature.

      Audience:

      This work is interdisciplinary and researchers across multiple fields will be interested in this work, including researchers interested in microbial nutrient sensing, systems biology, topology of gene regulatory network, metabolism, and general microbiology.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Manuscript number: RC-2025-03083 Corresponding author(s): David Fay General Statements [optional] This section is optional. Insert here any general statements you wish to make about the goal of the study or about the reviews.

      We greatly appreciate the input of the four reviewers, all of whom carried out a careful reading of our manuscript, provided useful suggestions for improvements, and were enthusiastic about the study including its thoroughness and utility to the field. Because the reviewers required no additional experiments, we were able to address their comments in writing.

      However, in response to a comment from reviewer #4 we decided to add an additional new biological finding to our study given that our functional validation of proximity labeling targets was not extensive. Namely, we now show that a missense mutation affecting BCC-1, one of the top NEKL-MLT interactors identified by our proximity labeling screen, is a causative mutation (together with catp-1) in a strain isolated through a forward genetic screen for suppressors of nekl molting defects (new Fig 9C). This finding, combined with our genetic enhancer tests, further strengthens the functional relevance of proteins identified though our proximity labeling approach and highlights the synergy of proteomics combined with classical genetics.

      Positive statements from reviewers include: Reviewer #1: Overall, this is an outstanding study that will be of great interest to those interested in using proximity labeling to identify interactors of their favorite protein. The experiments are well executed and the data presented in a mostly clear manner.

      Reviewer #2: The key conclusions are convincing, and the work is rigorous. The work provides a clear roadmap to reproducing the data. The experiments are adequately replicated, and statistical analysis is adequate... In many papers, TurboID seems very trivial but this paper clearly highlights the limitations and will be an invaluable resource for labs that want to get proximity labeling established in their labs.

      Reviewer #3: Overall, the claims are solid and conclusions supported. The data and methods are substantial to enable reproducibility in other labs. The experiments have been repeated multiple times with particular attention to statistical analysis. ...This manuscript represents a methodological advance that will likely become an oft-cited reference for members of the C. elegans community and a springboard for other basic biomedical scientists wanting to adapt rigorous proximity labeling techniques to their system.

      Reviewer #4: Fay et al. present a solid, clear and comprehensive BioID-based proteomics study that takes into account and discusses decisive aspects for the (re)production and analysis of high-quality TurboID-based mass spectrometry data. Claims and conclusions are generally well and sufficiently supported by the presented data and illustrated with figures (throughout the text as well as with plenty of supplementary data)... Basic consideration and thoughts for the experimental design and MS data analysis are given in detail and can serve as another guideline for future studies.

      Based on these reviews and comments, we believe that our manuscript is suitable for publication in a high-impact journal. 1. Point-by-point description of the revisions This section is mandatory. Please insert a point-by-point reply describing the revisions that were already carried out and included in the transferred manuscript.

      *Reviewer #1 (Evidence, reproducibility and clarity (Required)): *

      *Proximity labeling has become a powerful tool for defining protein interaction networks and has been utilized in a growing number of multicellular model systems. However, while such an approach can efficiently generate a list of potential interactors, knowledge of the most appropriate controls and standardized metrics to judge the quality of the data are lacking. The study by Fay systematically investigates these questions using the C. elegans NIMA kinase family members NEKL-2 and NEKL-2 and their known binding partners MLT-2, MLT-3 and MLT-4. The authors perform eight TurboID experiments each with multiple NEKL and MLT proteins and explore general metrics for assessing experimental outcomes as well as how each of the individual metrics correlates with one another. They also compare technical and biological replicates, explore strategies for identifying false positives and investigate a number of variations in the experimental approach, such as the use of N- versus C-terminal tags, depletion of endogenous biotinylated proteins, combining auxin-inducible degradation, and the use of gene ontology analysis to identify physiological interactors. Finally, the authors validate their findings by demonstrating that a number of the candidate identified functionally interact with NEKL-2 or components of the WASH complex. *

      Overall this is an outstanding study that will be of great interest to those interested in using proximity labeling to identify interactors of their favorite protein. The experiments are well executed and the data presented in a mostly clear manner. I really like this study (particularly because I plan to do a proximity labeling study of my own), but I did come away less than impressed with some of the analysis. This is a data-dense manuscript, and it appears to me that the authors tried to cover so much ground that in some cases very little insight was provided. For instance, the authors promote the use of data independent acquisition (DIA) as compared to the more commonly used data dependent acquisition (DDA). However the authors do not provide any analysis to indicate one approach is better than the other. Likewise the combined use of auxin-induced degradation and proximity labeling is explored but there is very little to take away from these experiments. Despite these issues, I am very enthusiastic about the study as a whole. Below I list major and minor concerns.

      Major concerns * 1. My biggest issue with the manuscript is that a lot is made of the use of data independent acquisition (DIA) as compared to the more commonly used data dependent acquisition (DDA). The authors perform experiments using DIA and DDA approaches but do not directly compare the outcomes. As a result there is really no way to know if one approach is better than the other. I would suggest the authors either perform the necessary analysis to compare the two approaches or tone down their promotion of DIA.* We agree and have scaled back any statements comparing DDA to DIA as our manuscript did not address this directly. We also now point out this caveat in our closing thoughts section, while referencing other studies that compared the two (lines 926-929). Our main point was to convey that DIA worked well for our proximity labeling studies but has seen little use by the model organism field. Surprising (to us), DIA was also considerably less expensive than DDA options.

      2. Line 75, The authors promote the use of data-independent acquisition (DIA) without defining what this approach is and how it differs from the more conventional data-dependent acquisition. As a non-mass spectroscopist, I found myself with lots of question concerning DIA, what it is and how it differs from DDA. I think it would really be helpful to expand the description of DIA and its comparison with DDA in the introduction. As non-mass-spectroscopists ourselves, we understand the reviewer's point. Because the paper is quite long, we were trying to avoid non-essential information. We have now added some information to explain some of the key differences between DDA and DIA. We have also included references for readers who may want to learn more. (lines 77-80)

      Minor concerns: * Line 92 typo. I believe the authors meant to say NEKL-2-MLT-2-MLT-4. * Corrected. (line 95)

      Line169. Is exogenous the correct word to use here? It suggests that you are talking about non-worm proteins, but I know you are not. Corrected. Changed to "Moreover, the detection of biotinylated proteins may be difficult if the bait-TurboID fusion is expressed at low levels..." (line 181).

      Line 177 typo (D) should be (C). Corrected. (line 1122)

      Figure 1C: Lucky Charms may sue you for infringement of their trademarked marshmallow treats. Thank you for picking up on this. The authors accept full responsibility for any resulting lawsuits.

      Figure 1D. The NEKL-2::TurboID band is indicated with a green triangle in the figure but the figure legend states that green triangles indicate mNG::TurboID control. I know this triangle is a shade off the triangle that indicates mNG::TurboID but it's really hard to see the difference. All of the differently colored triangles in panel F are unnecessary. I would either just pick one color for all non-control bait proteins or better yet, only use a triangle to point to bands that are not obvious. For instance I don't need the triangles that point to NEKL-2 -3 and -4 fusion proteins. These are just distracting. We understand the reviewer's point. We colored the triangles to match the colors used for the proteins in the figures. We have now added "bright green triangles with white outlines" (Fig 1 legend) to indicate the Pdpy-7::mNG::TurboID control" and changed triangles in the corresponding figures. Although we would be fine with removing or changing the triangles, we think that they may aid somewhat with clarity.

      Line: 316: Conceivably, another factor that could contribute to the counterintuitive upregulation of some proteins in the N2 samples is related to the fusion proteins that are being expressed in the TurboID lines. A partially functional bait protein (one with a level of activity similar to nekl-2(fd81) that may not result in an obvious phenotype) could directly or indirectly affect gene expression leading to lower levels of a subset of proteins in the TurboID samples. The same could be said for fusion proteins with a gain-of-function effect. This is an interesting idea, and we tested this possibility by looking for consistent overlap between N2-up proteins between biological replates of individual bait proteins. We now include a representative Venn diagram in S3C Fig to highlight this comparison. In summary, although we cannot rule out this possibility, our analysis did not support the widespread occurrence of this effect in our study. We also made certain that our statement regarding N2 up proteins was not too definitive. (lines 285-288)

      *Fig 3 B-E. I am a little confused how the data in these graphs is normalized. For instance, I would have expected that for NEKL-3 in panel B, that the normalized (log2) intensity value in N2 be set at 0 as it is for NEKL-2. Maybe I just don't have enough information on how these plots were generated. * The difference is that in the N2 sample, NEKL-3 was detected but NEKL-2 was not. The numbers themselves are assigned by the Spectronaut software used to quantify the DIA results but are not meaningful beyond indicating relative amounts (intensity values) of a given protein within an individual biological experiment. We've added some lines to the figure legend to make this clearer. (lines 1165-1169)

      *Figure 6C legend is not correct. * Corrected. (line 1214)

      Line 575: Figure reference should be Fig. S5G. The authors should check to make sure all references to supplemental figures include correct panel information. Corrected. (line 464) In addition, we have now gone through the manuscript and added panel numbers references where applicable. Note that the addition of a new supplemental file has shifted the numbering.

      Line 576. The authors reference a study by Artan and colleagues and report a weak correlation between their study and that of Artan. They reference figure S4 but it should be Fig S5H. Apologies and many thanks to the reviewer for catching these errors. (line 464)

      Line 652. The authors note that numerous proteins were present at substantially reduced levels in the mNG::TurboID samples and suggest that sticky proteins may have been outcompeted or otherwise excluded from beads incubated with the mNG::TurboID lysates. Why would sticky proteins only be a problem in these samples? The reasoning is not clear to me. The idea was that in the sample with very high levels of biotinylated proteins (mNG::TurboID), the surface of the beads might become saturated with high-affinity biotinylated proteins. This could prevent or out complete the binding of random proteins that are not biotinylated but nevertheless have some affinity to the beads ("sticky" proteins). We have reworded this section to make this clearer. (lines 546-550)

      Line 745: The term "bait overlaps" is a bit vague. Ultimately, I figured out what it meant but it was not immediately obvious. We have changed this to "overlap between baits" and made this section clearer. (line 624-628)

      *S7B Fig. Why is actin missing from the eluate? * In S7B we refer to the purified eluate as the "eluate", which may have caused some confusion. In other sections of the manuscript, we refer to the bead-bound proteins as the "purified eluate" (Figs 1 and 5). For the purified eluate a portion of the streptavidin beads are boiled in sample buffer to elute the bound proteins before running a western. Actin would not be expected in these samples because it's (presumably) not biotinylated in our samples and doesn't detectably bind the beads. This result was seen in all relevant westerns in S1 Data. For consistency, however, we've gone through all our files to make sure we consistently use the term "purified eluate" versus "eluate", which is less specific.

      L*ine 873: The authors state the extent of overlap in GO terms between the various experiments and provide percentages. I tried to extract this information from Figure 8C and came up with different values. For instance, in the case of Molecular Function, they state that they observed a 54% overlap between NEKL-2 and NEKL-3 but in the Venn diagram in Figure 8C I see that the NEKL-2 and NEKL-3 experiments had 71 (25+46) GO terms in common. Out of 98 GO terms for NEKL-2 or 104 for NEKL-3 the percentage I got is closer to 72. Am I analyzing this correctly? * Thanks for checking this. We believe our method for calculating the percent overlap is correct. In the case of NEKL-2/NEKL-3 overlap for Molecular Function, there are 131 total unique terms, of which 71 overlap, giving a 54% overlap. In the case of NEKL-2/NEKL-3 overlap for Biological Process, however, we made an error in arithmetic (415 unique, 239 overlap), such that the correct percentage is 58%, which we have corrected in the text.

      *Reviewer #1 (Significance (Required)): *

      *Overall this is an outstanding study that will be of great interest to those interested in using proximity labeling to identify interactors of their favorite protein. The experiments are well executed and the data presented in a mostly clear manner. I really like this study (particularly because I plan to do a proximity labeling study of my own), but I did come away less than impressed with some of the analysis. This is a data-dense manuscript, and it appears to me that the authors tried to cover so much ground that in some cases very little insight was provided. For instance, the authors promote the use of data independent acquisition (DIA) as compared to the more commonly used data dependent acquisition (DDA). However the authors do not provide any analysis to indicate one approach is better than the other. Likewise the combined use of auxin-induced degradation and proximity labeling is explored but there is very little to take away from these experiments. Despite these issues, I am very enthusiastic about the study as a whole. *

      *Reviewer #2 (Evidence, reproducibility and clarity (Required)): *

      *This study expanded the use of data-independent acquisition-mass spectrometry (DIA-MS) in TurboID proximity-labeling proteomics to identify novel interactors of NEKL-2, NEKL-3, MLT-2, MLT-3, and MLT-4 complexes in C. elegans. The authors described several useful metrics to evaluate the quality of TurboID experiments, such as using the percentage of upregulated genes, the percentage of proteins present only in bait-TurboID experiments as compared to N2 controls, and the percentage of endogenously biotinylated carboxylases as internal controls. Further, the authors introduced methodological variability across 23 TurboID experiments and evaluated any improvement to the resulting data, such as N-terminally tagging bait proteins with TurboID, depleting endogenous carboxylases, and auxin-inducible degradation of known complex members. Finally, this study identified the kinase folding chaperone CDC-37 and the WASH complex component DDL-2 as novel interactors with the NEKL-MLT complexes through an RNAi-based enhancer approach following their identification by TurboID. *

      Major comments: * The key conclusions are convincing, and the work is rigorous. The work provides a clear roadmap to reproducing the data. The experiments are adequately replicated, and statistical analysis is adequate. We only have minor comments.*

      Minor comments: * •In the western blot in Fig 1 why does the mNG::Turbo have two bands? * Thank you for point this out. To our knowledge this is a breakdown product that was especially prevalent in replicate 3 (also see S1 Data), which we chose to shown because all the NEKL-MLTs were clearly visible in this western. The expected size of the mNeonGreen::TurboID (including linker and tags) is ~68 kDa and our blots are roughly consistent those of Artan et al., (2001). This lower band was not evident in Exp 8. We have now included a statement in the figure legend to indicate that the upper band is the full-length protein whereas the lower band is likely to be a breakdown product (lines 1141-1142).

      •Fig 2B is difficult to parse as a reader. Columns labeled "Upreg," "Downreg," "TurboID only," "N2 only," "Filter-1," "Filter-2," and "Epi %" could be moved to Supplemental. Fold change vs N2 could be represented as a bar chart, allowing for trends between fold change and the metrics Upreg %, Turbo %, and Carboxylase % to be seen more clearly. Further, rows headed "Carboxylase depletion," "DDA," and "Auxin treated" could be presented as separate panels to better match the distinct points made in the text. After serious consideration we have made several changes including the addition of S2 Fig, which may provide readers with a better visual representation of the bait and prey fold changes observed in all our experiments. However, we feel that the detailed data embedded in Fig 2 is the most concise and accurate means by which to convey our full results and is key to our methodological conclusions. As such we did not want to relegate this information to a supplemental table. We note that this figure was not found to be problematic by other reviewers, although we do understand the points made by this reviewer.

      •Line 179: in vivo should be italicized Because journals differ in their stylistic practices, we are currently waiting before doing our final formatting. We did keep our use of Latin phrases consistently non-italicized in the draft.

      •Lines 215-217: The comparison between Western blot expression levels and prior fluorescent reporter levels is unclear. Could be reformatted to make it clearer that relative expression of the different NEKL-MLTs in this study is consistent with prior data. We reformatted this sentence to improve clarity. (lines 205-207)

      *•Lines 267-268: The final line of the passage is unclear and can be removed. * This sentence has been removed.

      •Lines 311-313: This study is able to use the recovery of bait and known interactor proteins as internal controls to determine the quality of each experiment, but this may not always be the case for other users' experiments. The authors should comment on how Upreg %, a value influenced by many factors, can actually be used as a quality check when a bait protein has no known interactors. We have added language to highlight this point. (lines 344-348)

      *•Line 702: There is a [new REF] that should be removed * As described above, we have now included this finding on bcc-1 as part of this manuscript (Fig 9C).

      •The approach used mixed stage animals, but some genes oscillate or are transiently expressed. Please discuss cost-benefit of mixed stage vs syncing. This is an important point. We have added a discussion on the benefits and drawbacks of using mixed stages to the discussion. (lines 901-911)

      *•Authors were working on hypodermally expressed proteins. It would be valuable to discuss what tissues are amenable to TurboID. Ie are the cases where there are few cells (anchor cell, glial sockets, etc) that it will be extremely challenging to perform this technique * We agree that certain tissues/proteins will not be amenable to proximity labeling. We believe that we have addressed this point together with the above comment throughout the manuscript and now on lines 936-940.

      •Authors mention approaches such as nanobodies, split Turbo. Based on their experiences it would be valuable to add Discussion on strengths and weaknesses of these approaches to guide folks considering TurboID and DIA-MS experiments in C. elegans Because we have not tested these methods, we feel that we cannot provide a great deal of insight into these alternate approaches. We mention and reference these methods in the introduction so that readers are aware of them.

      *Reviewer #2 (Significance (Required)): *

      •Advance in technique: This study expands the use cases of data-independent acquisition MS method (DIA-MS) in C. elegans, which fragments all ions independent of the initial MS1 data. The benefits of this approach include better reproducibility across technical replicates and better recovery of low abundance peptides, which are critical for advancing our ability to capture weak and transient interactions.

      •The use of DIA-MS in this study has improved our understanding of the partners of these NEKL-MLTs in membrane trafficking, molting, and cell adhesion within the epidermis.

      •In many papers, TurboID seems very trivial but this paper clearly highlights the limitations and will be an invaluable resource for labs that want to get proximity labeling established in their labs.

      *Reviewer #3 (Evidence, reproducibility and clarity (Required)): *

      *Summary: *

      Fay and colleagues perform a series of proximity labeling experiments in C. elegans followed by thorough and rational analysis of the resulting biotinylated proteins identified by LC-MS/MS. The overall goals of the study are to evaluate different techniques and provide practical guidance on how to achieve success. The major takeaways are that integration of data-independent acquisition (DIA) along with comparison of endogenously tagged TurboID alleles to soluble TurboID expressed in the same tissue results in improved detection of bona-fide interactors and reduced numbers of false-positives.

      *Major comments: *

      Overall the claims are solid and conclusions supported. The data and methods are substantial to enable reproducibility in other labs. The experiments have been repeated multiple times with particular attention to statistical analysis. I have no major concerns with the manuscript and focus primarily on improving the accessibility of this important contribution to the scientific community. As such, I suggest that the authors:

      1) Provide more explanation of and rationale for using DIA. This is not yet a standard technique and most basic biomedical scientists will be unaware of the jargon. As I expect many labs in the C. elegans community and beyond will be interested in the guidance provided in this manuscript, the introduction offers a great opportunity to bring the reader up to speed, as opposed to sending them to the complicated proteomics analysis literature. We have added some additional context (lines 77-80) as well as new references. We note that getting into the technical differences between DIA and DDA, beyond what we briefly mention, would take a substantial amount of space, may not be of interest to many readers, and can be found through standard internet and (sigh) AI-based searches.

      *2) Provide a better overview of the various protocols tested (Experiments 1-8). Maybe at the beginning of the results, and maybe with an accompanying schematic. As currently written, it is difficult to figure out details regarding how the experiments vary and why. * We have now added a short paragraph to better inform the reader at the front end regarding the major experiments. (lines 139-146).

      3) As to be expected, expression of TurboID tags at endogenous levels via low abundance proteins in a complex multicellular system results in somewhat weak signals that flirt with the limit of detection. Perhaps by combining tagged alleles within the same complex (NEKL-3/MLT-3 or NEKL-2/MLT-2/MLT-4) the signals could be boosted? Tandem tags, either on one end or multiple ends of proteins might help as well. As the authors point out, a benefit of tagging the two NEKL-MLT complexes is that there are strong loss-of-function phenotypes (lethal molting defects) to help evaluate whether a tagging strategy results in a non-functional complex. THESE EXPERIMENTS ARE OPTIONAL and might simply be discussed at the authors discretion. These are interesting ideas that we have now incorporated into our discussion. (lines 936-940)

      *Minor Comments: *

      *1) Figure 3A is cropped on the right. * Thank you for catching this. Corrected.

      *2) Better define [new REF] on line 702. * We have added new results (Fig 9C), obviating the need for this reference.

      ***Referee cross-comments** *

      Overall, I am in agreement with, and supportive of, the other reviewers' comments.

      *Reviewer #3 (Significance (Required)): *

      *Significance: *

      Proximity labeling is often proposed as a technique to determine interaction networks of proteins in vivo, but in practice it remains challenging for most labs to execute a successful experiment, especially within the context of multicellular model organisms. Fay and colleagues provide a much needed roadmap for how to best approach proximity labeling experiments in C. elegans that will likely apply to other model systems.

      They establish a rigorous approach by choosing to endogenously tag components of two essential NEKL-MLT complexes required for C. elegans molting. These complexes are relatively low abundance as they are only expressed in a single cell type, the hyp7 epidermal syncytium. In addition, as inactivation of any member of the complexes results in molting defects, they have a powerful selection for functional tags. Thus, they have set a high bar for themselves in order to discern whether a given variation on the experimental approach results in improved detection of interactors and fewer false positives.

      *Potential areas for improvement include lowering the expression level of the skin-specific soluble TurboID used to determine non-specific biotinylation events. This control results in much higher levels of biotinylation compared to the TurboID-tagged NEKL-MLT alleles and likely affects their analysis, which they openly admit. In addition, to reduce the high level of background biotinylation signals generated by endogenous carboxylases, they adopt a depletion strategy pioneered by other researchers but this does not offer major improvements in detection of specific signals. The source of these conflicting results remains to be determined. It is also curious that auxin-inducible degradation of components of the NEKL-MLT complexes did not robustly alter the resulting biotinylating capacity of other members. This approach should be evaluated in subsequent studies. Finally, as mentioned in Major Comment #3 (above), it would be interesting to see if combining TurboID tags within the same complex might improve signal-to-background ratios. *

      This manuscript represents a methodological advance that will likely become an oft-cited reference for members of the C. elegans community and a springboard for other basic biomedical scientists wanting to adapt rigorous proximity labeling techniques to their system. I am a cell biologist that uses a variety of genetic, molecular and biochemical approaches, mostly centered around C. elegans. I have used LC/MS-MS in our studies but have relatively little expertise in evaluating all aspects of proteomic pipelines.

      *Reviewer #4 (Evidence, reproducibility and clarity (Required)): *

      *Fay et al. describe an extensive proximity labeling BioID study in C. elegans with TurboID and DIA-LCMS analysis. They chose the NEKL-2/3 kinases and their known interactors MLT-2/3/4 as TurboID-fused bait proteins (C- and partially N-terminal fusions encoded from CRISPR-mediated genome edited genes). With eight biological replicates (and three to four technical replicates each) and with the unmodified wildtype or mNeonGreen-TurboID expressing worms as controls, a comprehensive dataset was generated. Although starting from quite different abundances of the bait-fusions within the cell lysates all bait proteins and known complex-binding partners were convincingly enriched with capturing streptavidin beads after only one hour of incubation with the lysate. This confirms the general applicability of TurboID-BioID approach in C. elegans. The BioID method typically gives rise to large proteomics datasets (up to more than thousand proteins identified after biotin capture) with several tens to hundreds enriched proteins (against negative control strains) as potential proteins that localize proximal to the bait-TurboID protein. However, substantial variations of candidates between biological replicates are frequently observed in BioID experiments. The authors scrutinized their dataset towards indicative metrics, filters and cutoffs in order to separate high-confidence from low-confidence candidates. With the workflow applied the authors melt down the number of candidates to 15 proteins that were grouped in four functional groups reasonably associated to NEKL-MLT function. *

      Successful BioID experiments depend on reliable enrichment quantification with mass spectrometry using control cell lines that require a carefully bait-tailored design. Those must adequately express TurboID controls matching the abundance of the bait-TurboID fusion protein and its biotinylation activity. After affinity capture, sample preparation and LCMS data acquisition there is no silver bullet towards the identification true bait neighbors. Fay et al. elaborately describe their considerations and workflow towards high-confidence candidates. The workflow considered (i) data analysis with Volcano plots to account for statistical reproducibility of biological replicates against negative controls, (ii) fraction of proteins only detected in the positive or negative controls thus evading the fold-enrichment quantification approach, (iii) evaluation of variations in carboxylase enrichment as a measure for variations in the general biotin capture quality between experiments, (iv) an assessment of technical reproducibility with scatter plots and Venn diagrams, (v) exclusion of potentially false positives, e.g. promiscuously biotinylated non-proximal proteins, through comparisons with control worms expressing a non-localized mNeonGreen-TurboID fusion protein, (vi) batch effects, (vii) the impact of endogenous biotinylated carboxylases through depletion, (viii) gene ontology analysis of enriched proteins, (ix) weighing data according to the quality of individual experiments according to the afore mentioned metrics, and finally (x) genetic interaction studies to functionally associate high-confidence candidates with the bait.

      *Major comments: *

      Fay et al. present a solid, clear and comprehensive BioID-based proteomics study that takes into account and discusses decisive aspects for the (re)production and analysis of high-quality TurboID-based mass spectrometry data. Claims and conclusions are generally well and sufficiently supported by the presented data and illustrated with figures (throughout the text as well as with plenty of supplementary data). However, although the authors claim to seek for substrates of the kinase complex they drew no further attention to the phosphorylation status of the captured proteins. Haven't the MS data been analyzed in this respect? Information regarding this issue would enhance the manuscript. Data generation and method description appear reproducible for readers. Also, the statistical analyses appear adequate. The authors should also consider to deposit their MS raw and analysis data in a public repository (e.g. PRIDE) for future reviewing processes and as reference data for readers and followers. Our raw MS data have been deposited by the Arkansas Proteomics Facility. I have followed up to ensure that they are publicly available.

      *Minor comments: *

      The authors should combine supplementary data files to reduce the number of single files readers have to deal with. We have combined these files as suggested.

      The authors should avoid the term "upregulation" or "increased biotinylation" when capture enrichment is meant. We agree with reviewer's point. We now use the terms enriched versus reduced or up versus down, depending on the context, and clearly define these terms. These changes have been incorporated throughout the manuscript.

      *Reviewer #4 (Significance (Required)): *

      The manuscript presents a robust BioID proteomics screening for co-localizing proteins of NEKL-2/3 kinases and their known interactors MLT-2/3/4. The ongoing validation of their functional interactions and whether the protein candidates reflect phosphorylation substrates or else remains elusive and is announced for upcoming manuscripts. The knowledge gain in terms of molecular mechanisms with NEKL-2/3 MLT-2/3/4 involvement in C. elegans is therefore limited to a table of - promising - interacting candidates that have to be studied further. Information about the phosphorylation status of the captured proteins from the MS data are not given. However, knowing the protein candidates will be of interest for groups working with these complexes (or the identified potentially interacting proteins) either in C. elegans or any other organism. Also, in-depth proteomics screenings with novel approaches such as BioID have to be established for individual organisms. For C. elegans there is only one prior BioID publication (Holzer et al. 2022). Many of the aspects discussed here have also been addressed earlier for BioIDs in other organisms and are not principally new. However, the presented study can be of conceptual interest for labs delving into or entangled with the BioID method in C. elegans or other organisms. The study addresses especially proteomics groups working on protein-protein interactions using proximity labeling/MS approaches. Basic consideration and thoughts for the experimental design and MS data analysis are given in detail and can serve as another guideline for future studies.

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #3

      Evidence, reproducibility and clarity

      Summary:

      Fay and colleagues perform a series of proximity labeling experiments in C. elegans followed by thorough and rational analysis of the resulting biotinylated proteins identified by LC-MS/MS. The overall goals of the study are to evaluate different techniques and provide practical guidance on how to achieve success. The major takeaways are that integration of data-independent acquisition (DIA) along with comparison of endogenously tagged TurboID alleles to soluble TurboID expressed in the same tissue results in improved detection of bona-fide interactors and reduced numbers of false-positives.

      Major comments:

      Overall the claims are solid and conclusions supported. The data and methods are substantial to enable reproducibility in other labs. The experiments have been repeated multiple times with particular attention to statistical analysis. I have no major concerns with the manuscript and focus primarily on improving the accessibility of this important contribution to the scientific community. As such, I suggest that the authors:

      1. Provide more explanation of and rationale for using DIA. This is not yet a standard technique and most basic biomedical scientists will be unaware of the jargon. As I expect many labs in the C. elegans community and beyond will be interested in the guidance provided in this manuscript, the introduction offers a great opportunity to bring the reader up to speed, as opposed to sending them to the complicated proteomics analysis literature.
      2. Provide a better overview of the various protocols tested (Experiments 1-8). Maybe at the beginning of the results, and maybe with an accompanying schematic. As currently written, it is difficult to figure out details regarding how the experiments vary and why.
      3. As to be expected, expression of TurboID tags at endogenous levels via low abundance proteins in a complex multicellular system results in somewhat weak signals that flirt with the limit of detection. Perhaps by combining tagged alleles within the same complex (NEKL-3/MLT-3 or NEKL-2/MLT-2/MLT-4) the signals could be boosted? Tandem tags, either on one end or multiple ends of proteins might help as well. As the authors point out, a benefit of tagging the two NEKL-MLT complexes is that there are strong loss-of-function phenotypes (lethal molting defects) to help evaluate whether a tagging strategy results in a non-functional complex. THESE EXPERIMENTS ARE OPTIONAL and might simply be discussed at the authors discretion.

      Minor Comments:

      1. Figure 3A is cropped on the right.
      2. Better define [new REF] on line 702.

      Referee cross-comments

      Overall, I am in agreement with, and supportive of, the other reviewers' comments.

      Significance

      Proximity labeling is often proposed as a technique to determine interaction networks of proteins in vivo, but in practice it remains challenging for most labs to execute a successful experiment, especially within the context of multicellular model organisms. Fay and colleagues provide a much needed roadmap for how to best approach proximity labeling experiments in C. elegans that will likely apply to other model systems.

      They establish a rigorous approach by choosing to endogenously tag components of two essential NEKL-MLT complexes required for C. elegans molting. These complexes are relatively low abundance as they are only expressed in a single cell type, the hyp7 epidermal syncytium. In addition, as inactivation of any member of the complexes results in molting defects, they have a powerful selection for functional tags. Thus, they have set a high bar for themselves in order to discern whether a given variation on the experimental approach results in improved detection of interactors and fewer false positives.

      Potential areas for improvement include lowering the expression level of the skin-specific soluble TurboID used to determine non-specific biotinylation events. This control results in much higher levels of biotinylation compared to the TurboID-tagged NEKL-MLT alleles and likely affects their analysis, which they openly admit. In addition, to reduce the high level of background biotinylation signals generated by endogenous carboxylases, they adopt a depletion strategy pioneered by other researchers but this does not offer major improvements in detection of specific signals. The source of these conflicting results remains to be determined. It is also curious that auxin-inducible degradation of components of the NEKL-MLT complexes did not robustly alter the resulting biotinylating capacity of other members. This approach should be evaluated in subsequent studies. Finally, as mentioned in Major Comment #3 (above), it would be interesting to see if combining TurboID tags within the same complex might improve signal-to-background ratios.

      This manuscript represents a methodological advance that will likely become an oft-cited reference for members of the C. elegans community and a springboard for other basic biomedical scientists wanting to adapt rigorous proximity labeling techniques to their system. I am a cell biologist that uses a variety of genetic, molecular and biochemical approaches, mostly centered around C. elegans. I have used LC/MS-MS in our studies but have relatively little expertise in evaluating all aspects of proteomic pipelines.

    1. I don't think I've seen a single person bring up the classism inherent in dictating gentlemanly manners.

      Here, or in general?

      I do think about this a lot. This is a nice, succinct way to put it. (Critique, though: "classism" is not the best way to put it. For better or worse, "privilege" is probably one of the best words we have for this. Separately: Since "privilege" became a staple of common rhetoric, I've mused a lot about trying to convince people to minimize the focus on "privilege" (to avoid the familiar kneejerk reactions from those hearing it who have associated it with overuse), with the intent to be to sway people instead by speaking about privilege without actually using the word "privilege" and speaking exclusively in terms of affordances*.)

      See: https://hypothes.is/a/TCB5zClKEeyrIOu9mp-5TA and tag:"privilege vs affordance". (NB: Hypothes.is doesn't linkify the tag in the preceding annotation correctly.)

    1. Reviewer #1 (Public review):

      Summary:

      The study by Klug et al. investigated the pathway specificity of corticostriatal projections, focusing on two cortical regions. Using a G-deleted rabies system in D1-Cre and A2a-Cre mice to retrogradely deliver channelrhodopsin to cortical inputs, the authors found that M1 and MCC inputs to direct and indirect pathway spiny projection neurons (SPNs) are both partially segregated and asymmetrically overlapping. In general, corticostriatal inputs that target indirect pathway SPNs are likely to also target direct pathway SPNs, while inputs targeting direct pathway SPNs are less likely to also target indirect pathway SPNs. Such asymmetric overlap of corticostriatal inputs has important implications for how the cortex itself may determine striatal output. Indeed, the authors provide behavioral evidence that optogenetic activation of M1 or MCC cortical neurons that send axons to either direct or indirect pathway SPNs can have opposite effects on locomotion and different effects on action sequence execution. The conclusions of this study add to our understanding of how cortical activity may influence striatal output and offer important new clues about basal ganglia function.

      The conceptual conclusions of the manuscript are supported by the data, but the details of the magnitude of afferent overlap and causal role of asymmetric corticostriatal inputs on some behavioral outcomes may be a bit overstated given technical limitations of the experiments.

      For example, after virally labeling either direct pathway (D1) or indirect pathway (D2) SPNs to optogenetically tag pathway-specific cortical inputs, the authors report that a much larger number of "non-starter" D2-SPNs from D2-SPN labeled mice responded to optogenetic stimulation in slices than "non-starter" D1 SPNs from D1-SPN labeled mice did. Without knowing the relative number of D1 or D2 SPN starters used to label cortical inputs, it is difficult to interpret the exact meaning of the lower number of responsive D2-SPNs in D1 labeled mice (where only ~63% of D1-SPNs themselves respond) compared to the relatively higher number of responsive D1-SPNs (and D2-SPNs) in D2 labeled mice. While relative differences in connectivity certainly suggest that some amount of asymmetric overlap of inputs exists, differences in infection efficiency and ensuing differences in detection sensitivity in slice experiments make determining the degree of asymmetry problematic.

      It is also unclear if retrograde labeling of D1-SPN- vs D2-SPN- targeting afferents labels the same densities of cortical neurons. This gets to the point of specificity in some of the behavioral experiments. If the target-based labeling strategies used to introduce channelrhodopsin into specific SPN afferents label significantly different numbers of cortical neurons, might the difference in the relative numbers of optogenetically activated cortical neurons itself lead to behavioral differences?

    1. find out that I didn't have the whole picture, the problem was messier than it first appeared, and there were perfectly valid reasons for the code being that way

      I've tried using a hiking metaphor to describe a similar phenomenon (specifically, and perversely, as a preface when trying to explain second panel syndrome.

  5. Jul 2025
    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      __We thank the reviewers for the supportive suggestions and comments. We have addressed all comments underneath the original text in red. As suggested, we added to line numbers to the text and use these numbers to refer to the changes made. __

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      The manuscript is well written and presents solid data, most of which is statistically analyzed and sound. Given that the author's previous comprehensive publications on seipin organization and interactions, it might be beneficial (particularly in the title and abstract) to emphasize that this manuscript focuses on the metabolic regulation of lipid droplet assembly by Ldb16, to distinguish it from previous work. Perhaps one consideration, potentially interesting, involves changes in lipid droplet formation under the growth conditions used for galactose-mediated gene induction.

      We thank the reviewer for the supportive comments and suggestions.

      Comments: (1) Fig. 3 and 4. The galactose induction of lipid droplet biogenesis in are1∆/2∆ dga1∆ lro1∆ cells though activation of a GAL1 promoter fusion to DGA1 is a sound approach for regulating lipid droplet formation. Although unlikely, carbon sources can impact lipid droplet proliferation and (potentially interesting) metabolic changes under growth in non-fermentable carbon sources may impact lipid droplet biogenesis; in fact, oleate has significant effects (e.g. PMID: 21422231; PMID: 21820081). The GAL1 promoter is a very strong promoter and the overexpression of DGA1 via this heterologous promoter might itself cause unforeseen changes. Affirmation of the results using another induction system might be beneficial.

      We thank the reviewer for these suggestions. In this study we focused on the organisation of the yeast seipin complex during the process of LD formation. We chose to use galactose-based induction of Dga1 because this is a well-established and widely used assay in the field, extensively characterized by many groups over the years. The tight control it provides, enabling synchronous and rapid LD induction, makes it the method of choice for many researchers. Importantly, the LDs formed using this assay are morphologically normal and involve the same components as LDs formed under other conditions.

      Regarding the role of metabolism in LD formation, it is worth noting that galactose is metabolized by yeast primarily through fermentation, following its conversion to UDP-glucose. Therefore, its use does not involve drastic metabolic changes. The impact of metabolism in LD biogenesis is an interesting question but it falls beyond the scope of the current study.

      (2) Fig. 3B. Although only representative images are shown, the panel convincingly shows that lipid droplets do form upon galactose induction of DGA1 in are1∆/2∆ dga1∆ lro1∆ cells. However, it does not show to what extent. Are lipid droplets synthesized at WT levels? How many cells were counted? How many lipid droplets per cell? Is there a statistical difference with respect to WT cells?

      We did not assess these parameters in this study. The aim of the study was to assess the relations between components of the seipin complex with and without lipid droplets. For this purpose, inducing lipid droplet formation over a 4-hour period was sufficient to address that specific question. As mentioned above, LDs formed using this assay are morphologically normal and involve the same components as LDs formed under other conditions. This being said, it is known that prolonged overexpression of Dga1 (> 12hours) can lead to enlarged LDs.

      (3) Fig. 2D. It is not clear how standard deviation can be meaningfully applied to two data points, let alone providing a p-value. For some of these experiments, triplicate trials might provide a more robust statistical sampling.

      We thank the reviewer for this suggestion. We have added 2 more repeats to the Co-IP in figure 2.

      Reviewer #1 (Significance (Required)):

      Klug and Carvalho report on the lipid droplet architecture of the yeast seipin complex. Specifically, the mechanism of yeast seipin Sei1 binding to Ldo16 and the subsequent recruitment of Ldb45 is analyzed. These results follow from a recent publication (PMID: 34625558) from the same authors and aims to define a more precise role for the components of the seipin complex. Using photo-crosslinking, Ldo45 and Ldo16 interactions are analyzed in the context of lipid droplet assembly.

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      Summary:

      Klug and Carvalho apply a photo-crosslinking approach, which has been extensively used in the Carvalho group, to investigate the subunit interactions of the seipin complex in yeast. The authors apply this approach to further study possible changes within the seipin complex following induction of neutral lipid synthesis and lipid droplet (LD) formation. The authors propose that Ldo45 makes contact with Ldb16 and that the seipin complex subunits assemble even in the absence of LDs.

      Major comments:

      Overall, this is a focused and well-executed study on one of the fundamental structural components of LDs. The study addresses the subunit interactions of the seipin complex but does not look into their functional consequences, for example how the mutations on Ldb16 that affect its interaction with Ldo45, influence LD formation; similarly, the authors make the interesting observation that Ldo16 may be differentially affected by the lack of neutral lipids (Fig. 3A) but this observation is not explored.

      We thank the reviewer for this comment. The Ldb16 mutations analyzed in this study have been previously characterized by us (see Klug et al., 2021 – Figure 3) and exhibit a mild defect in lipid droplet (LD) formation. This phenotype is unlikely to result from impaired Ldo16/45 recruitment, as deletion of Ldo proteins causes only a very mild effect on LD formation (as shown in Teixeira et al., 2018 and Eisenberg-Bord et al., 2018).

      We agree that the differential effect on Ldo proteins by the absence of neutral lipids is particularly interesting. However, its exploration falls outside of the scope of the current study and should be thoroughly investigated in the future.

      1. For the crosslinking pull-downs (Fig. 1), it seems that the authors significantly overexpress (ADH1 promoter) the Ldb16 subunit that carries the various photoreactive amino acid residues, while keeping the other (tagged) seipin complex members at endogenous levels. Would not this imbalance affect the assembly of the complex and therefore the association of the different subunits with each other?

      We thank the reviewer for this comment. The in vivo site-specific crosslinking is highly sensitive methodology to detect protein-protein interactions in a position-dependent manner. However, one of the caveats of the approach is the low efficiency of amber stop codon suppression and BPA incorporation. To mitigate this limitation, we (and others) induce the expression of the amber-containing protein (in this case Ldb16) from a strong constitutive promoter such as ADH1. Therefore, despite using a strong promoter, the overall levels of LDB16 remain comparable to endogenous levels due to the inherently low efficiency of amber suppression. Moreover, it is known that when not bound to Sei1, Ldb16 is rapidly degraded in a proteasome dependent manner (Wang, C.W. 2014), further preventing its accumulation.

      Although the authors do show delta4 cells with no LDs (Fig. 3B, 0h), galactose-inducible systems in yeast are known to be leaky. Given that the authors' conclusion that the complex is "pre-assembled" irrespective of the addition of galactose, I think it would be important to confirm biochemically that there is no neutral lipid at time point 0. Alternatively, it may be better to simply compare wt vs dga1 lro1 or are1are2 mutants - there is no need for GAL induction since the authors look at one time point only.

      Among the various regulable promoters, GAL1 shows a superior level of control. For example, expression of essential genes from GAL1 promoter frequently leads to cell death in glucose containing media, a condition that represses GAL1 promoter. Having said this, we cannot exclude that minute amounts of DGA1 are expressed prior galactose induction. However, if this is the case, the resulting levels of TAG are insufficient to be detected by sensitive lipid dyes and to induce LDs, as noted by the reviewer. Therefore, we believe our conclusions remain valid. This is consistent that we use in the text, where we refer to LD formation rather than complete loss of neutral lipids. To make this absolutely clear we replaced the word “presence” to “abundance” in line 236.

      Lastly, we do not agree with the reviewer that using double mutants (are1/2 or dga1/lro1 mutants) would be sufficient since these mutations are not sufficient to abolish LD formation – a key aspect of this study. The GAL1 system allows us to monitor 2 time points in the same cells –no LDs (time 0h) and with LDs (Time 4h). The system proposed by the reviewer would only allow a snap shot of steady state levels in different cells rather than within the same cell culture.

      Some methodological issues could be better detailed. For example, which of the three delta4 strains was used to induce neutral lipid in Fig. 4B? How exactly were the quantifications in Fig. 4D performed (I assume they were done under non-saturating band intensity conditions, as for some residues it is difficult to conclude whether the blot aligns with the quantification results).

      We thank the reviewer for these comments. We have clarified the strain number in the figure legend of figure 4B (strain yPC12630).

      We have also added the following text in rows 437-441 in the methods section: “Reactive bands were detected by ECL (Western Lightning ECL Pro, Perkin Elmer #NEL121001EA), and visualized using an Amersham Imager 600 (GE Healthcare Life Sciences). Data quantification was performed using Image Studio software (Li-Cor) to measure line intensity under non saturating conditions.”

      "our findings support the notion that Ldo45 is important for early steps of LD formation as previously proposed" I find this statement confusing given that the authors claim that Ldo45 is already bound to the complex before LD formation.

      We thank the reviewer for raising this important point. We believe that our findings support previous hypotheses on the role of Ldo45. It has been suggested that Ldo45 is important for the early stages of lipid droplet (LD) formation (Teixeira et al., 2018; Eisenberg-Bord et al., 2018). As such, Ldo45 would need to be recruited to the seipin complex before or at the onset of LD formation. The observation that Ldo45 is present at the complex prior to LD formation provides strong support for its role in the initial steps of this process.

      To clarify this idea in the manuscript, we have revised the sentence on line 310 as follows:

      “Irrespective of the mechanism, our findings support the notion that Ldo45 plays a role in the early steps of LD formation, as previously proposed…”

      The model in Fig. 5 is essentially the same as the one shown in Fig. 1G.

      To aid the reader and avoid confusion, we intentionally used a similar color scheme throughout the manuscript. This may contribute to the perception that the figures are very similar. However, there are clear distinctions between them. In Figure 1G, we summarize our findings regarding the positioning of Ldo45 within the complex and note that we do not yet have data on Ldo16. Building upon these findings, in Figure 5 we speculate where Ldo16 might interact with Ldb16 and highlight that recruitment of both Ldo16 and Ldo45 increases with neutral lipid availability.

      Therefore, we believe that both figures serve distinct and complementary purposes, and that each is useful for communicating our overall message.

      Minor comments

      In the pull-downs in Fig. 2C, it seems that full-length Ldb16 is not enriched after the FLAG IP. What is the reason of this?

      We thank the reviewer for raising this interesting aspect. We do not know why this occurs, but it is clear that full length Ldb16 is not efficiently pulled down. We could speculate that this has to do with access to the FLAG moiety at the C terminus that may become inaccessible due to interactions or folding in the long unstructured C-terminus of Ldb16. This might explain why when we truncate the C terminus in the 1-133 mutant we achieve a more efficient IP.

      At the blots at Fig. 2C and 3A, the anti-Dpm1 Ab seems to recognize in the IP fractions a band labelled as non-specific, however this band is absent from the input.

      We thank the reviewer for raising this. This non-specific band is the light chain of the antibody used in the pull down that detaches from the matrix during elution – thus not found in the input. This is a common non-specific band that appears in Co-IP blots.

      Reviewer #2 (Significance (Required)):

      Regulation of seipin function is essential for proper LD biogenesis in eukaryotes, so this study addresses a fundamental question in the field. As stated above some functional analysis that goes beyond the biochemistry would be beneficial. There is some overlap with a recently published paper from the Wang group that also examines the assembly of seipin in yeast.

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      The manuscript by Klug and Carvalho investigates the interaction of the yeast seipin complex (Sei1 and Ldb16) with Ldo45 and Ldo16. Using a site-specific photocrosslinking approach, the authors map some residues of the seipin complex in contact Ldo45, demonstrating that Ldo45 likely binds to Ldb16 in the center of the Sei1-Ldb16 complex. They find that both Ldo45 and Ldo16 copurify with Ldb16. Complex assembly is demonstrated to occur independently of the presence of neutral lipids. An Ldb16 mutant, harbouring the transmembrane domain (1-133) but lacking the cytosolic region (previously shown to allow normal LD formation and still bind to Sei1) showed photocrosslinks with Ldo45, but not Ldo16. No crosslinks between Sei1 and either Ldo45 or Ldo16 were detected.

      Major: 1. Figure 2 shows CoIPs using different Ldb16 mutants/truncations to test for binding of Ldo45 and Ldo16. Both Ldo16 and Ldo45 copurify with full length Ldb16. Loss of the cytosolic part of Ldb16 strongly reduced binding of both Ldo45 and Ldo16, indicating that the TM-Helix-TM domain of Ldb16 (1-133) alone is not sufficient for proper binding of Ldo45 or Ldo16. The quantifications (2D and 2E) presented for this CoIP represent a n=2 with mean, standard deviation and statistics. To be a meaningful statistical analysis, the authors need to increase their n to at least n=3. In addition, they refer to the statistics they use here as "two-sided Fischer's T-test" in the respective Figure legend. To my knowledge, there is no such test, either it is Student's T-test or Fischer's exact test? Can the authors please clarify?

      We thank the reviewer for this comment and suggestions. We have now included 2 additional repeats for this experiment and the results essentially support our conclusion.

      The two-sided Fischer’s T-test is the name of the test in Graphpad- Prism. We wanted to acknowledge the test name so that the reader can trace the exact test we used in the program.

      1. Figure 2E shows the same data as 2D with different normalization to highlight the differences between binding to the domain 1-133 per se and binding to this domain when the linker helix is mutated. These mutations seem to cause a further decrease in binding of both Ldo45 and Ldo16. Still, effects are rather small, and the n=2 does not allow any meaningful statistical tests. To make this point, the authors should increase their sample number (at least n=3) to show that this difference is indeed meaningful and to allow statistical analysis.

      We thank the reviewer for this comment and suggestions. We have now included 2 additional repeats for this experiment and the results essentially support our conclusion.

      For Ldo16, no crosslinks were detected with Ldb16 TM-HelixTM domain (Figure 1). In line, CoIP demonstrated that the interaction between Ldo16 and Ldb16 was strongly reduced when the Ldb16 domain 1-133 was used for IP. Still, additional mutation of the linker helix in this 1-133 domain further reduced this interaction (to a similar extend as for Ldo45). Could the authors please clarify why the additional mutations in the linker helix region also decreased the binding of Ldo16, though the authors conclude from their crosslinking approach in Fig. 1 that Ldo16 does not interact with this region?

      We thank the reviewer for raising this point. Our negative crosslinking results for Ldo16 do not exclude the possibility of binding to that region; rather, they indicate that we were unable to detect Ldo16 there. Additionally, mutations in the linker helix may influence how Ldb16 interacts with seipin, including its positioning within the seipin ring and the membrane bilayer. These structural changes could, in turn, affect Ldo16 recruitment in ways that we do not fully understand.

      Similarly, also in 4D, a quantification with n=2 is presented, showing that some of the crosslinks are more prominently detectable when LD biogenesis is induced. The findings of this manuscript are completely based on results obtained with CoIP and photocrosslinking, and quantification of a sufficient n to allow statistical analysis will be essential.

      While we agree that additional experiments are useful for the Co-IP because of variability between experiments, this is less of a concern for the photocrosslinking experiments. In the case of photocrosslinking, we typically see much less variability and normally, for a given position, the effects are much more “black and white”- either there is a crosslink or not.

      Why is there nowhere a blot with crosslinked Ldb16 bands shown (but only non-crosslinked Ldb16, e.g. Fig. 1C)?

      We thank the reviewer for this comment. In all cases the amount of crosslinked product is very minor. This is particularly obvious in the case of Ldb16, where the non-crosslinked species dominates in the blots (as can be observed in figure S1B).

      Figure 3: The authors conclude that galactose-induced expression of either Dga1, Lro1 or Are1 in cells lacking all four enzymes for neutral lipid synthesis (quadruple deletion mutant) increases the levels of Ldb16. However, I do not see any difference on the FLAG-Ldb16 blot when comparing Ldb16 levels in the quadruple deletion mutant with or without Dga1, Lro1 or Are1, and no quantification is presented that might reveal very subtle differences not visible on the blot.

      We agree with the reviewer and modified the text to more accurately describe our results.

      OPTIONAL: Have the authors considered to assess which sites/domains of Ldo45 and Ldo16 are employed to bind to Ldb16?

      This is a logical next step that will be undertaken in a future study.

      Minor: 1. Page numbers would have been helpful to refer to specific text sections.

      Page numbers have been added

      1. Figure 3C: Unclear to me why the authors label a part of their immunoblot where they detected HA with OSW5?

      This was a mistake and has been corrected

      1. Figure 4D and corresponding figure legend could be improved in respect to labeling to clarify.

      we have added an X axis label and made extra clarifications in the legend

      1. Please correct his sentence: "These variants we expressed in cells where the other subunits of the Sei1 complex were epitope tagged to facilitate detection and expressed their endogenous loci."

      This sentence has been corrected

      Reviewer #3 (Significance (Required)):

      This is a short and interesting study completely based on UV-induced site-specific photocrosslinking and CoIPs that provides some new insights into the interaction surface between the Seipin complex and Ldo45 and the interaction between Ldo16 and Ldb16. Though in parts still premature, these findings will likely be of interest to the large community interested in lipid metabolism, expanding the role of Ldb16 from neutral lipid binding to regulator recruitment.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Summary:

      Phytophathogens including fungal pathogens such as F. graminearum remain a major threat to agriculture and food security. Several agriculturally relevant fungicides including the potent Quinofumelin have been discovered to date, yet the mechanisms of their action and specific targets within the cell remain unclear. This paper sets out to contribute to addressing these outstanding questions.

      We appreciate the reviewer's accurate summary of our manuscript.

      Strengths:

      The paper is generally well-written and provides convincing data to support their claims for the impact of Quinofumelin on fungal growth, the target of the drug, and the potential mechanism. Critically the authors identify an important pyrimidine pathway dihydroorotate dehydrogenase (DHODH) gene FgDHODHII in the pathway or mechanism of the drug from the prominent plant pathogen F. graminearum, confirming it as the target for Quinofumelin. The evidence is supported by transcriptomic, metabolomic as well as MST, SPR, molecular docking/structural biology analyses.

      We appreciate the reviewer's recognition of the strengths of our manuscript.

      Weaknesses:

      Whilst the study adds to our knowledge about this drug, it is, however, worth stating that previous reports (although in different organisms) by Higashimura et al., 2022 https://pmc.ncbi.nlm.nih.gov/articles/PMC9716045/ had already identified DHODH as the target for Quinofumelin and hence this knowledge is not new and hence the authors may want to tone down the claim that they discovered this mechanism and also give sufficient credit to the previous authors work at the start of the write-up in the introduction section rather than in passing as they did with reference 25? other specific recommendations to improve the text are provided in the recommendations for authors section below.

      We appreciate the reviewer's suggestion. In the revised manuscript, we have incorporated the reference in the introduction section and expanded the discussion of previous work on quinofumelin by Higashimura et al., 2022 in the discussion section to more effectively contextualize their contributions. Moreover, we have made revisions and provided responses in accordance with the recommendations.

      Reviewer #2 (Public review):

      Summary:

      In the current study, the authors aim to identify the mode of action/molecular mechanism of characterized a fungicide, quinofumelin, and its biological impact on transcriptomics and metabolomics in Fusarium graminearum and other Fusarium species. Two sets of data were generated between quinofumelin and no treatment group, and differentially abundant transcripts and metabolites were identified. The authors further focused on uridine/uracil biosynthesis pathway, considering the significant up- and down-regulation observed in final metabolites and some of the genes in the pathways. Using a deletion mutant of one of the genes and in vitro biochemical assays, the authors concluded that quinofumelin binds to the dihydroorotate dehydrogenase.

      We appreciate the reviewer's accurate summary of our manuscript.

      Strengths:

      Omics datasets were leveraged to understand the physiological impact of quinofumelin, showing the intracellular impact of the fungicide. The characterization of FgDHODHII deletion strains with supplemented metabolites clearly showed the impact of the enzyme on fungal growth.

      We appreciate the reviewer's recognition of the strengths of our manuscript.

      Weaknesses:

      Some interpretation of results is not accurate and some experiments lack controls. The comparison between quinofumelin-treated deletion strains, in the presence of different metabolites didn't suggest the fungicide is FgDHODHII specific. A wild type is required in this experiment.

      Potential Impact: Confirming the target of quinofumelin may help understand its resistance mehchanism, and further development of other inhibitory molecules against the target.

      The manuscript would benefit more in explaining the study rationale if more background on previous characterization of this fungicide on Fusarium is given.

      We appreciate the reviewer's suggestion. Under no treatment with quinofumelin, mycelial growth remains normal and does not require restoration. In the presence of quinofumelin treatment, the supplementation of downstream metabolites in the de novo pyrimidine biosynthesis pathway can restore mycelial growth that is inhibited by quinofumelin. The wild-type control group is illustrated in Figure 4. Figure 5b depicts the phenotypes of the deletion mutants. With respect to the relationship among quinofumelin, FgDHODHII, and other metabolites, quinofumelin specifically targets the key enzyme FgDHODHII in the de novo pyrimidine biosynthesis pathway, disrupting the conversion of dihydroorotate to orotate, which consequently inhibits the synthesis downstream metabolites including uracil. In our previous study, quinofumelin not only exhibited excellent antifungal activity against the mycelial growth and spore germination of F. graminearum, but also inhibited the biosynthesis of deoxynivalenol (DON). We have added this part to the introduction section.

      Reviewer #3 (Public review):

      Summary:

      The manuscript shows the mechanism of action of quinofumelin, a novel fungicide, against the fungus Fusarium graminearum. Through omics analysis, phenotypic analysis, and in silico approaches, the role of quinofumelin in targeting DHODH is uncovered.

      We appreciate the reviewer's accurate summary of our manuscript.

      Strengths:

      The phenotypic analysis and mutant generation are nice data and add to the role of metabolites in bypassing pyrimidine biosynthesis.

      We appreciate the reviewer's recognition of the strengths of our manuscript.

      Weaknesses:

      The role of DHODH in this class of fungicides has been known and this data does not add any further significance to the field. The work of Higashimura et al is not appreciated well enough as they already showed the role of quinofumelin upon DHODH II.

      There is no mention of the other fungicide within this class ipflufenoquin, as there is ample data on this molecule.

      We appreciate the reviewer's suggestion. We sincerely appreciate the reviewer's insightful comment regarding the work of Higashimura et al. We agree that their investigation into the role of quinofumelin in DHODH II inhibition provides critical foundational insights for this field. In the revised manuscript, we have incorporated the reference in the introduction section and expanded the discussion of their work in the discussion section to more effectively contextualize their contributions. The information regarding action mechanism of ipflufenoquin against filamentous fungi was added in discussion section.

      Reviewer #1 (Recommendations for the authors):

      (1) Given that the DHODH gene had been identified as a target earlier, could the authors perform blast experiments with this gene instead and let us know the percentage similarity between the FgDHODHII gene and the Pyricularia oryzae class II DHODH gene in the report by Higashimura et al., 2022.

      BLAST experiment revealed that the percentage similarity between the FgDHODHII gene and the class II DHODH gene of P. oryzae was 55.41%. We have added the description ‘Additionally, the amino acid sequence of the FgDHODHII exhibits 55.41% similarity to that of DHODHII from Pyricularia oryzae, as previously reported (Higashimura et al., 2022)’ in section Results.

      (2) Abstract:

      The authors started abbreviating new terms e.g. DEG, DMP, etc but then all of a sudden stopped and introduced UMP with no full meaning of the abbreviation. Please give the full meaning of all abbreviations in the text, UMP, STC, RM, etc.

      We have provided the full meaning for all abbreviations as requested.

      (3) Introduction section:

      The introduction talks very little about the work of other groups on quinofumelin. Perhaps add this information in and reference them including the work of Higashimura et al., 2022 which has done quite significant work on this topic but is not even mentioned in the background

      We have added the work of other groups on quinofumelin in section introduction.

      (4) General statements:

      Please show a model of the pyrimidine pathway that quinofumelin attacks to make it easier for the reader to understand the context. They could just copy this from KEGG

      We have added the model (Fig. 7).

      (5) Line 186:

      The authors did a great job of demonstrating interactions with the Quinofumelin and went to lengths to perform MST, SPR, molecular docking, and structural biology analyses yet in the end provide no details about the specific amino acid residues involved in the interaction. I would suggest that site-directed mutagenesis studies be performed on FgDHODHII to identify specific amino acid residues that interact with Quinofumelin and show that their disruption weakens Quinofumelin interaction with FgDHODHII.

      Thank you for this insightful suggestion. We fully agree with the importance of elucidating the interaction mechanism. At present, we are conducting site-directed mutagenesis studies based on interaction sites from docking results and the mutation sites of FgDHODHII from the resistant mutants; however, due to the limitations in the accuracy of existing predictive models, this work remains ongoing. Additionally, we are undertaking co-crystallization experiments of FgDHODHII with quinofumelin to directly and precisely reveal their interaction pattern

      (6) Line 76:

      What is the reference or evidence for the statement 'In addition, quinofumelin exhibits no cross-resistance to currently extensively used fungicides, indicating its unique action target against phytopathogenic fungi.

      If two fungicides share the same mechanism of action, they will exhibit cross resistance. Previous studies have demonstrated that quinofumelin retains effective antifungal activity against fungal strains resistant to commercial fungicides, indicating that quinofumelin does not exhibit cross-resistance with other commercially available fungicides and possesses a novel mechanism of action. Additionally, we have added the relevant inference.

      (7) Line 80-82:

      Again, considering the work of previous authors, this target is not newly discovered. Please consider toning down this statement 'This newly discovered selective target for antimicrobial agents provides a valuable resource for the design and development of targeted pesticides.'

      We have rewritten the description of this sentence.

      (8) Line 138: If the authors have identified DHODH in experimental groups (I assume in F. graminearum), what was the exact locus tag or gene name in F. graminearum, and why not just continue with this gene you identified or what is the point of doing a blast again to find the gene if the DHODH gene if it already came up in your transcriptomic or metabolic studies? This unfortunately doesn't make sense but could be explained better.

      The information of FgDHODHII (gene ID: FGSG_09678) has been added. We have revised this part.

      Reviewer #2 (Recommendations for the authors):

      (1) Line 40:

      Please add a reference.

      We have added the reference

      (2) Line 47:

      Please add a reference.

      We have added the reference.

      (3) Line 50:

      The lack of target diversity in existing fungicides doesn't necessarily serve as a reason for discovering new targets being more challenging than identifying new fungicides within existing categories, please consider adjusting the argument here. Instead, the authors can consider reasons for the lack of new targets in the field.

      We have revised the description.

      (4) Line 63:

      Please cite your source with the new technology.

      We have added the reference.

      (5) Line 68:

      What are you referring to for "targeted medicine", do you have a reference?

      We have revised the description and the reference.

      (6) Line 74:

      One of the papers referred to "quinoxyfen", what are the similarities and differences between the two? Please elaborate for the readership.

      Quinoxyfen, similar to quinofumelin, contains a quinoline ring structure. It inhibits mycelial growth by disrupting the MAP kinase signaling pathway in fungi (https://www.frac.info). In addition, quinoxyfen still exhibits excellent antifungal activity against the quinofumelin-resistant mutants (the findings from our group), indicating that action mechanism for quinofumelin and quinoxyfen differ.

      (7) Line 84:

      Please introduce why RNA-Seq was designed in the study first. What were the groups compared? How was the experiment set up? Without this background, it is hard to know why and how you did the experiment.

      According to your suggestions, we have added the description in Section Results. In addition, the experimental process was described in Section Materials and methods as follows: A total of 20 mL of YEPD medium containing 1 mL of conidia suspension (1×105 conidia/mL) was incubated with shaking (175 rpm/min) at 25°C. After 24 h, the medium was added with quinofumelin at a concentration of 1 μg/mL, while an equal amount of dimethyl sulfoxide was added as the control (CK). The incubation continued for another 48 h, followed by filtration and collection of hyphae. Carry out quantitative expression of genes, and then analyze the differences between groups based on the results of DESeq2 for quantitative expression.

      (8) Figures:

      The figure labeling is missing (Figures 1,2,3 etc). Please re-order your figure to match the text

      The figures have been inserted.

      (9) Line. 97:

      "Volcano plot" is a common plot to visualize DEGs, you can directly refer to the name.

      We have revised the description.

      (10) Figure 1d, 1e:

      Can you separate down- and up-regulated genes here? Does the count refer to gene number?

      The expression information for down- and up-regulated genes is presented in Figure 1a and 1b. However, these bubble plots do not distinguish down- and up-regulated genes. Instead, they only display the significant enrichment of differentially expressed genes in specific metabolic pathways. To more clearly represent the data, we have added the detailed counts of down- and up-regulated genes for each metabolic pathway in Supplementary Table S1 and S2. Here, the term "count" refers to differentially expressed genes that fall within a certain pathway.

      (11) Line 111:

      Again, no reasoning or description of why and how the experiment was done here.

      Based on the results of KEGG enrichment analysis, DEMs are associated with pathways such as thiamine metabolism, tryptophan metabolism, nitrogen metabolism, amino acid sugar and nucleotide sugar metabolism, pantothenic acid and CoA biosynthesis, and nucleotide sugar production compounds synthesis. To specifically investigate the metabolic pathways involved action mechanism of quinofumelin, we performed further metabolomic experiments. Therefore, we have added this description according the reviewer’s suggestions.

      (12) Figure 2a:

      It seems many more metabolites were reduced than increased. Is this expected? Due to the antifungal activity of this compound, how sick is the fungus upon treatment? A physiological study on F. graminearum (in a dose-dependent manner) should be done prior to the omics study. Why do you think there's a stark difference between positive and negative modes in terms of number of metabolites down- and up-regulated?

      Quinofumelin demonstrates exceptional antifungal activity against Fusarium graminearum. The results indicate that the number of reduced metabolites significantly exceeds the number of increased metabolites upon quinofumelin treatment. Mycelial growth is markedly inhibited under quinofumelin exposure. Prior to conducting omics studies, we performed a series of physiological and biochemical experiments (refer to Qian Xiu's dissertation https://paper.njau.edu.cn/openfile?dbid=72&objid=50_49_57_56_49_49&flag=free). Upon quinofumelin treatment, the number of down-regulated metabolites notably surpasses that of up-regulated metabolites compared to the control group. Based on the findings from the down-regulated metabolites, we conducted experiments by exogenously supplementing these metabolites under quinofumelin treatment to investigate whether mycelial growth could be restored. The results revealed that only the exogenous addition of uracil can restore mycelial growth impaired by quinofumelin.

      Quinofumelin exhibits an excellent antifungal activity against F. graminearum. At a concentration of 1 μg/mL, quinofumelin inhibits mycelial growth by up to 90%. This inhibitory effect indicates that life activities of F. graminearum are significantly disrupted by quinofumelin. Consequently, there is a marked difference in down- and up-regulated metabolites between quinofumelin-treated group and untreated control group. The detailed results were presented in Figures 1 and 2.

      (13) Figure 2e:

      This is a good analysis. To help represent the data more clearly, the authors can consider representing the expression using fold change with a p-value for each gene.

      To more clearly represent the data, we have incorporated the information on significant differences in metabolites in the de novo pyrimidine biosynthesis pathway, as affected by quinofumelin, in accordance with the reviewer’s suggestions.

      (14) Line 142:

      Please indicate fold change and p-value for statistical significance. Did you validate this by RT-qPCR?

      We validated the expression level of the DHODH gene under quinofumelin treatment using RT-qPCR. The results indicated that, upon treatment with the EC50 and EC90 concentrations of quinofumelin, the expression of the DHODH gene was significantly reduced by 11.91% and 33.77%, respectively (P<0.05). The corresponding results have been shown in Figure S4.

      (15) Line 145:

      It looks like uracil is the only metabolite differentially abundant in the samples - how did you conclude this whole pathway was impacted by the treatment?

      The experiments involving the exogenous supplementation of uracil revealed that the addition of uracil could restore mycelial growth inhibited by quinofumelin. Consequently, we infer that quinofumelin disrupts the de novo pyrimidine biosynthesis pathway. In addition, as uracil is the end product of the de novo pyrimidine biosynthesis pathway, the disruption of this pathway results in a reduction in uracil levels.

      (16) Figure 3:

      What sequence was used as the root of the tree? Why were the species chosen? Since the BLAST query was Homo sapiens sequence, would it be good to use that as the root?

      FgDHODHII sequence was used as the root of the tree. These selected fungal species represent significant plant-pathogenic fungi in agriculture production. According to your suggestion, we have removed the BLAST query of Homo sapiens in Figure 3.

      (17) Figure 4:

      How were the concentrations used to test chosen?

      Prior to this experiment, we carried out concentration-dependent exogenous supplementation experiments. The results indicated that 50 μg/mL of uracil can fully restore mycelial growth inhibited by quinofumelin. Consequently, we chose 50 μg/mL as the testing concentration.

      (18) Line 164:

      Why do you hypothesize supplementing dihydroorotate would restore resistance? The metabolite seemed accumulated in the treatment condition, whereas downstream metabolites were comparable or even depleted. The DHODH gene expression was suppressed. Would accumulation of dihydroorotate be associated with growth inhibition by quinofumelin? Please include the hypothesis and rationale for the experimental setup.

      DHODH regulates the conversion of dihydroorotate to orotate in the de novo pyrimidine biosynthesis pathway. The inhibition of DHODH by quinofumelin results in the accumulation of dihydroorotate and the depletion of the downstream metabolites, including UMP, uridine and uracil. Consequently, downstream metabolites were considered as positive controls, while upstream metabolite dihydroorotate served as a negative control. This design further demonstrates DHODH as action target of quinofumelin against F. graminearum. In addition, the accumulation of dihydroorotate is not associated with growth inhibition by quinofumelin; however, but the depletion of downstream metabolites in the de novo pyrimidine biosynthesis pathway is closely associated with growth inhibition by quinofumelin.

      (19) Line 168:

      I'm not sure if this conclusion is valid from your results in Figure 4 showing which metabolites restore growth.

      o minimize the potential influence of strain-specific effects, five strains were tested in the experiments shown in Figure 4. For each strain, the first row (first column) corresponds to control condition, while second row (first column) represents treatment with 1 μg/mL of quinofumelin, which completely inhibits mycelial growth. The second row (second column) for each strain represents the supplementation with 50 μg/mL of dihydroorotate fails to restore mycelial growth inhibited by quinofumelin. In contrast, the second row (third column, fourth column, fifth colomns) for each strain demonstrated that the supplementation of 50 μg/mL of UMP, uridine and uracil, respectively, can effectively restore mycelial growth inhibited by quinofumelin.

      (20) Figure 5a:

      The fact you saw growth of the deletion mutant means it's not lethal. However, the growth was severely inhibited.

      Our experimental results indicate that the growth of the deletion mutant is lethal. The mycelial growth observed originates from mycelial plugs that were not exposed to quinofumelin, rather than from the plates amended with quinofumelin.

      (21) Figure 5b:

      Would you expect different restoration of growth in the presence of quinofumelin vs. no treatment? The wild type control is missing here. Any conclusions about the relationship between quinofumelin, FgDHODHII, and other metabolites in the pathway?

      Under no treatment with quinofumelin, mycelial growth remains normal and does not require restoration. In the presence of quinofumelin treatment, the supplementation of downstream metabolites in the de novo pyrimidine biosynthesis pathway can restore mycelial growth that is inhibited by quinofumelin. The wild-type control group is illustrated in Figure 4. Figure 5b depicts the phenotypes of the deletion mutants. With respect to the relationship among quinofumelin, FgDHODHII, and other metabolites, quinofumelin specifically targets the key enzyme FgDHODHII in the de novo pyrimidine biosynthesis pathway, disrupting the conversion of dihydroorotate to orotate, which consequently inhibits the synthesis downstream metabolites including uracil.

      (22) Figure 6b:

      Lacking positive and negative controls (known binder and non-binder). What does the Kd (in comparison to other interactions) indicate in terms of binding strength?

      We tested the antifungal activities of publicly reported DHODH inhibitors (such as leflunomide and teriflunomide) against F. graminearum. The results showed that these inhibitors exhibited no significant inhibitory effects against the strain PH-1. Therefore, we lacked an effective chemical for use as a positive control in subsequent experiments. Biacore experiments offers detailed insights into molecular interactions between quinofumelin and DHODHII. As shown in Figure 6b, the left panel illustrates the time-dependent kinetic curve of quinofumelin binding to DHODHII. Within the first 60 s after quinofumelin was introduced onto the DHODHII surface, it bound to the immobilized DHODHII on the chip surface, with the response value increasing proportionally to the quinofumelin concentration. Following cessation of the injection at 60 s, quinofumelin spontaneously dissociated from the DHODHII surface, leading to a corresponding decrease in the response value. The data fitting curve presented on the right panel indicates that the affinity constant KD of quinofumelin for DHODHII is 6.606×10-6 M, which falls within the typical range of KD values (10-3 ~ 10-6 M) for protein-small molecule interaction patterns. A lower KD value indicates a stronger affinity; thus, quinofumelin exhibits strong binding affinity towards DHODHII.

      Reviewer #3 (Recommendations for the authors):

      The authors should add information about the other molecule within this class, ipflufenoquin, and what is known about it. There are already published data on its mode of action on DHODH and the role of pyrimidine biosynthesis.

      We have added the information regarding action mechanism of ipflufenoquin against filamentous fungi in discussion section.

      The work of Higashimura et al is not appreciated well enough as they already showed the role of quinofumelin upon DHODH II.

      We sincerely appreciate the reviewer's insightful comment regarding the work of Higashimura et al. We agree that their investigation into the role of quinofumelin in DHODH II inhibition provides critical foundational insights for this field. In the revised manuscript, we have incorporated the reference in the introduction section and expanded the discussion of their work in the discussion section to more effectively contextualize their contributions.

      It is unclear how the protein model was established and this should be included. What species is the molecule from and how was it obtained? How are they different from Fusarium?

      The three-dimensional structural model of F. graminearum DHODHII protein, as predicted by AlphaFold, was obtained from the UniProt database. Additionally, a detailed description along with appropriate citations has been incorporated in the ‘Manuscript’ file.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      Summary:

      This manuscript provides an initial characterization of three new missense variants of the PLCG1 gene associated with diverse disease phenotypes, utilizing a Drosophila model to investigate their molecular effects in vivo. Through the meticulous creation of genetic tools, the study assesses the small wing (sl) phenotype - the fly's ortholog of PLCG1 - across an array of phenotypes from longevity to behavior in both sl null mutants and variants. The findings indicate that the Drosophila PLCG1 ortholog displays aberrant functions. Notably, it is demonstrated that overexpression of both human and Drosophila PLCG1 variants in fly tissue leads to toxicity, underscoring their pathogenic potential in vivo.

      Strengths:

      The research effectively highlights the physiological significance of sl in Drosophila. In addition, the study establishes the in vivo toxicity of disease-associated variants of both human PLCG1 and Drosophila sl.

      Weaknesses:

      The study's limitations include the human PLCG1 transgene's inability to compensate for the Drosophila sl null mutant phenotype, suggesting potential functional divergence between the species. This discrepancy signals the need for additional exploration into the mechanistic nuances of PLCG1 variant pathogenesis, especially regarding their gain-of-function effects in vivo.

      Overall:

      The study offers compelling evidence for the pathogenicity of newly discovered disease-related PLCG1 variants, manifesting as toxicity in a Drosophila in vivo model, which substantiates the main claim by the authors. Nevertheless, a deeper inquiry into the specific in vivo mechanisms driving the toxicity caused by these variants in Drosophila could significantly enhance the study's impact.

      Reviewer #2 (Public Review):

      The manuscript by Ma et al. reports the identification of three unrelated people who are heterozygous for de novo missense variants in PLCG1, which encodes phospholipase C-gamma 1, a key signaling protein. These individuals present with partially overlapping phenotypes including hearing loss, ocular pathology, cardiac defects, abnormal brain imaging results, and immune defects. None of the patients present with all of the above phenotypes. PLCG1 has also been implicated as a possible driver for cell proliferation in cancer.

      The three missense variants found in the patients result in the following amino acid substitutions: His380Arg, Asp1019Gly, and Asp1165Gly. PLCG1 (and the closely related PLCG2) have a single Drosophila ortholog called small wing (sl). sl-null flies are viable but have small wings with ectopic wing veins and supernumerary photoreceptors in the eye. As all three amino acids affected in the patients are conserved in the fly protein, in this work Ma et al. tested whether they are pathogenic by expressing either reference or patient variant fly or human genes in Drosophila and determining the phenotypes produced by doing so.

      Expression in Drosophila of the variant forms of PLCG1 found in these three patients is toxic; highly so for Asp1019Gly and Asp1165Gly, much more modestly for His380Arg. Another variant, Asp1165His which was identified in lymphoma samples and shown by others to be hyperactive, was also found to be toxic in the Drosophila assays. However, a final variant, Ser1021Phe, identified by others in an individual with severe immune dysregulation, produced no phenotype upon expression in flies.

      Based on these results, the authors conclude that the PLCG1 variants found in patients are pathogenic, producing gain-of-function phenotypes through hyperactivity. In my view, the data supporting this conclusion are robust, despite the lack of a detectable phenotype with Ser1021Phe, and I have no concerns about the core experiments that comprise the paper.

      Figure 6, the last in the paper, provides information about PLCG1 structure and how the different variants would affect it. It shows that the His380, Asp1019, and Asp1165 all lie within catalytic domains or intramolecular interfaces and that variants in the latter two affect residues essential for autoinhibition. It also shows that Ser1021 falls outside the key interface occupied by Asp1019, but more could have been said about the potential effects of Ser1021Phe.

      Overall, I believe the authors fully achieved the aims of their study. The work will have a substantial impact because it reports the identification of novel disease-linked genes, and because it further demonstrates the high value of the Drosophila model for finding and understanding gene-disease linkages.

      Reviewer #3 (Public Review):

      Summary:

      The paper attempts to model the functional significance of variants of PLCG2 in a set of patients with variable clinical manifestations.

      Strengths:

      A study attempting to use the Drosophila system to test the function of variants reported from human patients.

      Weaknesses:

      Additional experiments are needed to shore up the claims in the paper. These are listed below.

      Major Comments:

      (1) Does the pLI/ missense constraint Z score prediction algorithm take into consideration whether the gene exhibits monoallelic or biallelic expression?

      To our knowledge, pLI and missense Z don't consider monoallelic or biallelic expression. Instead, they reflect sequence constraint and are calculated based on the observed versus expected variant frequencies in population databases.

      (2) Figure 1B: Include human PLCG2 in the alignment that displays the species-wide conserved variant residues.

      We have updated Figure 1B and incorporated the alignment of PLCG2.

      (3) Figure 4A:

      Given that

      (i) sl is predicted to be the fly ortholog for both mammalian PLCγ isozymes: PLCG1 and PLCG2 [Line 62]

      (ii) they are shown to have non-redundant roles in mammals [Line 71]

      (iii) reconstituting PLCG1 is highly toxic in flies, leading to increased lethality.

      This raises questions about whether sl mutant phenotypes are specifically caused by the absence of PLCG1 or PLCG2 functions in flies. Can hPLCG2 reconstitution in sl mutants be used as a negative control to rule out the possibility of the same?

      The studies about the non-redundant roles of PLCG1 and PLCG2 mainly concern the immune system.

      We have assessed the phenotypes in the sl<sup>T2A</sup>/Y; UAS-hPLCG2 flies. Expression of human PLCG2 in flies is also toxic and leads to severely reduced eclosion rate.

      We have updated the manuscript with these results, and included the eclosion rate of sl<sup>T2A</sup>/Y; UAS-hPLCG2 flies in the new Figure 4B.

      (4) Do slT2A/Y; UAS-PLCG1Reference flies survive when grown at 22{degree sign}C? Since transgenic fly expressing PLCG1 cDNA when driven under ubiquitous gal4s, Tubulin and Da, can result in viable progeny at 22{degree sign}C, the survival of slT2A/Y; UAS-PLCG1Reference should be possible.

      The eclosion rate of sl<sup>T2A</sup>/Y >PLCG1<sup>Reference</sup> flies at 22°C is slightly higher than at 25°C, but remains severely reduced compared to the UAS-Empty control. We have presented these results in the updated Figure S3.

      and similarly

      Does slT2A flies exhibit the phenotypes of (i) reduced eclosion rate (ii) reduced wing size and ectopic wing veins and (iii) extra R7 photoreceptor in the fly eye at 22{degree sign}C?

      The mutant phenotypes are still observed at 22 °C.

      If so, will it be possible to get a complete rescue of the slT2A mutant phenotypes with the hPLCG1 cDNA at 22{degree sign}C? This dataset is essential to establish Drosophila as an ideal model to study the PLCG1 de novo variants.

      Thank you for the suggestion. It is difficult to directly assess the rescue ability of the PLCG1 cDNAs due to the toxicity. However, our ectopic expression assays show that the variants are more toxic than the reference with variable severities, suggesting that the variants are deleterious.

      The ectopic expression strategy has been used to evaluate the consequence of genetic variants and has significantly contributed to the interpretation of their pathogenicity in many cases (reviewed in Her et al., Genome, 2024, PMID: 38412472).

      (5) Localisation and western blot assays to check if the introduction of the de novo mutations can have an impact on the sub-cellular targeting of the protein or protein stability respectively.

      Thank you for the suggestion.

      We expressed PLCG1 cDNAs in the larval salivary glands and performed antibody staining (rabbit anti-Human PLCG1; 1:100, Cell Signaling Technology, #5690). The larval salivary gland are composed of large columnar epithelia cells that are ideal for analyzing subcellular localization of proteins. The PLCG1 proteins are cytoplasmic and localize near the cell surface, with some enrichment in the plasma membrane region. The variant proteins are detected, and did not show significant difference in expression level or subcellular distribution compared to the reference. We did not include this data.

      (6) Analysing the nature of the reported gain of function (experimental proof for the same is missing in the manuscript) variants:

      Instead of directly showing the effect of introducing the de novo variant transgenes in the Drosophila model especially when the full-length PLCG1 is not able to completely rescue the slT2A phenotype;

      (i) Show that the gain-of-function variants can have an impact on the protein function or signalling via one of the three signalling outputs in the mammalian cell culture system: (i) inositol-1,4,5-trisphosphate production, (ii) intracellular Ca2+ release or (iii) increased phosphorylation of extracellular signal-related kinase, p65, and p38.

      We appreciate the reviewer’s suggestion. We utilized the CaLexA (calcium-dependent nuclear import of LexA) system (Masuyama et al., J Neurogenet, 2012, PMID: 22236090) to assess the intracellular Ca<sup>2+</sup> change associated with the expression of PLCG1 cDNAs in fly wing discs. The results show that, compared to the reference, expression of the D1019G or D1165G variants leads to elevated intracellular Ca<sup>2+</sup> levels, similar to the hyperactive S1021F and D1165H variants. However, the H380R or L597F variants did not show a detectable phenotype in this assay. These results suggest that D1019G and D1165G are hyperactive variants, whereas H380R and L597F variant are not, or their effect is too mild to be detected in this assay. We have updated the related sections in the manuscript and Figures 5A and S5.

      OR

      (ii) Run a molecular simulation to demonstrate how the protein's auto-inhibited state can be disrupted and basal lipase activity increased by introducing D1019G and D1165G, which destabilise the association between the C2 and cSH2 domains. The H380R variant may also exhibit characteristics similar to the previously documented H335A mutation which leaves the protein catalytically inactive as the residue is important to coordinate the incoming water molecule required for PIP2 hydrolysis.

      We utilized the DDMut platform, which predicts changes in the Gibbs Free Energy (ΔΔG) upon single and multiple point mutations (Zhou et al., Nucleic Acid Res, 2023, PMID: 37283042), to gain insight into the molecular dynamics changes of variants. The results are now presented in Figure S7.

      Additionally, we performed Molecular dynamics (MD) simulations. The results show that, similar to the hyperactive D1165H variant, the D1019G and D11656G variants exhibit increased disorganization, with a higher root mean square deviations (RMSD) compared to the reference PLCG1.The data are also presented in the updated Figure S7.

      (7) Clarify the reason for carrying out the wing-specific and eye-specific experiments using nub-gal4 and eyless-gal4 at 29˚C despite the high gal4 toxicity at this temperature.

      We used high temperature and high expression level to see if the mild H380R and L597F variants could show phenotypes in this condition.

      The toxicity of the two strong variants (D1019G and D1165G) has been consistently confirmed in multiple assays at different temperatures.

      (8) For the sake of completeness the authors should also report other variants identified in the genomes of these patients that could also contribute to the clinical features.

      Thank you!

      The additional variants and their potential contributions to the clinical features are listed and discussed in Table 1 and its legend.

      Reviewer #1 (Recommendations For The Authors):

      The manuscript's significant contribution is tempered by a lack of comprehensive analysis using the generated genetic reagents in Drosophila. To enhance our understanding of the PLCG1 orthologs, I suggest the following:

      (1) A more detailed molecular analysis to distinguish the actions of sl variants from the wild-type could be very informative. For example, utilizing the HA-epitope tag within the current UAS-transgenes could reveal more about the cellular dynamics and abundance of these variants, potentially elucidating mechanisms beyond gain-of-function.

      We appreciate the reviewer’s suggestion. The UAS-sl cDNA constructs contain stop codon and do not express an HA-epitope tag. Alternatively, we utilized commercially available antibodies against human PLCG1 antibodies to assess the subcellular localization and protein stability by expressing the reference and variant PLCG1 cDNAs in Drosophila larval salivary glands. The reference proteins are cytoplasmic with some enrichment along the plasma membrane. However, we did not observe significant differences between the reference and variant proteins in this assay. We did not include this data.

      (2) I suggest further investigating the relative contributions of developmental processes and acute (Adult) effects on the sl-variant phenotypes observed. For example, employing systems that allow for precise temporal control of gene expression, such as the temperature-sensitive Gal80, could differentiate between these effects, shedding light on the mechanisms that affect longevity and locomotion. This knowledge would be vital for a deeper understanding of the corresponding human disorders and for developing therapeutic interventions.

      We appreciate the reviewer’s suggestion. We utilized Tub-GAL4, Tub-GAL80<sup>ts</sup> to drive the expression of sl wild-type or variant cDNAs, and performed temperature shifts after eclosion to induce expression of the cDNAs only in adult flies. The sl<sup>D1184G</sup> variant (corresponding to PLCG1<sup>D1165G</sup>) caused severely reduced lifespan and the flies mostly die within 10 days. The sl<sup>D1041G</sup> variant (corresponding to PLCG1<sup>D1019G</sup>) led to reduced longevity and locomotion. The sl<sup>H384R</sup> variant (corresponding to PLCG1<sup>H380R</sup>) showed only a mild effect on longevity and no significant effect on climbing ability. These results suggest that the two strong variants (sl<sup>D1041G<sup> and sl<sup>D1184G</sup>) contribute to both developmental and acute effects while the H384R variant mainly contributes to developmental stages.

      I also suggest a more refined analysis of overexpression toxicity. Rather than solely focusing on ubiquitous transgene expression, overexpressing transgene in endogenous pattern using sl-t2a-Gal4 may yield a more nuanced understanding of the pathogenic mechanisms of gain-of-function mutations, particularly in the pathogenesis associated with these variants exclusively located in the coding regions.

      We appreciate the reviewer’s suggestion. We therefore performed the experiments using sl<sup>T2A</sup> to drive overexpression ofPLCG1cDNAs in heterozygous female progeny with one copy of wild-type sl+ (sl<sup>T2A</sup>/ yw > UAS-cDNAs). In this context, expression of PLCG1<sup>Reference<sup>, PLCG1<sup>H380R</sup>orPLCG1<sup>L597F</sup> is viable whereas expression of PLCG1<sup>D1019G</sup> or PLCG1<sup>D1165G</sup> is lethal, suggesting that the PLCG1<sup>D1019G</sup> and PLCG1<sup>D1165G</sup> variants exert a strong dominant toxic effect while the PLCG1<sup>H380R</sup>and PLCG1<sup>L597F<sup> are comparatively milder. Similar patterns have been consistently observed in other ectopic expression assays with varying degrees of severity. These results are updated in the manuscript and figures.

      Reviewer #2 (Recommendations For The Authors):

      The work in the paper could be usefully extended by determining the effects of expressing His380Phe and His380Ala in flies. These variants suppress PLCG1 activity, so their phenotype, if any, would be predicted not to be the same as His380Arg. Determining this would add further strength to the conclusions of the paper.

      We thank the reviewer for the constructive suggestions! We have tested the enzymatic-dead H380A variant, which still exhibits toxicity when expressed in sl<sup>T2A</sup>/Y hemizygous flies, but it is not toxic in heterozygous females suggesting that the reduced eclosion rate is likely not directly associated with enzymatic activity. We have updated the manuscript and figures accordingly.

    1. The good part was the immediate visual feedback in a GUI editor where you couldn't break anything by forgetting to close an XML tag! And you didn't even have to know all the types to type in because you had a visible list of UI elements you could pick from
    1. Reviewer #1 (Public review):

      The objectives of this research are to understand how key selector transcription factors, Tal1, Gata2, Gata3, determine GABAergic vs glutamatergic neuron fate from the rhombencephalic V2 precursor domain and how their spatiotemporal expression is controlled by upstream regulators. Toward these goals, the authors have generated an impressive array of scRNA, scATAC-seq, and CUT&Tag datasets obtained from dissociated E12.5 ventral R1 dissections. The rV2 was subsetted with well-known markers. The authors use an extensive set of computational approaches to identify temporal patterns of chromatin accessibility, TF motif binding activities (footprints), gene expression and regulatory motifs at the different selector gene loci. These analyses are used to predict upstream regulators, candidate accessible CREs, and DNA binding motifs through which the selectors may be controlled in rV2 by upstream regulators. Further analyses predict auto- and cross-regulatory interactions for maintenance of selector expression and the downstream effectors of alternative transmitter identities controlled by the selectors. The authors have achieved their aim of making predictions about upstream and downstream selector TF regulatory networks; their conclusions and predictions are largely well supported. The work clearly illustrates the daunting gene regulatory complexity likely at play in controlling rV2 transmitter fate.

      This is data-rich study and a valuable resource for future hypothesis testing, through perturbation approaches, of the many putative regulators and motifs identified in the study. The strengths of this work are the overall high quality of the datasets and in depth analyses. Through its comprehensive data and predictions, it is likely to have impact in advancing the understanding of GABAergic vs glutamatergic neuron fate decisions. The authors present a "simplified" gene regulatory model. However, the model does not illustrate the complexity of potential stage-specific upstream TF interactions with Tal1 and Vsx2 selector genes uncovered in TF footprinting analyses. While this seems nearly impossible to achieve given the plethora of potential functional TF inputs, the authors should consider assembling a focussed model by selectively illustrating the most robust, evidence-backed upstream TF input predictions, which are considered the strongest candidates for future hypothesis-driven perturbation experiments. It seems Insm1, Sox4, E2f1, Ebf1 and Tead2 TFs might be the strongest upstream candidates for future testing of Tal1 activation given the extensive analyses of their spatiotemporal expression patterns relative to Tal1, presented in Fig 4.

    2. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      The objective of this research is to understand how the expression of key selector transcription factors, Tal1, Gata2, Gata3, involved in GABAergic vs glutamatergic neuron fate from a single anterior hindbrain progenitor domain is transcriptionally controlled. With suitable scRNAseq, scATAC-seq, CUT&TAG, and footprinting datasets, the authors use an extensive set of computational approaches to identify putative regulatory elements and upstream transcription factors that may control selector TF expression. This data-rich study will be a valuable resource for future hypothesis testing, through perturbation approaches, of the many putative regulators identified in the study. The data are displayed in some of the main and supplemental figures in a way that makes it difficult to appreciate and understand the authors' presentation and interpretation of the data in the Results narrative. Primary images used for studying the timing and coexpression of putative upstream regulators, Insm1, E2f1, Ebf1, and Tead2 with Tal1 are difficult to interpret and do not convincingly support the authors' conclusions. There appears to be little overlap in the fluorescent labeling, and it is not clear whether the signals are located in the cell soma nucleus.

      Strengths:

      The main strength is that it is a data-rich compilation of putative upstream regulators of selector TFs that control GABAergic vs glutamatergic neuron fates in the brainstem. This resource now enables future perturbation-based hypothesis testing of the gene regulatory networks that help to build brain circuitry.

      We thank Reviewer #1 for the thoughtful assessment and recognition of the extensive datasets and computational approaches employed in our study. We appreciate the acknowledgment that our efforts in compiling data-rich resources for identifying putative regulators of key selector transcription factors (TFs)—Tal1, Gata2, and Gata3—are valuable for future hypothesis-driven research.

      Weaknesses:

      Some of the findings could be better displayed and discussed.

      We acknowledge the concerns raised regarding the clarity and interpretability of certain figures, particularly those related to expression analyses of candidate upstream regulators such as Insm1, E2f1, Ebf1, and Tead2 in relation to Tal1. We agree that clearer visualization and improved annotation of fluorescence signals are crucial to accurately support our conclusions. In our revised manuscript, we will enhance image clarity and clearly indicate sites of co-expression for Tal1 and its putative regulators, ensuring the results are more readily interpretable. Additionally, we will expand explanatory narratives within the figure legends to better align the figures with the results section.

      Reviewer #2 (Public review):

      Summary:

      In the manuscript, the authors seek to discover putative gene regulatory interactions underlying the lineage bifurcation process of neural progenitor cells in the embryonic mouse anterior brainstem into GABAergic and glutamatergic neuronal subtypes. The authors analyze single-cell RNA-seq and single-cell ATAC-seq datasets derived from the ventral rhombomere 1 of embryonic mouse brainstems to annotate cell types and make predictions or where TFs bind upstream and downstream of the effector TFs using computational methods. They add data on the genomic distributions of some of the key transcription factors and layer these onto the single-cell data to get a sense of the transcriptional dynamics.

      Strengths:

      The authors use a well-defined fate decision point from brainstem progenitors that can make two very different kinds of neurons. They already know the key TFs for selecting the neuronal type from genetic studies, so they focus their gene regulatory analysis squarely on the mechanisms that are immediately upstream and downstream of these key factors. The authors use a combination of single-cell and bulk sequencing data, prediction and validation, and computation.

      We also appreciate the thoughtful comments from Reviewer #2, highlighting the strengths of our approach in elucidating gene regulatory interactions that govern neuronal fate decisions in the embryonic mouse brainstem. We are pleased that our focus on a critical cell-fate decision point and the integration of diverse data modalities, combined with computational analyses, has been recognized as a key strength.

      Weaknesses:

      The study generates a lot of data about transcription factor binding sites, both predicted and validated, but the data are substantially descriptive. It remains challenging to understand how the integration of all these different TFs works together to switch terminal programs on and off.

      Reviewer #2 correctly points out that while our study provides extensive data on predicted and validated transcription factor binding sites, clearly illustrating how these factors collectively interact to regulate terminal neuronal differentiation programs remains challenging. We acknowledge the inherently descriptive nature of the current interpretation of our combined datasets.

      In our revision, we will clarify how the different data types support and corroborate one another, highlighting what we consider the most reliable observations of TF activity. Additionally, we will revise the discussion to address the challenges associated with interpreting the highly complex networks of interactions within the gene regulatory landscape.

      We sincerely thank both reviewers for their constructive feedback, which we believe will significantly enhance the quality and accessibility of our manuscript.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      (1) The results in Figure 3 and several associated supplements are mainly a description/inventory of putative CREs some of which are backed to some extent by previous transgenic studies. But given the way the authors chose to display the transgenic data in the Supplements, it is difficult to fully appreciate how well the transgenic data provide functional support. Take, for example, the Tal +40kb feature that maps to a midbrain enhancer: where exactly does +40kb map to the enhancer region? Is Tal +40kb really about 1kb long? The legend in Supplemental Figure 6 makes it difficult to interpret the bar charts; what is the meaning of: features not linked to gene -Enh? Some of the authors' claims are not readily evident or are inscrutable. For example, Tal locus features accessible in all cell groups are not evident (Fig 2A,B). Other cCREs are said to closely correlate with selector expression for example, Tal +.7kb and +40kb. However, inspection of the data seems to indicate that the two cCREs have very different dynamics and only +40kb seems to correlate with the expression track above it. Some features are described redundantly such as the Gata2 +22 kb, +25.3 kb, and +32.8 kb cCREs above and below the Gata3 cCRE. What is meant by: The feature is accessible at 3' position early, and gains accessibility at 5' positions ... Detailed feature analysis later indicated the binding of Nkx6-1 and Ascl1 that are expressed in the rV2 neuronal progenitors, at 3' positions, and binding of Insm1 and Tal1 TFs that are activated in early precursors, at 5' positions (Figure 3C).

      To allow easier assessment of the overlap of the features described in this study in reference to the transgenic studies, we have added further information about the scATAC features, cCREs and previously published enhancers, as well as visual schematics of the feature-enhancer overlaps in the Supplementary table 4. The Supplementary Table 4 column contents are also now explained in detail in the table legend (under the table). We hope those changes make the feature descriptions clearer. To answer the reviewer's question about the Tal1+40kb enhancer, the length of the published enhancer element is 685 bp and the overlapping scATAC feature length is 2067 bp (Supplementary Table 3, sheet Tal1, row 103).

      The legend and the chart labelling in the Supplementary Figure 5 (formerly Supplementary figure 6) have been elaborated, and the shown categories explained more clearly.

      Regarding the features at the Tal1 locus, the text has been revised and the references to the features accessible in all cell groups were removed. These features showed differences in the intensity of signal but were accessible in all cell groups. As the accessibility of these features does not correlate with Tal1 expression, they are of less interest in the context of this paper.

      The gain in accessibility of the +0.7kb and +40 kb features correlates with the onset of Tal1 RNA expression. This is now more clearly stated in the text, as " For example, the gain in the accessibility of Tal1 cCREs at +0.7 and +40 kb correlated temporally with the expression of Tal1 mRNA (Figure 2B), strongly increasing in the earliest GABAergic precursors (GA1) and maintained at a lower level in the more mature GABAergic precursor groups (GA2-GA6), " (Results, page 4). The reviewer is right that the later dynamics of the +0.7 and +40 cCREs differ and this is now stated more clearly in the text (Results, page 5, last chapter).

      The repetition in the description of the Gata2 +22 kb, +25.3 kb, and +32.8 kb cCREs has been removed.

      The Tal1 +23 kb cCRE showed within-feature differences in accessibility signal. This is explained in the text on page 5, referring to the relevant figure 2A, showing the accessibility or scATAC signal in cell groups and the features labelled below, and 3C, showing the location of the Nkx6-1 and Ascl1 binding sites in this feature: "The Tal1 +23 kb cCRE contained two scATAC-seq peaks, having temporally different patterns of accessibility. The feature is accessible at 3' position early, and gains accessibility at 5' positions concomitant with GABAergic differentiation (Figure 2A, accessibility). Detailed feature analysis later indicated that the 3' end of this feature contains binding sites of Nkx6-1 and Ascl1 that are expressed in the rV2 neuronal progenitors, while the 5' end contains TF binding sites of Insm1 and Tal1 TFs that are activated in early precursors (described below, see Figure 3C)."

      (2) Supplementary Figure 3 is not presented in the Results.

      Essential parts of previous Supplementary Figure 3 have been incorporated into the Figure 4 and the previous Supplementary Figure omitted.

      (3) The significance of Figure 3 and the many related supplements is difficult to understand. A large number of footprints with wide-ranging scores, many very weak or unbound, are displayed in the various temporal cell groups in different epigenomic regions of Tal1 and Vsx2. The footprints for GA1 and Ga2 are combined despite Tal1 showing stronger expression in GA1 and stronger accessibility (Figure 2). Many possibilities are outlined in the Results for how the many different kinds of motifs in the cCREs might bind particular TFs to control downstream TF expression, but no experiments are performed to test any of the possibilities. How well do the TOBIAS footprints align with C&T peaks? How was C&T used to validate footprints? Are Gata2, 3, and Vsx2 known to control Tal1 expression from perturbation experiments?

      Figure 3 and related supplements present examples of the primary data and summarise the results of comprehensive analysis. The methods of identifying the selector TF regulatory features and the regulators are described in the Methods (Materials and Methods page 16). Briefly, the correlation between feature accessibility and selector TF RNA expression (assessed by the LinkPeaks score and p-value) were used to select features shown in the Figure 3.

      We are aware of differences in Tal1 expression and accessibility between GA1 and GA2. However, number of cells in GA2 was not high enough for reliable footprint calculations and therefore we opted for combining related groups throughout the rV2 lineage for footprinting.

      As suggested, CUT&Tag could be used to validate the footprinting results with some restrictions. In the revised manuscript, we included analysis of CUT&Tag peak location and footprints similarly to an earlier study (Eastman et al. 2025). In summary, we analysed whether CUT&Tag peaks overlap locations in which footprinting was also recognized and vice versa. Per each TF with CUT&Tag data we calculated a) Total number of CUT&Tag consensus peaks b) Total number of bound TFBS (footprints) c) Percentage of CUT&Tag overlapping bound TFBS d) Percentage of bound TFBS overlapping CUT&Tag. These results are shown in Supplementary Table 6 and in Supplementary figure 11 with analysis described in Methods (Materials and Methods, page 19). There is considerable overlap between CUT&Tag peaks and bound footprints, comparable to one shown in Eastman et al. 2025. However, these two methods are not assumed to be completely matching for several reasons: binding by related/redundant TFs, antigen masking in the TF complex, chromatin association without DNA binding, etc. In addition, some CUT&Tag peaks with unbound footprints could arise from non-rV2 cells that were part of the bulk CUT&Tag analysis but not of the scATAC footprint analysis.

      The evidence for cross-regulation of selector genes and the regulation of Tal1 by Gata2, Gata3 and Vsx2 is now discussed (Discussion, chapter Selector TFs directly autoregulate themselves and cross-regulate each other, page 12-13). The regulation of Tal1 expression by Vsx2 has, to our knowledge, not been earlier studied.

      (4) Figure 4 findings are problematic as the primary images seem uninterpretable and unconvincing in supporting the authors' claims. There is a lack of clear evidence in support of TF coexpression and that their expression precedes Tal1.

      Figure 4 has been entirely redrawn with higher resolution images and a more logical layout. In the revised Figure 4, only the most relevant ISH images are shown and arrowheads are added showing the colocalization of the mRNA in the cell cytoplasm. Next to the plots of RNA expression along the apical-basal axis of r1, an explanatory image of the quantification process is added (Figure 4D).

      (5) What was gained from also performing ChromVAR other than finding more potential regulators and do the results of the two kinds of analyses corroborate one another? What is a dual GATA:TAL BS?

      Our motivation for ChromVAR analysis is now more clearly stated in the text (Results, page 9): “In addition to the regulatory elements of GABAergic fate selectors, we wanted to understand the genome-wide TF activity during rV2 neuron differentiation. To this aim we applied ChromVAR (Schep et al., 2017)" Also, further explanation about the Tal1and Gata binding sites has been added in this chapter (Results, page 9).

      The dual GATA:Tal BS (TAL1.H12CORE.0.P.B) is a 19-bp motif that consists of an E-box and GATA sequence, and is likely bound by heteromeric Gata2-Tal1 TF complex, but may also be bound by Gata2, Gata3 or Tal1 TFs separately. The other TFBSs of Tal1 contain a strong E-box motif and showed either a lower activity (TAL1.H12CORE.1.P.B) or an earlier peak of activity in common precursors with a decline after differentiation (TAL1.H12CORE.2.P.B) (Results, page 9).

      (6) The way the data are displayed it is difficult to see how the C&T confirmed the binding of Ebf1 and Insm1, Tal1, Gata2, and Gata3 (Supplementary Figures 9-11). Are there strong footprints (scores) centered at these peaks? One can't assess this with the way the displays are organized in Figure 3. What is the importance of the H3K4me3 C&T? Replicate consistency, while very strong for some TFs, seems low for other TFs, e.g. Vsx2 C&T on Tal1 and Gata2. The overlaps do not appear very strong in Supplementary Figure 10. Panels are not letter labeled.

      We have added an analysis of footprint locations within the CUT&Tag peaks (Supplementary Figure 11). The Figure shows that the footprints are enriched at the middle regions of the CUT&Tag peaks, which is expected if TF binding at the footprinted TFBS site was causative for the CUT&Tag peaks.

      The aim of the Supplementary Figures 9-11 (Supplementary Figures 8-10 in the revised manuscript) was to show the quality and replicability of the CUT&Tag.

      The anti-H3K4me3 antibody, as well as the anti-IgG antibody, was used in CUT&Tag as part of experiment technical controls. A strong CUT&Tag signal was detected in all our CUT&Tag experiments with H3K4me3. The H3K4me3 signal was not used in downstream analyses.

      We have now labelled the H3K4me3 data more clearly as "positive controls" in the Supplementary Figure 8. The control samples are shown only on Supplementary Figure 8 and not in the revised Supplementary Figure 10, to avoid repetition. The corresponding figure legends have been modified accordingly.

      To show replicate consistency, the genome view showing the Vsx2 CUT&Tag signal at Gata2 gene has been replaced by a more representative region (Supplementary Figure 8, Vsx2). The Vsx2 CUT&Tag signal at the Gata2 locus is weak, explaining why the replicability may have seemed low based on that example.

      Panel labelling is added on Supplementary Figures S8, S9, S10.  

      (7) It would be illuminating to present 1-2 detailed examples of specific target genes fulfilling the multiple criteria outlined in Methods and Figure 6A.

      We now present examples of the supporting evidence used in the definition of selector gene target features and target genes. The new Supplementary Figure 12 shows an example gene Lmo1 that was identified as a target gene of Tal1, Gata2 and Gata3.

      Reviewer #2 (Recommendations for the authors):

      (1) The authors perform CUT&Tag to ask whether Tal1 and other TFs indeed bind putative CREs computed. However, it is unclear whether some of the antibodies (such as Gata3, Vsx2, Insm1, Tead2, Ebf1) used are knock-out validated for CUT&Tag or a similar type of assay such as ChIP-seq and therefore whether the peaks called are specific. The authors should either provide specificity data for these or a reference that has these data. The Vsx2 signal in Figure S9 looks particularly unconvincing.

      Information about the target specificity of the antibodies can be found in previous studies or in the product information. The references to the studies have been now added in the Methods (Materials and Methods, CUT&Tag, pages 18-19). Some of the antibodies are indeed not yet validated for ChIP-seq, Cut-and-run or CUT&Tag. This is now clearly stated in the Materials and Methods (page 19): "The anti-Ebf1, anti-Tal1, anti-IgG and anti-H3K4me3 antibodies were tested on Cut-and-Run or ChIP-seq previously (Boller et al., 2016b; Courtial et al., 2012) and Cell Signalling product information). The anti-Gata2 and anti-Gata3 antibodies are ChIP-validated ((Ahluwalia et al., 2020a) and Abcam product information). There are no previous results on ChIP, ChIP-seq or CUT&Tag with the anti-Insm1, anti-Tead2 and anti-Vsx2 antibodies used here. The specificity and nuclear localization have been demonstrated in immunohistochemistry with anti-Vsx2 (Ahluwalia et al., 2020b) and anti-Tead2 (Biorbyt product information). We observed good correlation between replicates with anti-Insm1, similar to all antibodies used here, but its specificity to target was not specifically tested". We admit that specificity testing with knockout samples would increase confidence in our data. However, we have observed robust signals and good replicability in the CUT&Tag for the antibodies shown here.

      Vsx2 CUT&Tag signal at the loci previously shown in Supplementary Figure S9 (now Supplementary Figure 8) is weak, explaining why the replicability may seem low based on those examples. The genome view showing the Vsx2 CUT&Tag signal at Gata2 gene locus in Supplementary Figure 8 (previously Supplementary figure 9) has now been replaced by a view of Vsx2 locus that is more representative of the signal.

      (2) It is unclear why the authors chose to focus on the transcription factor genes described in line 626 as opposed to the many other putative TFs described in Figure 3/Supplementary Figure 8. This is the major challenge of the paper - the authors are trying to tell a very targeted story but they show a lot of different names of TFs and it is hard to follow which are most important.

      We agree with the reviewer that the process of selection of the genes of interest is not always transparent. We are aware that interpretations of a paper are based on the known functions of the putative regulatory TFs, however additional aspects of regulation could be revealed even if the biological functions of all the TFs were known. This is now stated in the Discussion “Caveats of the study” chapter. It would be relevant to study all identified candidate genes, but as often is the case, our possibilities were limited by the availability of materials (probes, antibodies), time, and financial resources. In the revised manuscript, we now briefly describe the biological processes related to the selected candidate regulatory TFs of the Tal1 gene (Results, page 8, "Pattern of expression of the putative regulators of Tal1 in the r1"). We hope this justifies the focus on them in our RNA co-expression analysis. The TFs analysed by RNAscope ISH are examples, which demonstrate alignment of the tissue expression patterns with the scRNA-seq data, suggesting that the dynamics of gene expression detected by scRNA-seq generally reflects the pattern of expression in the developing brainstem.

      (3) How is the RNA expression level in Figure 5B and 4D-L computed? These are the clusters defined by scATAC-seq. Is this an inferred RNA expression? This should be made more clear in the text.

      The charts in Figures 5B and 4G,H,I show inferred RNA expression. The Y-axis labels have now been corrected and include the term inferred’. RNA expression in the scATAC-seq cell clusters is inferred from the scRNA-seq cells after the integration of the datasets.

      (4) The convergence of the GABA TFs on a common set of target genes reminds me of a nice study from the Rubenstein lab PMID: 34921112 that looked at a set of TFs in cortical progenitors. This might be a good comparison study for the authors to use as a model to discuss the convergence data.

      We thank the reviewer for bringing this article to our attention. The article is now discussed in the manuscript (Discussion, page 11).

      (5) The data in Figure 4, the in-situ figure, needs significant work. First, the images especially B, F, and J appear to be of quite low resolution, so they are hard to see. It is unclear exactly what is being graphed in C, G, and K and it does not seem to match the text of the results section. Perhaps better labeling of the figure and a more thorough description will make it clear. It is not clear how D, H, and L were supposed to relate to the images - presumably, this is a case where cell type is spatially organized, but this was unclear in the text if this is known and it needs to be more clearly described. Overall, as currently presented this figure does not support the descriptions and conclusions in the text.

      Figure 4 has been entirely redrawn with higher resolution images and more logical layout. In the revised Figure 4, the ISH data and the quantification plots are better presented; arrows showing the colocalization of the mRNA in the cell cytoplasm were added; and an explanatory image of the quantification process is added on (D).

      Minor points

      (1) Helpful if the authors include scATAC-seq coverage plots for neuronal subtype markers in Figure 1/S1.

      We are unfortunately uncertain what is meant with this request. Subtype markers in Figure 1/S1 scATAC-seq based clusters are shown from inferred RNA expression, and therefore these marker expression plots do not have any coverage information available.

      (2) The authors in line 429 mention the testing of features within TADs. They should make it clear in the main text (although tadmap is mentioned in the methods) that this is a prediction made by aggregating HiC datasets.

      Good point and that this detail has been added to both page 3 and 16.

      (3) The authors should include a table with the phastcons output described between lines 511 and 521 in the main or supplementary figures.

      We have now clarified int the text that we did not recalculate any phastcons results, we merely used already published and available conservation score per nucleotide as provided by the original authors (Siepel et al. 2005). (Results, page 5: revised text is " To that aim, we used nucleotide conservation scores from UCSC (Siepel et al., 2005). We overlaid conservation information and scATAC-seq features to both validate feature definition as well as to provide corroborating evidence to recognize cCRE elements.")

      (4) It is very difficult to read the names of the transcription factor genes described in Figure 3B-D and Supplementary Figure 8 - it would be helpful to resize the text.

      The Figures 3B-D and Supplementary Figure 7 (former Supplementary figure 8) have been modified, removing unnecessary elements and increasing the size of text.

      (5) It is unclear what strain of mouse is used in the study - this should be mentioned in the methods.

      Outbred NMRI mouse strain was used in this study. Information about the mouse strain is added in Materials and Methods: scRNA-seq samples (page 14), scATAC-seq samples (page 15), RNAscope in situ hybridization (page 17) and CUT&Tag (page 18).

      (6) Text size in Figure 6 should be larger. R-T could be moved to a Supplementary Figure.

      The Figure 6 has been revised, making the charts clearer and the labels of charts larger. The Figure 6R-S have been replaced by Supplementary table 8 and the Figure 6T is now shown as a new Figure (Figure 7).

      Additional corrections in figures

      Figure 6 D,I,N had wrong y-axis scale. It has been corrected, though it does not have an effect on the interpretation of the data as Pos.link and Neg.link counts were compared to each other’s (ratio).

      On Figure 2B, the heatmap labels were shifted making it difficult to identify the feature name per row. This is now corrected.

    1. Reviewer #3 (Public review):

      Summary:

      The study explores the cellular and circuit features that distinguish dentate gyrus semilunar granule cells and granule cells activated during contextual memory formation. The authors tag memory and enriched environment-activated dentate granule cells and semilunar granule cells and show their reactivation in an appropriate context a week later. They perform patch clamp recordings from activated and surrounding neurons to understand the cellular driving of the selective activation of semilunar granule cells and granule cells. Authors perform dual patch clamp recordings from various pairs of labeled semilunar granule cells, labeled granule cells, unlabeled granule cells, and unlabeled semilunar granule cells. The sustained firing of semilunar granule cells explained their preferential activation. In addition, activated neurons received correlated inputs.

      Strengths:

      The authors confirmed the engram cell properties of activated semilunar granule cells and granule cells in two different paradigms, validating these findings using an enriched environment paradigm.

      The authors carefully separate semilunar granule cells from granule cells, using electrophysiology and morphology. Cell filling to confirm morphology further strengthens confidence.

      The dual patch recordings, which are technically challenging, are carefully performed, and the presence of synaptic activity is confirmed.

      The authors report that sEPSCs recorded from labelled sGCS are more frequent, higher in amplitude, and temporally correlated than their counterparts.

      The authors provide evidence that lateral inhibition is not playing a role in the selective activation of sGCs during contextual learning.

      Exclusive use of slice physiology limits some of these conclusions due to the shearing of connections during the slicing process.

    1. Reviewer #2 (Public review):

      In this manuscript, Mella et al. investigate the effect of GFP tagging on the localization and stability of the nuclear-localized tail-anchored (TA) protein Emerin. A previous study from this group demonstrated that C-terminally GFP-tagged Emerin traffics to the plasma membrane and is eventually targeted to lysosomes for degradation. It has been suggested that the C-terminal tagging of TA proteins may shift their insertion from the post-translational TRC/GET pathway to the co-translational SRP-mediated pathway. Consistent with this, the authors confirm that C-terminal GFP tagging causes Emerin to mislocalize to the plasma membrane and subsequently to lysosomes.

      In this study, they investigate the mechanism underlying this misrouting. By manipulating the cytosolic domain and the hydrophobicity of the transmembrane domain (TMD), the authors show that an ER retention sequence and increased TMD hydrophobicity contribute to Emerin's trafficking through the secretory pathway.

      This reviewer had previously raised the concern that the potential role of the GFP tag within the ER lumen in promoting secretory trafficking was not addressed. In the revised manuscript, the authors respond to this concern by examining the co-localization of Emerin-GFP with the ER exit site marker Sec31A. Their data show that the presence of the C-terminal GFP tag increases Emerin's propensity to engage ER exit sites, supporting the conclusion that GFP tagging promotes its entry into the secretory pathway.

    2. Author Response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Summary:

      The authors revisit the specific domains/signals required for the redirection of an inner nuclear membrane protein, emerin, to the secretory pathway. They find that epitope tagging influences protein fate, serving as a cautionary tale for how different visualisation methods are used. Multiple tags and lines of evidence are used, providing solid evidence for the altered fate of different constructs.

      Strengths:

      This is a thorough dissection of domains and properties that confer INM retention vs secretion to the PM/lysosome, and will serve the community well as a caution regarding the placement of tags and how this influences protein fate.

      Weaknesses:

      Biogenesis pathways are not explored experimentally: it would be interesting to know if the lysosomal pool arrives there via the secretory pathway (eg by engineering a glycosylation site into the lumenal domain) or by autophagy, where failed insertion products may accumulate in the cytoplasm and be degraded directly from cytoplasmic inclusions.

      This manuscript is a Research Advance that follows previous work that we published in eLife on this topic (Buchwalter et al., eLife 2019; PMID 31599721). In that prior publication, we showed that emerin-GFP arrives at the lysosome by secretion and exposure at the PM, followed by internalization. While we state these previous findings in this manuscript, we did not explicitly restate here how we came to that conclusion. In the 2019 study, we (i) engineered in a glycosylation site, which demonstrated that emerin-GFP receives complex, Endo H-resistant N-glycans, indicating passage through the Golgi; (ii) performed cell surface labeling, which confirmed that emerin accesses the PM; and interfered with (iii) the early secretory pathway using brefeldin A and with (iv) lysosomal function using bafilomycin A1. Further, we ruled out autophagy as a major contributor to emerin trafficking by treating cells with the PI3K inhibitor KU55933, which had no effect on emerin’s lysosomal delivery.

      It would be helpful if the topology of constructs could be directly demonstrated by pulse-labelling and protease protection. It's possible that there are mixed pools of both topologies that might complicate interpretation.

      We demonstrate that emerin’s TMD inserts in a tail-anchored orientation (C terminus in ER lumen) by appending a GFP tag to either the N or C terminus, followed by anti-GFP antibody labeling of unpermeabilized cells (Fig. 1G). This shows the preferred topology of emerin’s wild type TMD.

      As the reviewer points out, it is possible that our manipulations of the TMD sequence (Fig. 2D-E) alter its preferred topology of membrane insertion. We addressed this question by performing anti-GFP and anti-emerin antibody labeling of the less hydrophobic TMD mutant (EMD-TMDm-GFP) after selective permeabilization of the plasma membrane (Figure 2 supplement, panel F). If emerin biogenesis is normal, the GFP tag should face the ER lumen while the emerin antibody epitope should be cytosolic. If the fidelity of emerin’s membrane insertion is impaired, the GFP tag could be exposed to the cytosol (flipped orientation), which would be detected by anti-GFP labeling upon plasma membrane permeabilization. We find that the C-terminal GFP tag is completely inaccessible to antibody when the PM is selectively permeabilized with digitonin, but is readily detected when all intracellular membranes are permeabilized with Triton-X-100. These data confirm that mutating emerin’s TMD does not disrupt the protein’s membrane topology.

      Reviewer #2 (Public review):

      In this manuscript, Mella et al. investigate the effect of GFP tagging on the localization and stability of the nuclear-localized tail-anchored (TA) protein Emerin. A previous study from this group showed that C-terminally GFP-tagged Emerin protein traffics to the plasma membrane and reaches lysosomes for degradation. It is suggested that the C-terminal tagging of tail-anchored proteins shifts their insertion from the post-translational TRC/GET pathway to the co-translational SRP-mediated pathway. The authors of this paper found that C-terminal GFP tagging causes Emerin to localize to the plasma membrane and eventually reach lysosomes. They investigated the mechanism by which Emerin-GFP moves to the secretory pathway. By manipulating the cytosolic domain and the hydrophobicity of the transmembrane domain (TMD), the authors identify that an ER retention sequence and strong TMD hydrophobicity contribute to Emerin trafficking to the secretory pathway. Overall, the data are solid, and the knowledge will be useful to the field. However, the authors do not fully answer the question of why C-terminally GFP-tagged Emerin moves to the secretory pathway. Importantly, the authors did not consider the possible roles of GFP in the ER lumen influencing Emerin trafficking to the secretory pathway.

      Reviewer #2 (Recommendations for the authors):

      Major concerns:

      (1) The authors suggest that an ER retention sequence and high hydrophobicity of Emerin TMD contribute to its trafficking to the secretory pathway. However, these two features are also present in WT Emerin, which correctly localizes to the inner nuclear membrane. Additionally, the authors show that the ER retention sequence is normally obscured by the LEM domain. The key difference between WT Emerin and Emerin-GFP is the presence of GFP in the ER lumen. The authors missed investigating the role of GFP in the ER lumen in influencing Emerin trafficking to the secretory pathway. It is likely that COPII carrier vesicles capture GFP protein in the lumen as part of the bulk flow mechanism for transport to the Golgi compartment. The authors could easily test this by appending a KDEL sequence to the C-terminus of GFP; this should now redirect the protein to the nucleus.

      We agree with the reviewer’s point that the presence of lumenal GFP somehow promotes secretion of emerin from the ER, likely at the stage of enhancing its packaging into COPII vesicles. We struggle to think about how to interpret the KDEL tagging experiment that the reviewer proposes, as the KDEL receptor predominantly recycles soluble proteins from the Golgi to the ER, while emerin is a membrane protein; and we have shown that emerin already contains a putative COPI-interacting RRR recycling motif in its cytosolic domain.

      Nevertheless, we agree with the reviewer that it is worthwhile to test the possibility that addition of GFP to emerin’s C-terminus promotes capture by COPII vesicles. We have evaluated this question by performing temperature block experiments to cause cargo accumulation within stalled COPII-coated ER exit sites, then comparing the propensity of various untagged and tagged emerin variants to enrich in ER exit sites as judged by colocalization with the COPII subunit Sec31a. These data now appear in Figure 4 supplement 1. These experiments indicate that emerin-GFP samples ER exit sites significantly more than does untagged emerin. Further, the ER exit site enrichment of emerin-GFP is dampened by shortening emerin’s TMD. We do not see further enrichment of any emerin variant in ER exit sites when COPII vesicle budding is stalled by low temperature incubation, implying that emerin lacks any positive sorting signals that direct its selective enrichment in COPII vesicles. Altogether, these data indicate that both emerin’s long and hydrophobic TMD and the addition of a lumenal GFP tag increase emerin’s propensity to sample ER exit sites and undergo non-selective, “bulk flow” ER export.

      (2) The authors nicely demonstrate that the hydrophobicity of Emerin TMD plays a role in its secretory trafficking. I wonder if this feature may be beneficial for cells to degrade newly synthesized Emerin via the lysosomal pathway during mitosis, as the nuclear envelope breakdown may prevent the correct localization of newly synthesized Emerin. The authors could test Emerin localization during mitosis. Such findings could add to the physiological significance of their findings. At the minimum, they should discuss this possibility.

      We thank the reviewer for this insightful suggestion. It is attractive to speculate that secretory trafficking might enable lysosomal degradation of emerin during mitosis, when its lamin anchor has been depolymerized. However, we think it is unlikely that mitotic trafficking contributes significantly to the turnover flux of untagged emerin; if it did, we would expect to see higher steady state levels and/or slowed turnover of emerin mutants that cannot traffic to the lysosome. We did not observe this outcome. Instead, mutations that enhance (RA) or impair (TMDm) emerin trafficking had no effect on the untagged protein’s steady-state levels (Fig. 4G).

      Minor concerns:

      (1) On page 7, the authors note that "FLAG-RA construct was not poorly expressed relative to WR, in contrast with RA-GFP (Figures S3C, 2I)." The expression levels of these proteins cannot be compared across two different blots.

      We apologize for this confusion; we were implying two distinct comparisons to internal controls present on each blot. We have adjusted the text to read “FLAG-RA construct was not poorly expressed relative to FLAG-WT (Fig. S3C) in contrast to RA-GFP compared to WT-GFP (Fig. 2I).”

      (2) In the first paragraph of the discussion, the authors suggest that aromatic amino acids facilitate trafficking to lysosomes. However, they only replaced aromatic amino acids with alanine residues. If they want to make this claim, they should test other amino acids, particularly hydrophobic amino acids such as leucine.

      The reviewer may be inferring more import from our statement than we intended. We focused on these aromatic residues within the TMD because they contribute strongly to its overall hydrophobicity. Experimentally, we determined that nonconservative alanine substitutions of these aromatic residues inhibited trafficking. We do not state and do not intend to imply that the aromatic character of these residues specifically influences trafficking propensity, and we agree with the reviewer that to test such a question would require additional substitutions with non-aromatic hydrophobic amino acids.

      We realize that our phrasing may have been misleading by opening with discussion of the aromatic amino acids; in the revised discussion paragraph, we instead lead with discussion of TMD hydrophobicity, and then state how the specific substitutions we made affect trafficking.

      Reviewing Editor comments:

      While reviewer 1 did not provide any recommendations to the authors, I agree with this reviewer that the authors should validate the topology of their tagged proteins (at least for the one used to draw key conclusions). Given that Emerin is a tail-anchored protein, having a big GFP tag at the C-terminus could mess up ER insertion, causing the protein to take a wrong topology or even be mislocalized in the cytosol, particularly under overexpression conditions. In either case, it can be subject to quality control-dependent clearance via either autophagy, ERphagy, or ER-to-lysosome trafficking. I think that the authors should try a few straightforward experiments such as brefeldin A treatment or dominant negative Sar1 expression to test whether blocking conventional ER-to-Golgi trafficking affects lysosomal delivery of Emerin. I also think that the authors should discuss their findings in the context of the RESET pathway reported previously (PMID: 25083867). The ER stress-dependent trafficking of tagged Emerin to the PM and lysosomes appears to follow a similar trafficking pattern as RESET, although the authors did not demonstrate that Emerin traffic to lysosomes via the PM. In this regard, they should tone down their conclusion and discuss their findings in the context of the RESET pathway, which could serve as a model for their substrate.

      We agree that validating the topology of TMD mutants is important, and now include these experiments in the revised manuscript (please see our response to Reviewer 1 above).

      Please see our response to Reviewer 1’s public review; we previously determined that emerin-GFP undergoes ER-to-Golgi trafficking (see our 2019 study).

      We recognize the major parallels between our findings and the RESET pathway. In our 2019 study, we found that similarly to other RESET cargoes, emerin-GFP travels through the secretory pathway, is exposed at the PM, and is then internalized and delivered to lysosomes. We discussed these strong parallels to RESET in our 2019 study. In this revised manuscript, we now also point out the parallels between emerin trafficking and RESET and cite the 2014 study by Satpute-Krishnan and colleagues (PMID 25083867)

    1. Reviewer #2 (Public review):

      Summary:

      The authors developed a cell-type specific fluorescence-tagging approach using a CRISPR/Cas9 induced spilt-GFP reconstitution system to visualize endogenous Bruchpilot (BRP) clusters as presynaptic active zones (AZ) in specific cell types of the mushroom body (MB) in the adult Drosophila brain. This AZ profiling approach was implemented in a high-throughput quantification process, allowing for the comparison of synapse profiles within single cells, cell types, MB compartments, and between different individuals. The aim is to analyse in more detail neuronal connectivity and circuits in this centre of associative learning. These are notoriously difficult to investigate due to the density of cells and structures within a cell. The authors detect and characterize cell-type-specific differences in BRP-dependent profiling of presynapses in different compartments of the MB, while intracellular AZ distribution was found to be stereotyped. Next to the descriptive part characterizing various AZ profiles in the MB, the authors apply an associative learning assay and detect consequent AZ re-organisation.

      Strengths:

      The strength of this study lies in the outstanding resolution of synapse profiling in the extremely dense compartments of the MB. This detailed analysis will be the entry point for many future analyses of synapse diversity in connection with functional specificity to uncover the molecular mechanisms underlying learning and memory formation and neuronal network logics. Therefore, this approach is of high importance for the scientific community and a valuable tool to investigate and correlate AZ architecture and synapse function in the CNS.

      Weaknesses:

      The results and conclusions presented in this study are, in many aspects, well-supported by the data presented. To further support the key findings of the manuscript, additional controls, comments, and possibly broader functional analysis would be helpful. In particular:

      (1) All experiments in the study are based on spilt-GFP lines (BRP:GFP11 and UAS-GFP1-10). The Materials and Methods section does not contain any cloning strategy (gRNA, primer, PCR/sequencing validation, exact position of tag insertion, etc.) and only refers to a bioRxiv publication. It might be helpful to add a Materials and Methods section (at least for the BRP:GFP11 line). Additionally, as this is an on locus insertion the in BRP-ORF, it needs a general validation of this line, including controls (Western Blot and correlative antibody staining against BRP) showing that overall BRP expression is not compromised due to the GFP insertion and localizes as BRP in wild type flies, that flies are viable, have no defects in locomotion and learning and memory formation and MB morphology is not affected compared to wild type animals.

      (2) Several aspects of image acquisition and high-throughput quantification data analysis would benefit from a more detailed clarification.

      a) For BRP cluster segmentation it is stated in the Materials and Methods state, that intensity threshold and noise tolerance were "set" - this setting has a large effect on the quantification, and it should be specified and setting criteria named and justified (if set manually (how and why) or automatically (to what)). Additionally, if Pyhton was used for "Nearest Neigbor" analysis, the code should be made available within this manuscript; otherwise, it is difficult to judge the quality of this quantification step.

      b) To better evaluate the quality of both the imaging analysis and image presentation, it would be important to state, if presented and analysed images are deconvolved and if so, at least one proof of principle example of a comparison of original and deconvoluted file should be shown and quantified to show the impact of deconvolution on the output quality as this is central to this study.

      (3) The major part of this study focuses on the description and comparison of the divergent synapse parameters across cell-types in MB compartments, which is highly relevant and interesting. Yet it would be very interesting to connect this new method with functional aspects of the heterogeneous synapses. This is done in Figure 7 with an associative learning approach, which is, in part, not trivial to follow for the reader and would profit from a more comprehensive analysis.

      a) It would be important for the understanding and validation of the learning induced changes, if not (only) a ratio (of AZ density/local intensity) would be presented, but both values on their own, especially to allow a comparison to the quoted, previous AZ remodelling analysis quantifying BRP intensities (ref. 17, 18). It should be elucidated in more detail why only the ratio was presented here.

      b) The reason why a single instead of a dual odour conditioning was performed could be clarified and discussed (would that have the same effects?).

      c) Additionally, "controls" for the unpaired values - that is, in flies receiving neither shock nor odour - it would help to evaluate the unpaired control values in the different MB compartments.

      d) The temporal resolution of the effect is very interesting (Figure 7D), and at more time points, especially between 90 and 270 min, this might raise interesting results.

      e) Additionally, it would be very interesting and rewarding to have at least one additional assay, relating structure and function, e.g. on a molecular level by a correlative analysis of BRP and synaptic vesicles (by staining or co-expression of SV-protein markers) or calcium activity imaging or on a functional level by additional learning assays

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      We thank the reviewers for providing us the opportunity to revise our manuscript titled “Identifying regulators of associative learning using a protein-labelling approach in C. elegans.” We appreciate the insightful feedback that we received to improve this work. In response, we have extensively revised the manuscript with the following changes: we have (1) clarified the criteria used for selecting candidate genes for behavioural testing, presenting additional data from ‘strong’ hits identified in multiple biological replicates (now testing 26 candidates, previously 17), (2) expanded our discussion of the functional relevance of validated hits, including providing new tissue-specific and neuron class-specific analyses, and (3) improved the presentation of our data, including visualising networks identified in the ‘learning proteome’, to better highlight the significance of our findings. We also substantially revised the text to indicate our attempts to address limitations related to background noise in the proteomic data and outlined potential refinements for future studies. All revisions are clearly marked in the manuscript in red font. A detailed, point-by-point response to each comment is provided below.

      1. Point-by-point description of the revisions

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      Summary:

      Rahmani et al., utilize the TurboID method to characterize the global proteome changes in the worm's nervous system induced by a salt-based associative learning paradigm. Altogether, Rahmani et al., uncover 706 proteins that are tagged by the TurboID method specifically in samples extracted from worms that underwent the memory inducing protocol. Next, the authors conduct a gene enrichment analysis that implicates specific molecular pathways in salt-associative learning, such as MAP-kinase and cAMP-mediated pathways. The authors then screen a representative group of the hits from the proteome analysis. The authors find that mutants of candidate genes from the MAP-kinase pathway, namely dlk-1 and uev-3, do not affect the performance in the learning paradigm. Instead multiple acetylcholine signaling mutants significantly affected the performance in the associative memory assay, e.g., acc-1, acc-3, gar-1, and lgc-46. Finally, the authors demonstrate that the acetylcholine signaling mutants did not exhibit a phenotype in similar but different conditioning paradigms, such as aversive salt-conditioning or appetitive odor conditioning, suggesting their effect is specific to appetitive salt conditioning.

      Major comments:

      1. The statistical approach and analysis of the behavior assay: The authors use a 2-way ANOVA test which assumes normal distribution of the data. However, the chemotaxis index used in the study is bounded between -1 and 1, which prevents values near the boundaries to be normally distributed.

      Since most of the control data in this assay in this study is very close to 1, it strongly suggests that the CI data is not normally distributed and therefore 2-way ANOVA is expected to give skewed results.

      I am aware this is a common mistake and I also anticipate that most conclusions will still hold also under a more fitting statistical test.

      We appreciate the point raised by Reviewer 1 and understand the importance of performing the correct statistical tests.

      The statistical tests used in this study were chosen since parametric tests, particularly ANOVA tests to assess differences between multiple groups, are commonly used to assess behaviour in the C. elegans learning and memory field. Below is a summary of the tests used by studies that perform similar behavioural tests cited in this work, as examples:

      Table 1 | A summary for the statistical tests performed by similar studies for chemotaxis assay data. References (listed in the leftmost column) were observed to (A) use parametric tests only or (B) performed either a parametric or non-parametric test on each chemotaxis assay dataset depending on whether the data passed a normality test. Listings for ANOVA tests are in bold to demonstrate their common use in the C. elegans learning and memory field.

      Reference

      Parametric test/s used in the reference

      Non-parametric test/s used in the reference

      Beets et al., 2020

      Two-way ANOVA

      None

      Hiroki & Iino 2022

      One-way ANOVA

      None

      Hiroki et al., 2022

      One-way ANOVA

      None

      Hukema et al., 2006

      T-tests

      None

      Hukema et al., Learn. Mem. 2008

      T-tests

      None

      Jang et al., 2019

      ANOVA

      None

      Kitazono et al., 2017

      Two-way ANOVA and t-tests

      None

      Lans et al., 2004

      One-way ANOVA

      None

      Lim et al., 2018

      Two-way ANOVA

      Wilcoxon rank sum test adjusted with the Benjamini–Hochberg method

      Lin et al., 2010

      Two-way or three-way ANOVA

      None

      Nagashima et al., 2019

      One-way ANOVA

      None

      Ohno et al., 2014

      None

      Sakai et al., 2017

      One-way ANOVA or t-tests

      None

      Stein & Murphy 2014

      Two-way ANOVA and t-tests

      None

      Tang et al., 2023

      One-way ANOVA or t-tests

      None

      Tomioka et al., 2006

      T tests

      None

      Watteyne et al., 2020

      One-way ANOVA

      Two-sided Kruskal–Wallis

      We note Reviewer 1's concern that this may stem from a common mistake. As stated, Two-way ANOVA generally relies on normally distributed data. We used GraphPad Prism to perform the Shapiro-Wilk normality test on our chemotaxis assay data as it is generally appropriate for sample sizes Table 2 | Shapiro-Wilk normality test results for chemotaxis assay data in Figure S8C. Chemotaxis assay data was generated to assess salt associative learning capacity for wild-type (WT) versus lgc-46(-) mutant C. elegans. Three experimental groups were prepared for each C. elegans strain (naïve, high-salt control, and trained). From top-to-bottom, the data below displays the ‘W’ value, ‘P value’, a binary yes/no for whether the data passes the Shapiro-Wilk normality test, and a ‘P value summary’ (ns = non-significant). W values measure the similarity between a normal distribution and the chemotaxis assay data. Data is considered normal in the Shapiro-Wilk normality test when a W value is near 1.0 and the null hypothesis is not rejected (i.e., P value > 0.05).*

      WT naïve

      WT high-salt control

      WT trained

      lgc-46 naïve

      lgc-46 high-salt control

      lgc-46 trained

      W

      0.9196

      0.9114

      0.8926

      0.8334

      0.8151

      0.8769

      P value

      0.5272

      0.4758

      0.3705

      0.1475

      0.1070

      0.2954

      Passed normality test (alpha=0.05)?

      Yes

      Yes

      Yes

      Yes

      Yes

      Yes

      P value summary

      ns

      ns

      ns

      ns

      ns

      ns

      The manuscript now includes the use of the Shapiro-Wilk normality test to assess chemotaxis assay data before using two-way ANOVA on page 51.

      Nevertheless an appropriate statistical analysis should be performed. Since I assume the authors would wish to take into consideration both the different conditions and biological repeats, I can suggest two options:

      • Using a Generalized linear mixed model, one can do with R software.
      • Using a custom bootstrapping approach. We thank Reviewer 1 for suggesting these two options. We carefully considered both approaches and consulted with the in-house statistician at our institution (Dr Pawel Skuza, Flinders University) for expert advice to guide our decision. In summary:

      • Generalised linear mixed models: Generalised linear mixed models (GLMMs) are generally most appropriate for nested/hierarchal data. However, our chemotaxis assay data does not exhibit such nesting. Each biological replicate (N) consists of three technical replicates, which are averaged to yield a single chemotaxis index per N. Our statistical comparisons are based solely on these averaged values across experimental groups, making GLMMs less applicable in this context.

      • __Bootstrapping: __Based on advice from our statistician, while bootstrapping can be a powerful tool, its effectiveness is limited when applied to datasets with a low number of biological replicates (N). Bootstrapping relies on resampling existing data to simulate additional observations, which may artificially inflate statistical power and potentially suggest significance where the biological effect size is minimal or not meaningful. Increasing the number of biological replicates to accommodate bootstrapping could introduce additional variability and compromise the interpretability of the results. The total number of assays, especially controls, varies quite a bit between the tested mutants. For example compare the acc-1 experiment in Figure 4.A., and gap-1 or rho-1 in Figure S4.A and D. It is hard to know the exact N of the controls, but I assume that for example, lowering the wild type control of acc-1 to equivalent to gap-1 would have made it non significant. Perhaps the best approach would be to conduct a power analysis, to know what N should be acquired for all samples.

      We thoroughly evaluated performing the power analysis: however, this is typically performed with the assumption that an N = 1 represents a singular individual/person. An N =1 in this study is one biological replicate that includes hundreds of worms, which is why it is not typically employed in our field for this type of behavioural test.

      Considering these factors, we have opted to continue using a two-way ANOVA for our statistical analysis. This choice aligns with recent publications that employ similar experimental designs and data structures. Crucially, we have verified that our data meet the assumptions of normality, addressing key concerns regarding the suitability of parametric testing. We believe this approach is sufficiently rigorous to support our main conclusions. This rationale is now outlined on page 51.

      To be fully transparent, our aim is to present differences between wild-type and mutant strains that are clearly visible in the graphical data, such that the choice of statistical test does not become a limiting factor in interpreting biological relevance. We hope this rationale is understandable, and we sincerely appreciate the reviewer’s comment and the opportunity to clarify our analytical approach.

      We hope that Reviewer 1 will appreciate these considerations as sufficient justification to retain the statistical tests used in the original manuscript. Nevertheless, to constructively address this comment, we have performed the following revisions:

      1. __Consistent number of biological replicates: __We performed additional biological replicates of the learning assay to confirm the behavioural phenotypes for the key candidates described (KIN-2 , F46H5.3, ACC-1, ACC-3, LGC-46). We chose N = 5 since most studies cited in this paper that perform similar behavioural tests do the same (see the table below). Table 3 | A summary for sample sizes generated by similar studies for chemotaxis assay data. References (listed in the leftmost column) were observed to the sample sizes (N) below corresponding to biological replicates of chemotaxis assay data. N values are in bold when the study uses N ≤ 5.

      Reference

      N used in the study for chemotaxis assay data

      Beets et al., 2020

      8

      Hiroki & Iino 2022

      5-8

      Hiroki et al., 2022

      6-7

      Hukema et al., 2006

      ≥ 4

      Hukema et al., Learn. Mem. 2008

      ≥ 4

      Jang et al., 2019

      ≥ 4

      Kitazono et al., 2017

      ≥ 4

      Kauffman et al., 2010

      ≥ 3

      Kauffman et al., J. Vis. Exp. 2011

      ≥ 3

      Lans et al., 2004

      2

      Lim et al., 2018

      2-4

      Lin et al., 2010

      ≥ 4

      Nagashima et al., 2019

      ≥ 7

      Ohno et al., 2014

      ≥ 11

      Sakai et al., 2017

      ≥ 4

      Stein & Murphy 2014

      3-5

      Tang et al., 2023

      ≥ 9

      Watteyne et al., 2020

      ≥ 10

      __Grouped presentation of behavioural data: __We now present all behavioural data by grouping genotypes tested within the same biological replicate, including wild-type controls, rather than combining genotypes tested separately. This ensures that each graph displays data from genotypes sharing the same N, also an important consideration for performing parametric tests. Accordingly, we re-performed statistical analyses using this reduced Nfor relevant graphs. As anticipated, this rendered some comparisons non-significant. All statistical comparisons are clearly indicated on each graph. Improved clarity of figure legends: __We revised figure legends for __Figures 5, 6, S7, S8, & S9 to make clear how many biological replicates have been performed for each genotype by adding N numbers for each genotype in all figures.

      The authors use the phrasing "a non-significant trend", I find such claims uninterpretable and should be avoided. Examples: Page 16. Line 7 and Page 18, line 16.

      This is an important point. While we were not able to find the specific phrasing "a non-significant trend" from this comment in the original manuscript, we acknowledge that referring to a phenotype as both a trend and non-significant may confuse readers, which was originally stated in the manuscript in two locations.

      The main text has been revised on pages 27 & 28 when describing comparisons between trained groups between two C. elegans lines, by removing mentions of trends and retaining descriptions of non-significance.

      Neuron-specific analysis and rescue of mutants:

      Throughout the study the authors avoid focusing on specific neurons. This is understandable as the authors aim at a systems biology approach, however, in my view this limits the impact of the study. I am aware that the proteome changes analyzed in this study were extracted from a pan neuronally expressed TurboID. Yet, neuron-specific changes may nevertheless be found. For example, running the protein lists from Table S2, in the Gene enrichment tool of wormbase, I found, across several biological replicates, enrichment for the NSM, CAN and RIG neurons. A more careful analysis may uncover specific neurons that take part in this associative memory paradigm. In addition, analysis of the overlap in expression of the final gene list in different neurons, comparing them, looking for overlap and connectivity, would also help to direct towards specific circuits.

      This is an important and useful suggestion. We appreciate the benefit in exploring the data from this study from a neuron class-specific lens, in addition to the systems-level analyses already presented.

      The WormBase gene enrichment tool is indeed valuable for broad transcriptomic analyses (the findings from utilising this tool are now on page 16); however, its use of Anatomy Ontology (AO) terms also contains annotations from more abundant non-neuronal tissues in the worm. To strengthen our analysis and complement the Wormbase tool, we also used the CeNGEN database as suggested by Reviewer 3 Major Comment 1 (Taylor et al., 2021), which uses single cell RNA-Seq data to profile gene expression across the C. elegans nervous system. We input our learning proteome data into CeNGEN as a systemic analysis, identifying neurons highly represented by the learning proteome (on pages 16-20). To do this, we specifically compared genes/proteins from high-salt control worms and trained worms to identify potential neurons that may be involved in this learning paradigm. Briefly, we found:

      • WormBase gene enrichment tool: Enrichment for anatomy terms corresponding to specific interneurons (ADA, RIS, RIG), ventral nerve cord neurons, pharyngeal neurons (M1, M2, M5, I4), PVD sensory neurons, DD motor neurons, serotonergic NSM neurons, and CAN.
      • CeNGEN analysis: Representation of neurons previously implicated in associative learning (e.g., AVK interneurons, RIS interneurons, salt-sensing neuron ASEL, CEP & ADE dopaminergic neurons, and AIB interneurons), as well as neurons not previously studied in this context (pharyngeal neurons I3 & I6, polymodal neuron IL1, motor neuron DA9, and interneuron DVC). Methods are detailed on pages 50 & 51. These data are summarised in the revised manuscript as Table S7 & Figure 4.

      To further address the reviewer’s suggestion, we examined the overlap in expression patterns of the validated learning-associated genes acc-1, acc-3, lgc-46, kin-2, and F46H5.3 across the neuron classes above, using the CeNGEN database. This was done to explore potential neuron classes in which these regulators may act in to regulate learning. This analysis revealed both shared and distinct expression profiles, suggesting potential functional connectivity or co-regulation among subsets of neurons. To summarise, we found:

      • All five learning regulators are expressed in RIM interneurons and DB motor neurons.
      • KIN-2 and F46H5.3 share the same neuron expression profile and are present in many neurons, so they may play a general function within the nervous system to facilitate learning.
      • ACC-3 is expressed in three sensory neuron classes (ASE, CEP, & IL1).
      • In contrast, ACC-1 and LGC-46 are expressed in neuron classes (in brackets) implicated in gustatory or olfactory learning paradigms (AIB, AVK, NSM, RIG, & RIS) (Beets et al., 2012, Fadda et al., 2020, Wang et al., 2025, Zhou et al., 2023, Sato et al., 2021), neurons important for backward or forward locomotion (AVE, DA, DB, & VB) (Chalfie et al., 1985), and neuron classes for which their function is yet detailed in the literature (ADA, I4, M1, M2, & M5). These neurons form a potential neural circuit that may underlie this form of behavioural plasticity, which we now describe in the main text on pages 16-20 & 34-35 and summarise in Figure 4.

      OPTIONAL: A rescue of the phenotype of the mutants by re-expression of the gene is missing, this makes sure to avoid false-positive results coming from background mutations. For example, a pan neuronal or endogenous promoter rescue would help the authors to substantiate their claims, this can be done for the most promising genes. The ideal experiment would be a neuron-specific rescue but this can be saved for future works.

      We appreciate this suggestion and recognise its potential to strengthen our manuscript. In response, we made many attempts to generate pan-neuronal and endogenous promoter re-expression lines. However, we faced several technical issues in transgenic line generation, including poor survival following microinjection likely due to protein overexpression toxicity (e.g., C30G12.6, F46H5.3), and reduced animal viability for chemotaxis assays, potentially linked to transgene-related reproductive defects (e.g., ACC-1). As we have previously successfully generated dozens of transgenic lines in past work (e.g. Chew et al., Neuron 2018; Chew et al., Phil Trans B 2018; Gadenne/Chew et al., Life Science Alliance 2022), we believe the failure to produce most of these lines is not likely due to technical limitations. For transparency, these observations have been included in the discussion section of the manuscript on pages 39 & 40 as considerations for future troubleshooting.

      Fortunately, we were able to generate a pan-neuronal promoter line for KIN-2 that has been tested and included in the revised manuscript. This new data is shown in Figure 5B __and described on __pages 23 & 24. Briefly, this shows that pan-neuronal expression of KIN-2 from the ce179 mutant allele is sufficient to reproduce the enhanced learning phenotype observed in kin-2(ce179) animals, confirming the role of KIN-2 in gustatory learning.

      To address the potential involvement of background mutations (also indicated by Reviewer 4 under ‘cross-commenting’), we have also performed experiments with backcrossed versions of several mutants. These experiments aimed to confirm that salt associative learning phenotypes are due to the expected mutation. Namely, we assessed kin-2(ce179) mutants that had been backcrossed previously by another laboratory, as well as C30G12.6(-) and F46H5.3(-) animals backcrossed in this study. Although not all backcrossed mutants retained their original phenotype (i.e., C30G12.6) (Figure 6D, a newly added figure), we found that backcrossed versions of KIN-2 and F46H5.3 both robustly showed enhanced learning (Figures 5A & 6B). This is described in the text on pages 23-26.

      __Minor comments: __

      1. Lack of clarity regarding the validation of the biotin tagging of the proteome. The authors show in Figure 1 that they validated that the combination of the transgene and biotin allows them to find more biotin-tagged proteins. However there is significant biotin background also in control samples as is common for this method. The authors mention they validated biotin tagging of all their experiments, but it was unclear in the text whether they validated it in comparison to no-biotin controls, and checked for the fold change difference.

      This is an important point: We validated our biotin tagging method prior to mass spectrometry by comparing ‘no biotin’ and ‘biotin’ groups. This is shown in Figure S1 in the revised manuscript, which includes a western blot comparing untreated and biotin treated animals that are non-transgenic or expressing TurboID. As expected, by comparing biotinylated protein signal for untreated and treated lanes within each line, biotin treatment increased the signal 1.30-fold for non-transgenic and 1.70-fold for TurboID C. elegans. This is described on __page 8 __of the revised manuscript.

      To clarify, for mass spectrometry experiments, we tested a no-TurboID (non-transgenic) control, but did not perform a no-biotin control. We included the following four groups: (1) No-TurboID ‘control’ (2) No-TurboID ‘trained’, (3) pan-neuronal TurboID ‘control’ and (4) pan-neuronal TurboID ‘trained’, where trained versus control refers to whether ‘no salt’ was used as the conditioned stimulus or not, respectively (illustrated in Figure 1A). Due to the complexity of the learning assay (which involves multiple washes and handling steps, including a critical step where biotin is added during the conditioning period), and the need to collect sufficient numbers of worms for protein extraction (>3,000 worms per experimental group), adding ‘no-biotin’ controls would have doubled the number of experimental groups, which we considered unfeasible for practical reasons. This is explained on __pages 8 & 9 __of the revised manuscript.

      Also, it was unclear which exact samples were tested per replicate. In Page 9, Lines 17-18: "For all replicates, we determined that biotinylated proteins could be observed ...", But in Page 8, Line 24 : "We then isolated proteins from ... worms per group for both 'control' and 'trained' groups,... some of which were probed via western blotting to confirm the presence of biotinylated proteins".

      • Could the authors specify which samples were verified and clarify how?

      Thank you for pointing out these unclear statements: We have clarified the experimental groups used for mass spectrometry experiments as detailed in the response above on pages 8 &____ 9. In addition, western blots corresponding to each biological replicate of mass spectrometry data described in the main text on page 10 and have been added to the revised manuscript (as Figure S3). These western blots compare biotinylation signal for proteins extracted from (1) No-TurboID ‘control’ (2) No-TurboID ‘trained’, (3) pan-neuronal TurboID ‘control’ and (4) pan-neuronal TurboID ‘trained’. These blots function to confirm that there were biotinylated proteins in TurboID samples, before enrichment by streptavidin-mediated pull-down for mass spectrometry.

      OPTIONAL: include the fold changes of biotinylated proteins of all the ones that were tested. Similar to Figure 1.C.

      This is an excellent suggestion. As recommended by the reviewer, we have included fold-changes for biotinylated protein levels between high-salt control and trained groups (on pages 9 & 10 for replicate #1 and in __Table S2 __for replicates #2-5). This was done by measuring protein levels in whole lanes for each experimental group per biological replicate within western blots (__Figure 1C __for replicate #1 and __Figure S3 __for replicates #2-5) of protein samples generated for mass spectrometry (N = 5).

      Figure 2 does not add much to the reader, it can be summarized in the text, as the fraction of proteins enriched for specific cellular compartments.

      • I would suggest to remove Figure 2 (originally written as figure 3) to text, or transfer it to the supplementry material.

      As noted in cross-comment response to Reviewer 4, there were typos in the original figure references, we have corrected them above. Essentially, this comment is referring to Figure 2.

      We appreciate this feedback from Reviewer 1. We agree that the original __Figure 2 __functions as a visual summary from analysis of the learning proteome at the subcellular compartment level. However, it also serves to highlight the following:

      • Representation for neuron-specific GO terms is relatively low, but even this small percentage represents entire protein-protein networks that are biologically meaningful, but that are difficult to adequately describe in the main text.
      • TurboID was expressed in neurons so this figure supports the relevance of the identified proteome to biological learning mechanisms.
      • Many of these candidates could not be assessed by learning assay using single mutants since related mutations are lethal or substantially affect locomotion. These networks therefore highlight the benefit in using strategies like TurboID to study learning. We have chosen to retain this figure, moving it to the supplementary material as Figure S4 in the revised manuscript, as suggested.

      • OPTIONAL- I would suggest the authors to mark in a pathway summary figure similar to Figure 3 (originally written as Figure 4) the results from the behavior assay of the genetic screen. This would allow the reader to better get the bigger picture and to connect to the systemic approach taken in Figures 2 and 3.

      We think this is a fantastic suggestion and thank Reviewer 1 for this input. In the revised manuscript, we have added Figure 7, which summarises the tested candidates that displayed an effect on learning, mapped onto potential molecular pathways derived from networks in the learning proteome. This figure provides a visual framework linking the behavioural outcomes to the network context. This is described in the main text on pages 32-33.

      Typo in Figure 3: the circle of PPM1: The blue right circle half is bigger than the left one.

      We thank the Reviewer for noticing this, the node size for PPM-1.A has been corrected in what is now Figure 2 in the revised work.

      Unclarity in the discussions. In the discussion Page 24, Line 14, the authors raise this question: "why are the proteins we identified not general learning regulators?. The phrasing and logic of the argumentation of the possible answers was hard to follow. - Can you clarify?

      We appreciate this feedback in terms of unclarity, as we strive to explain the data as clearly and transparently as possible. Our goal in this paragraph was to discuss why some candidates were seen to only affect salt associative learning, as opposed to showing effects in multiple learning paradigms (i.e., which we were defining as a ‘general learning regulator’). We have adjusted the wording in several places in this paragraph now on pages 36 & 37 to address this comment. We hope the rephrased paragraph provides sufficient rationalisation for the discussion regarding our selection strategy used to isolate our protein list of potential learning regulators, and its potential limitations.

      ***Cross-Commenting** *

      Firstly, we would like to express our appreciation for the opportunity for reviewers to cross-comment on feedback from other reviewers. We believe this is an excellent feature of the peer review process, and we are grateful to the reviewers for their thoughtful engagement and collaborative input.

      I would like to thank Reviewer #4 for the great cross comment summary, I find it accurate and helpful.

      I also would like to thank Reviewer #4 for spotting the typos in my minor comments, their page and figure numbers are the correct ones.

      We have corrected these typos in the relevant comments, and have responded to them accordingly.

      Small comment on common point 1 - My feeling is that it is challanging to do quantitative mass spectrometry, especially with TurboID. In general, the nature of MS data is that it hints towards a direction but a followup validation work is required in order to assess it. For example, I am not surprised that the fraction of repeats a hit appeared in does not predict well whether this hit would be validated behavioraly. Given these limitations, I find the authors' approach reasonable.

      We thank Reviewer 1 for this positive and thoughtful feedback. We also appreciate Reviewer 4’s comment regarding quantitative mass spectrometry and have addressed this in detail below (see response to Reviewer 4). However, we agree with Reviewer 1 that there are practical challenges to performing quantitative mass spectrometry with TurboID, primarily due to the enrichment for biotinylated proteins that is a key feature of the sample preparation process.

      Importantly, we whole-heartedly agree with Reviewer 1’s statement that “In general, the nature of MS data is that it hints towards a direction but a follow-up validation work is required in order to assess it”. This is the core of our approach: however, we appreciate that there are limitations to a qualitative ‘absent/present’ approach. We have addressed some of these limitations by clarifying the criteria used for selecting candidate genes, based additionally on the presence of the candidate in multiple biological replicates (categorised as ‘strong’ hits). Based on this method, we were able to validate the role of several novel learning regulators (Figures 5, 6, & S7). We sincerely hope that this manuscript can function as a direction for future research, as suggested by this Reviewer.

      I also would like to highlight this major comment from reviewer 4:

      "In Experimental Procedures, authors state that they excluded data in which naive or control groups showed average CI 0.5499 for N2 (page 36, lines 5-7). "

      This threshold seems arbitrary to me too, and it requires the clarifications requested by reviewer 4.

      As detailed in our response to Reviewer 4, Major Comment 2, data were excluded only in rare cases, specifically when N2 worms failed to show strong salt attraction prior to training, or when trained N2 worms did not exhibit the expected behavioural difference compared to untrained controls – this can largely be attributed to clear contamination or over-population issues, which are visible prior to assessing CTX plates and counting chemotaxis indices.

      These criteria were initially established to provide an objective threshold for excluding biological replicates, particularly when planning to assay a large number of genetic mutants. However, after extensive testing across many replicates, we found that N2 worms (that were not starved, or not contaminated) consistently displayed the expected phenotype, rendering these thresholds unnecessary. We acknowledge that emphasizing these criteria may have been misleading, and have therefore removed them from page 50 in the revised manuscript to avoid confusion and ensure clarity.

      Reviewer #1 (Significance (Required)):

      This study does a great job to effectively utilize the TurboID technique to identify new pathways implicated in salt-associative learning in C. elegans. This technique was used in C. elegans before, but not in this context. The salt-associative memory induced proteome list is a valuable resource that will help future studies on associative memory in worms. Some of the implicated molecular pathways were found before to be involved in memory in worms like cAMP, as correctly referenced in the manuscript. The implication of the acetylcholine pathway is novel for C. elgeans, to the best of my knowledge. The finding that the uncovered genes are specifically required for salt associative memory and not for other memory assays is also interesting.

      However overall I find the impact of this study limited. The premise of this work is to use the Turbo-ID method to conduct a systems analysis of the proteomic changes. The work starts by conducting network analysis and gene enrichment which fit a systemic approach. However, since the authors find that ~30% of the tested hits affect the phenotype, and since only 17/706 proteins were assessed, it is challenging to draw conclusive broad systemic claims. Alternatively, the authors could have focused on the positive hits, and understand them better, find the specific circuits where these genes act. This could have increased the impact of the work. Since neither of these two options are satisfied, I view this work as solid, but not wide in its impact and therefore estimate the audience of this study would be more specialized.

      My expertise is in C. elegans behavior, genetics, and neuronal activity, programming and machine learning.

      We thank the Reviewer for these comments and appreciate the recognition of the value of the proteomic dataset and the identification of novel molecular pathways, including the acetylcholine pathway, as well as the specificity of the uncovered genes to salt-associative memory.

      Regarding the reviewer’s concern about the overall impact and scope of the study, we respectfully offer the following clarification. Our aim was to establish a systems-level approach for investigating learning-related proteomic changes using TurboID, and we acknowledge that only a subset of the identified proteins was experimentally tested (now 26/706 proteins in the revised manuscript). Although only five of the tested single gene mutants showed a robust learning phenotype in the revised work (after backcrossing, more stringent candidate selection, improved statistical analysis in addressing reviewer comments), our proteomic data provides us a unique opportunity to define these candidates within protein-protein networks (as illustrated in Figure 7). Importantly, our functional testing focused on single-gene mutants, which may not reveal phenotypes for genes that act redundantly (now mentioned on pages 28-30). This limitation is inherent to many genetic screens and highlights the value of our proteomic dataset, which enables the identification of broader protein-protein interaction networks and molecular pathways potentially involved in learning.

      To support this systems-level perspective, we have added Figure 7, which visually integrates the tested candidates into molecular pathways derived from the learning proteome for learning regulators KIN-2 and F46H5.3. We also emphasise more explicitly in the text (on pages 32-33) the value of our approach by highlighting the functional protein networks that can be derived from our proteomics dataset.

      We fully acknowledge that the use of TurboID across all neurons limits the resolution needed to pinpoint individual neuron contributions, and understand the benefit in further experiments to explore specific circuits. Many circuits required for salt sensing and salt-based learning are highly explored in the literature and defined explicitly (see Rahmani & Chew, 2021), so our intention was to complement the existing literature by exploring the protein-protein networks involved in learning, rather than on neuron-neuron connectivity. However, we recognise the benefit in integrating circuit-level analyses, given that our proteomic data suggests hundreds of candidates potentially involved in learning. While validating each of these candidates is beyond the scope of the current study, we have taken steps to suggest candidate neurons/circuits by incorporating tissue enrichment analyses and single-cell transcriptomic data (Table S7 & Figure 4). These additions highlight neuron classes of interest and suggest possible circuits relevant to learning.

      We hope this clarification helps convey the intended scope and contribution of our study. We also believe that the revisions made in response to Reviewer 1’s feedback have strengthened the manuscript and enhanced its significance within the field.

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      __Summary: __

      In this study by Rahmani in colleagues, the authors sought to define the "learning proteome" for a gustatory associative learning paradigm in C. elegans. Using a cytoplasmic TurboID expressed under the control of a pan-neuronal promoter, the authors labeled proteins during the training portion of the paradigm, followed by proteomics analysis. This approach revealed hundreds of proteins potentially involved in learning, which the authors describe using gene ontology and pathways analysis. The authors performed functional characterization of some of these genes for their requirement in learning using the same paradigm. They also compared the requirement for these genes across various learning paradigms, and found that most hits they characterized appear to be specifically required for the training paradigm used for generating the "learning proteome".

      Major Comments:

      1. The definition of a "hit" from the TurboID approach is does not appear stringent enough. According to the manuscript, a hit was defined as one unique peptide detected in a single biological replicate (out of 5), which could give rise to false positives. In figure S2, it is clear that there relatively little overlap between samples with regards to proteins detected between replicates, and while perhaps unintentional, presenting a single unique peptide appears to be an attempt to inflate the number of hits. Defining hits as present in more than one sample would be more rigorous. Changing the definition of hits would only require the time to re-list genes and change data presented in the manuscript accordingly. We thank Reviewer 2 for this valuable comment, and the following related suggestion. We agree with the statement that “Defining hits as present in more than one sample would be more rigorous”. Therefore, to address this comment, we have now separated candidates into two categories in Table 2 __in the revised manuscript: ‘__strong’ (present in 3 or more biological replicates) and ‘weak’ candidates (present in 2 or fewer biological replicates). However, we think these weaker candidates should still be included in the manuscript, considering we did observe relationships between these proteins and learning. For example, ACC-1, which influences salt associative learning in C. elegans, was detected in one replicate of mass spectrometry as a potential learning regulator (Figure S8A). We describe this classification in the main text on pages 21-22.

      We also agree with Reviewer 2 that the overlap between individual candidate hits is low between biological replicates; the inclusion of Figure S2 __in the original manuscript serves to highlight this limitation. However, it is also important to consider that there is notable overlap for whole molecular pathways between biological replicates of mass spectrometry data as shown in __Figure 2 __in the revised manuscript (this consideration is now mentioned on __pages 13-14). We have included Figure 3 to illustrate representation for two metabolic processes across several biological replicates normally indispensable to animal health, as an example to provide additional visual aid for the overlap between replicates of mass spectrometry. We provide this figure (described on pages 13 & 15) to demonstrate the strength of our approach in that it can detect candidates not easily assessable by conventional forward or reverse genetic screens.

      We also appreciate the opportunity to explain our approach. The criteria of “at least one unique peptide” was chosen based on a previous work for which we adapted for this manuscript (Prikas et al., 2020). It was not intended to inflate the number of hits but rather to ensure sensitivity in detecting low-abundance neuronal proteins. We have clarified this in our Methods (page 46).

      The "hits" that the authors chose to functionally characterize do not seem like strong candidate hits based on the proteomics data that they generated. Indeed, most of the hits are present in a single, or at most 2, biological replicate. It is unclear as to why the strongest hits were not characterized, which if mutant strains are publicly available, would not be a difficult experiment to perform.

      We thank the reviewer for this important suggestion. To address this, we have described two molecular pathways with multiple components that appear in more than one biological replicate of mass spectrometry data in Figure 3 (main text on page 13). In addition, we have included __Figures 6 & S7 __where 9 additional single mutants corresponding to candidates in three or more biological replicates of mass spectrometry were tested for salt associative learning. Briefly, we found the following (number of replicates that a protein was unique to TurboID trained animals is in brackets):

      • Novel arginine kinase F46H5.3 (4 replicates) displays an effect in both salt associative learning and salt aversive learning in the same direction (Figures 6A, 6B, & S9A, pages 31-32 & 37-38).
      • Worms with a mutation for armadillo-domain protein C30G12.6 (3 replicates) only displayed an enhanced learning phenotype when non-backcrossed, not backcrossed. This suggests the enhanced learning phenotype was caused by a background mutation (Figure 6, pages 24-25).
      • We did not observe an effect on salt associative learning when assessing mutations for the ciliogenesis protein IFT-139 (5 replicates), guanyl nucleotide factors AEX-3 or TAG-52 (3 replicates), p38/MAPK pathway interactor FSN-1 (3 replicates), IGCAM/RIG-4 (3 replicates), and acetylcholine components ACR-2 (4 replicates) and ELP-1 (3 replicates) (Figure S7, on pages 27-30). However, we note throughout the section for which these candidates are described that only single gene mutants were tested, meaning that genes that function in redundant or compensatory pathways may not exhibit a detectable phenotype. Because of the lack of strong evidence that these are indeed proteins regulated in the context of learning based on proteomics, including evidence of changes in the proteins (by imaging expression changes of fluorescent reporters or a biochemical approach), would increase confidence that these hits are genuine.

      We thank Reviewer 2 for this suggestion – we agree that it would have been ideal to have additional evidence suggesting that changes in candidate protein levels are associated directly with learning. Ideally, we would have explored this aspect further; however, as outlined in response to Reviewer 1 Major Comment 2 (OPTIONAL), this was not feasible within the scope of the current study due to several practical challenges. Specifically, we attempted to generate pan-neuronal and endogenous promoter rescue lines for several candidates, but encountered significant challenges, including poor survival post-microinjection (likely due to protein overexpression toxicity) and reduced viability for behavioural assays, potentially linked to transgene-related reproductive defects. This information is now described on pages 39 & 40 of the revised work.

      To address these limitations, we performed additional behavioural experiments where possible. We successfully generated a pan-neuronal promoter line for kin-2, which was tested and included in the revised manuscript (Figure 5B, pages 30 & 31). In addition, to confirm that observed learning phenotypes were due to the expected mutations and not background effects, we conducted experiments using backcrossed versions of several mutant lines as suggested by Reviewer 4 Cross Comment 3 (Figure 6, pages 23-24 & 24-26). Briefly, this shows that pan-neuronal expression of KIN-2 from the ce179 mutant allele is sufficient to repeat the enhanced learning phenotype observed in backcrossed kin-2(ce179) animals, providing additional evidence that the identified hits are required for learning. We also confirmed that F46H5.3 modulates salt associative learning, given both non-backcrossed and backcrossed F46H5.3(-) mutants display a learning enhancement phenotype. The revised text now describes this data on the page numbers mentioned above.

      Minor Comments:

      1. The authors highlight that the proteins they discover seem to function uniquely in their gustatory associative paradigm, but this is not completely accurate. kin-2, which they characterize in figure 4, is required for positive butanone association (the authors even say as much in the manuscript) in Stein and Murphy, 2014. We appreciate this correction and thank the Reviewer for pointing this out. We have amended the wording appropriately on page 31 to clarify our meaning.

      2. “Although kin-2(ce179) mutants were not shown to impact salt aversive learning, they have been reported previously to display impaired intermediate-term memory (but intact learning and short-term memory) for butanone appetitive learning (Stein and Murphy, 2014).”*

      Reviewer #2 (Significance (Required)):

      • General Assessment: The approach used in this study is interesting and has the potential to further our knowledge about the molecular mechanisms of associative behaviors. Strengths of the study include the design with carefully thought out controls, and the premise of combining their proteomics with behavioral analysis to better understand the biological significance of their proteomics findings. However, the criteria for defining hits and prioritization of hits for behavioral characterizations were major wweaknesses of the paper.
      • Advance: There have been multiple transcriptomic studies in the worm looking at gene expression changes in the context of behavioral training (Lakhina et al., 2015, Freytag 2017). This study compliments and extends those studies, by examining how the proteome changes in a different training paradigm. This approach here could be employed for multiple different training paradigms, presenting a new technical advance for the field.
      • Audience: This paper would be of interest to the broader field of behavioral and molecular neuroscience. Though it uses an invertebrate system, many findings in the worm regarding learning and memory translate to higher organisms.
      • I am an expert in molecular and behavioral neuroscience in both vertebrate and invertebrate models, with experience in genetics and genomics approaches. We appreciate Reviewer 2’s thoughtful assessment and constructive feedback. In response to concerns regarding definition and prioritisation of hits, we have revised our approach as detailed above to place more consideration on ‘strong’ hits present in multiple biological replicates. We have also added new behavioural data for additional mutants that fall into this category (Figures 6 & S7). We hope these revisions strengthen our study and enhance its relevance to the behavioural/molecular neuroscience community.

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      __Summary: __

      In the manuscript titled "Identifying regulators of associative learning using a protein-labelling approach in C. elegans" the authors attempted to generate a snapshot of the proteomic changes that happen in the C. elegans nervous system during learning and memory formation. They employed the TurboID-based protein labeling method to identify the proteins that are uniquely found in samples that underwent training to associate no-salt with food, and consequently exhibited lower attraction to high salt in a chemotaxis assay. Using this system they obtained a list of target proteins that included proteins represented in molecular pathways previously implicated in associative learning. The authors then further validated some of the hits from the assay by testing single gene mutants for effects on learning and memory formation.

      Major Comments:

      In the discussion section, the authors comment on the sources of "background noise" in their data and ways to improve the specificity. They provide some analysis on this aspect in Supplementary figure S2. However, a better visualization of non-specificity in the sample could be a GO analysis of tissue-specificity, and presented as a pie chart as in Figure 2A. Non-neuronal proteins such as MYO-2 or MYO-3 repeatedly show up on the "TurboID trained" lists in several biological replicates (Tables S2 and S3). If a major fraction of the proteins after subtraction of control lists are non-specific, that increases the likelihood that the "hits" observed are by chance. This analysis should be presented in one of the main figures as it is essential for the reader to gauge the reliability of the experiment.

      We agree with this assessment and thank Reviewer 3 for this constructive suggestion. In response, we have now incorporated a comprehensive tissue-specific analysis of the learning proteome in the revised manuscript. Using the single neuron RNA-Seq database CeNGEN, we identified the proportion of neuronal vs non-neuronal proteins from each biological replicate of mass spectrometry data. Specifically, we present Table 1 __on page 17 (which we originally intended to include in the manuscript, but inadvertently left out), which shows that 87-95% (i.e. a large majority) of proteins identified across replicates corresponded to genes detected in neurons, supporting that the TurboID enzyme was able to target the neuronal proteome as expected. __Table 1 is now described in the main text of the revised work on page 16.

      In addition, we performed neuron-specific analyses using both the WormBase gene enrichment tool and the CeNGEN single-cell transcriptomic database, which we describe in detail on our response to Reviewer 1 Major Comment 2. To summarise, these analyses revealed enrichment of several neuron classes, including those previously implicated in associative learning (e.g., ASEL, AIB, RIS, AVK) as well as neurons not previously studied in this context (e.g., IL1, DA9, DVC) (summarised in Table S7). By examining expression overlap across neuron types, we identified shared and distinct profiles that suggest potential functional connectivity and candidate circuits underlying behavioural plasticity (Figure 4). Taken together, these data show that the proteins identified in our dataset are (1) neuronal and (2) expressed in neurons that are known to be required for learning. Methods are detailed on pages 50-51.

      Other than the above, the authors have provided sufficient details in their experimental and analysis procedures. They have performed appropriate controls, and their data has sufficient biological and technical replaictes for statistical analysis.

      We appreciate this positive feedback and thank the Reviewer for acknowledging the clarity of our experimental and analysis procedures.

      Minor Comments:

      There is an error in the first paragraph of the discussion, in the sentences discussing the learning effects in gar-1 mutant worms. The sentences in lines 12-16 on page 22 says that gar-1 mutants have improved salt-associative learning and defective salt-aversive learning, while in fact the data and figures state the opposite.

      We appreciate the Reviewer noting this discrepancy. As clarified in our response to Reviewer 1, Major Comment 1 above, we reanalysed the behavioural data to ensure consistency across genotypes by comparing only those tested within the same biological replicates (thus having the same N for all genotypes). Upon this reanalysis, we found that the previously reported phenotype for gar-1 mutants in salt-associative learning was not statistically different from wild-type controls. Therefore, we have removed references to GAR-1 from the manuscript.

      __Reviewer #3 (Significance (Required)): __Strengths and limitations: This study used neuron-specific TurboID expression with transient biotin exposure to capture a temporally restricted snapshot of the C. elegans nervous system proteome during salt-associative learning. This is an elegant method to identify proteins temporally specific to a certain condition. However, there are several limitations in the way the experiments and analyses were performed which affect the reliability of the data. As the authors themselves have noted in the discussion, background noise is a major issue and several steps could be taken to improve the noise at the experimental or analysis steps (use of integrated C. elegans lines to ensure uniformity of samples, flow cytometry to isolate neurons, quantitative mass spec to detect fold change vs. strict presence/absence). Advance: Several studies have demonstrated the use of proximity labeling to map the interactome by using a bait protein fusion. In fact, expressing TurboID not fused to a bait protein is often used as a negative control in proximity labeling experiments. However, this study demonstrates the use of free TurboID molecules to acquire a global snapshot of the proteome under a given condition. Audience: Even with the significant limitations, this study is specifically of interest to researchers interested in understanding learning and memory formation. Broadly, the methods used in this study could be modified to gain insights into the proteomic profiles at other transient developmental stages. The reviewer's field of expertise: Cell biology of C. elegans neurons.

      We thank the reviewer for their thoughtful evaluation of our work. We appreciate the recognition of the novelty and potential of using neuron-specific TurboID to capture a temporally restricted snapshot of the C. elegans nervous system proteome during learning. We agree that this approach offers a unique opportunity to identify proteins associated with specific behavioural states in future studies.

      We also appreciate the reviewer’s comments regarding limitations in experimental and analytical design. In revising the manuscript, we have taken several steps to address these concerns and improve the clarity, rigour, and interpretability of our data. Specifically:

      • We now provide a frequency-based representation of proteomic hits (Table 2), which helps clarify how candidate proteins were selected and highlights differences between trained and control groups.
      • We have added neuron-specific enrichment analyses using both WormBase and CenGEN databases (Table S7 & Figure 4), which help identify candidate neurons and potential circuits involved in learning (methods on pages 50-51).
      • We have clarified the rationale for using qualitative proteomics in the context of TurboID, in addition to acknowledging the challenges of integrating quantitative mass spectrometry with biotin-based enrichment (page 39). Additional methods for improving sample purity, such as using integrated lines or FACS-enrichment of neurons, could further refine this approach in future studies. For transparency, we did attempt to integrate the TurboID transgenic line to improve the strength and consistency of biotinylation signals. However, despite four rounds of backcrossing, this line exhibited unexpected phenotypes, including a failure to respond reliably to the established training protocol. As a result, we were unable to include it in the current study. Nonetheless, we believe our current approach provides a valuable proof-of-concept and lays the groundwork for future refinement. By addressing the major concerns of peer reviewers, we believe our study makes a significant and impactful contribution by demonstrating the feasibility of using TurboID to capture learning-induced proteomic changes in the nervous system. The identification of novel learning-related mutants, including those involved in acetylcholine signalling and cAMP pathways, provides new directions for future research into the molecular and circuit-level mechanisms of behavioural plasticity.

      Reviewer #4 (Evidence, reproducibility and clarity (Required)):

      Summary:

      In this manuscript, authors used a learning paradigm in C. elegans; when worms were fed in a saltless plate, its chemotaxis to salt is greatly reduced. To identify learning-related proteins, authors employed nervous system-specific transcriptome analysis to compare whole proteins in neurons between high-salt-fed animals and saltless-fed animals. Authors identified "learning-specific genes" which are observed only after saltless feeding. They categorized these proteins by GO analyses and pathway analyses, and further stepped forward to test mutants in selected genes identified by the proteome analysis. They find several mutants that are defective or hyper-proficient for learning, including acc-1/3 and lgc-46 acetylcholine receptors, gar-1 acetylcholine receptor GPCR, glna-3 glutaminase involved in glutamate biosynthesis, and kin-2, a cAMP pathway gene. These mutants were not previously reported to have abnormality in the learning paradigm.

      Major comments:

      1) There are problems in the data processing and presentation of the proteomics data in the current manuscript which deteriorates the utility of the data. First, as the authors discuss (page 24, lines 5-12), the current approach does not consider amount of the peptides. Authors state that their current approach is "conservative", because some of the proteins may be present in both control and learned samples but in different amounts. This reviewer has a concern in the opposite way: some of the identified proteins may be pseudo-positive artifacts caused by the analytical noise. The problem is that authors included peptides that are "present" in "TurboID, trained" sample but "absent" in the "Non-Tg, trained" and "TurboID, control" samples in any one of the biological replicates, to identify "learning proteome" (706 proteins, page 8, last line - page 9, line 8; page 32, line 21-22). The word "present" implies that they included even peptides whose amounts are just above the detection threshold, which is subject to random noise caused by the detector or during sample collection and preparation processes. This consideration is partly supported by the fact that only a small fraction of the proteins are common between biological replicates (honestly and respectably shown in Figure S2). Because of this problem, there is no statistical estimate of the identity in "learning proteome" in the current manuscript. Therefore, the presentation style in Tables S2 and S3 are not very useful for readers, especially because authors already subtracted proteins identified in Non-Tg samples, which must also suffer from stochastic noise. I suggest either quantifying the MS/MS signal, or if authors need to stick to the "present"/"absent" description of the MS/MS data, use the number of appearances in biological replicates of each protein as estimate of the quantity of each protein. For example, found in 2 replicates in "TurboID, learned" and in 0 replicates in "Non-Tg, trained". One can apply statistics to these counts. This said, I would like to stress that proteins related to acquisition of memory may be very rare, especially because learning-related changes likely occur in a small subset of neurons. Therefore, 1 time vs 0 time may be still important, as well as something like 5 times vs 1 time. In summary, quantitative description of the proteomics results is desired.

      We thank the reviewer for these valuable comments and suggestions.

      We acknowledge that quantitative proteomics would provide beneficial information; however, as also indicated by Reviewer 1 (in cross-comment), it is practically challenging to perform with TurboID. We have included discussion of potential future experiments involving quantitative mass spectrometry, as well as a comprehensive discussion of some of the limitations of our approach as summarised by this Reviewer, in the Discussion section (page 39). However, we note that our qualitative approach also provides beneficial knowledge, such as the identification of functional protein networks acting within biological pathways previously implicated in learning (Figure 2), and novel learning regulators ACC-1/3, LGC-46, and F46H5.3.

      We agree with the assessment that the frequency of occurrence for each candidate we test per biological replicate is useful to disclose in the manuscript as a proxy for quantification. This was also highlighted by Reviewer 2 (Major Comment 1). As detailed above in response to R2, we have now separated candidates into two categories: ‘strong’ (present in 3 or more biological replicates) and ‘weak’ candidates (present in 2 or fewer biological replicates). We have also added behavioural data after testing 9 of these strong candidates in Figures 6 & S7.

      We have also added Table 2 to the revised manuscript, which summarises the frequency-based representation of the proteomics results, as suggested. This is described on pages 22-23. Briefly, this shows the range of candidates further explored using single mutant testing. Specifically, this data showed that many of the tested candidates were more frequently detected in trained worms compared to high-salt controls. This includes both strong and weak candidates, providing a clearer view of how proteomic frequency informed our selection for functional testing.

      2) There is another problem in the treatment of the behavioural data. In Experimental Procedures, authors state that they excluded data in which naive or control groups showed average CI 0.5499 for N2 (page 36, lines 5-7). How were these values determined? One common example for judging a data point as an outlier is > mean + 1.5, 2 or 3 SD, or Thank you for pointing this out. As mentioned by both Reviewer 1 and Reviewer 4, the original manuscript states the following: “Data was excluded for salt associative learning experiments when wild-type N2 displayed (1) an average CI ≤ 0.6499 for naïve or control groups and/or (2) an average CI either 0.5499 for trained groups.”

      To clarify, we only excluded experiments in rare cases where N2 worms did not display robust high salt attraction before training, or where trained N2 did not display the expected behavioural difference compared to untrained or high-salt control N2. These anomalies were typically attributable to clear contamination or starvation issues that could clearly be observed prior to counting chemotaxis indices on CTX plates.

      We established these exclusion criteria in advance of conducting multiple learning assays to ensure an objective threshold for identifying and excluding assays affected by these rare but observable issues. However, these criteria were later found to be unnecessary, as N2 worms robustly displayed the expected untrained and trained phenotypes for salt associative learning when not compromised by starvation or contamination.

      We understand that the original criteria may have appeared to introduce arbitrary bias in data selection. To address this concern, we have removed these criteria from the revised manuscript from page 50.

      Minor comments:

      1) Related to Major comments 1), the successful effect of neuron-specific TurboID procedure was not evaluated. Authors obtained both TurboID and Non-Tg proteome data. Do they see enrichment of neuron-specific proteins? This can be easily tested, for example by using the list of neuron-specific genes by Kaletsky et al. (http://dx.doi.org/10.1038/nature16483 or http://dx.doi.org/10.1371/journal.pgen.1007559), or referring to the CenGEN data.

      We thank this Reviewer for this helpful suggestion, which was echoed by Reviewer 3 (Major Comment 1). As indicated in the response to R3 above, the revised manuscript now includes Table 1 as a tissue-specific analysis of the learning proteome, using the single neuron RNA-Seq database CeNGEN to identify the proportion of neuronal proteins from each biological replicate of mass spectrometry data. Generally, we observed a range of 87-95% of proteins corresponded to genes from the CeNGEN database that had been detected in neurons, providing evidence that the TurboID enzyme was able to target the neuronal proteome as expected. Table 1 is now described in the main text of the revised work on pages 16 & 17.

      2) The behavioural paradigm needs to be described accurately. Page 5, line 16-17, "C. elegans normally have a mild attraction towards higher salt concentration": in fact, C. elegans raised on NGM plates, which include approximately 50mM of NaCl, is attracted to around 50mM of NaCl (Kunitomo et al., Luo et al.) but not 100-200 mM.

      We thank the Reviewer for pointing this out. We agree that clarification is necessary. The revised text reads as follows on page 5: “C. elegans are typically grown in the presence of salt (usually ~ 50 mM) and display an attraction toward this concentration when assayed for chemotaxis behaviour on a salt gradient (Kunitomo et al., 2013, Luo et al., 2014). Training/conditioning with ‘no salt + food’ partially attenuates this attraction (group referred to ‘trained’).”

      Authors call this assay "salt associative learning", which refers to the fact that worms associate salt concentration (CS) and either presence or absence of food (appetitive or aversive US) during conditioning (Kunitomo et al., Luo et al., Nagashima et al.) but they are looking at only association with presence of food, and for proteome analysis they only change the CS (NaCl concentration, as discussed in Discussion, p24, lines 4-5). It is better to attempt to avoid confusion to the readers in general.

      Thank you Reviewer 4 for highlighting this clarity issue. We clarify our definition of “salt associative learning” for the purpose of this study in the revised manuscript on page 6 with the following text:

      “Similar behavioural paradigms involving pairings between salt/no salt and food/no food have been previously described in the literature (Nagashima et al. 2019). Here, learning experiments were performed by conditioning worms with either ‘no salt + food’ (referred to as ‘salt associative learning’) or ‘salt + no food’ (called ‘salt aversive learning’).”

      3) page 32, line 23: the wording "excluding" is obscure and misleading because the elo-6 gene was included in the analysis.

      We appreciate this Reviewer for pointing out this misleading comment, which was unintentional. We have now removed it from the text (on page 21).

      4) Typo at page 24, line 18: "that ACC-1" -> "than ACC-1".

      This has been corrected (on page 37).

      5) Reference. In "LEO, T. H. T. et al.", given and sir names are flipped for all authors. Also, the paper has been formally published (http://dx.doi.org/10.1016/j.cub.2023.07.041).

      We appreciate the Reviewer drawing our attention to this – the reference has been corrected and updated.

      I would like to express my modest cross comments on the reviews:

      1) Many of the reviewers comment on the shortage in the quantitative nature of the proteome analysis, so it seems to be a consensus.

      Thank you Reviewer 4 for this feedback. We appreciate the benefit in performing quantitative mass spectrometry, in that it provides an additional way to parse molecular mechanisms in a biological process (e.g., fold-changes in protein expression induced by learning). However, we note that quantitative mass spectrometry is challenging to integrate with TurboID due to the requirement to enrich for biotinylated peptides during sample processing (we now mention this on page 39). Nevertheless, it would be exciting to see this approach performed in a future study.

      To address the limitations of our original qualitative approach and enhance the clarity and utility of our dataset, we have made the following revisions in the manuscript:

      • Candidate selection criteria: We now clearly define how candidates were selected for functional testing, based on their frequency across biological replicates. Specifically, “strong candidates” were detected in three or more replicates, while “weak candidates” appeared in two or fewer.
      • Frequency-based representation (_Table 2_):__We appreciate the suggestion by Reviewer 4 (Major Comment 1) to quantify differences between high-salt control and trained groups. We now provide the frequency-based representation of the candidates tested in this study within our proteomics data in __Table 2. This data showed that many of the tested candidates were more frequently detected in trained worms compared to high-salt controls. This includes both strong and weak candidates We hope these additions help clarify our approach and demonstrate the value of the dataset, even within the constraints of qualitative proteomics.

      2) Also, tissue- or cell-specificity of the identified proteins were commonly discussed. In reviewer #3's first Major comment, appearance of non-neuronal protein in the list was pointed out, which collaborate with my (#4 reviewer's) question on successful identification of neuronal proteins by this method. On the other hand, reviewer #1 pointed out subset neuron-specific proteins in the list. Obviously, these issues need to be systematically described by the authors.

      We agree with Reviewer 4 that these analyses provide a critical angle of analysis that is not explored in the original manuscript.

      Tissue analysis (Reviewer 3 Major Comment 1): We have used the single neuron RNA-Seq database CeNGEN, to identify that 87-95% (i.e. a large majority) of proteins identified across replicates corresponded to genes detected in neurons. These findings support that the TurboID enzyme was able to target the neuronal proteome as expected. Table 1 provides this information as is now described in the main text of the revised work on page 16.

      __Neuron class analyses (Reviewer 1 Major Comment 2): __In response, we have used the suggested Wormbase gene enrichment tool and CeNGEN. We specifically input proteins from the learning proteome into Wormbase, after filtering for proteins unique to TurboID trained animals. For CeNGEN, we compared genes/proteins from control worms and trained worms to identify potential neurons that may be involved in this learning paradigm.

      Briefly, we found highlight a range of neuron classes known in learning (e.g., RIS interneurons), cells that affect behaviour but have not been explored in learning (e.g., IL1 polymodal neurons), and neurons for which their function/s are unknown (e.g., pharyngeal neuron I3). Corresponding text for this new analysis has been added on pages 16-20, with a new table and figure added to illustrate these findings (Table S7 & Figure 4). Methods are detailed on pages 50-51.

      3) Given reviewer #1's OPTIONAL Major comment, as an expert of behavioral assays in C. elegans, I would like to comment based on my experience that mutants received from Caenorhabditis Genetics Center or other labs often lose the phenotype after outcrossing by the wild type, indicating that a side mutation was responsible for the observed behavioral phenotype. Therefore, outcrossing may be helpful and easier than rescue experiments, though the latter are of course more accurate.

      Thank you for this suggestion. To address the potential involvement of background mutations, we have done experiments with backcrossed versions of mutants tested where possible, as shown in Figure 6. We found that F46H5.3(-) mutants maintained enhanced learning capacity after backcrossing with wild type, compared to their non-backcrossed mutant line. This was in contrast to C30G12.6(-) animals which lost their enhanced learning phenotype following backcrossing using wild type worms. This is described in the text on pages 24-26.

      4) Just let me clarify the first Minor comment by reviewer #2. Authors described that the kin-2 mutant has abnormality in "salt associative learning" and "salt aversive learning", according to authors' terminology. In this comment by reviewer #2, "gustatory associative learning" probably refers to both of these assays.

      Reviewer 4 is correct. We have amended the wording appropriately on page 31 to clarify our meaning to address Reviewer 2’s comment.

      • “Although kin-2(ce179) mutants were not shown to impact salt aversive learning, they have been reported previously to display impaired intermediate-term memory (but intact learning and short-term memory) for butanone appetitive learning (Stein and Murphy, 2014).”*

      5) There seem to be several typos in reviewer #1's Minor comments.

      "In Page 9, Lines 17-18" -> "Page 8, Lines 17-18".

      "Page 8, Line 24" -> "Page 7, Line 24".

      "I would suggest to remove figure 3" -> "I would suggest to remove figure 2"

      "summary figure similar to Figure 4" -> "summary figure similar to Figure 3"

      "In the discussion Page 24, Line 14" -> "In the discussion Page 23, Line 14"

      (I note that because a top page was inserted in the "merged" file but not in art file for review, there is a shift between authors' page numbers and pdf page numbers in the former.)

      It would be nice if reviewer #1 can confirm on these because I might be wrong.

      We appreciate Reviewer 4 noting this, and can confirm that these are the correct references (as indicated by Reviewer 1 in their cross-comments)

      Reviewer #4 (Significance (Required)):

      1) Total neural proteome analysis has not been conducted before for learning-induced changes, though transcriptome analysis has been performed for odor learning (Lakhina et al., http://dx.doi.org/10.1016/j.neuron.2014.12.029). This guarantees the novelty of this manuscript, because for some genes, protein levels may change even though mRNA levels remain the same. We note an example in which a proteome analysis utilizing TurboID, though not the comparison between trained/control, has led to finding of learning related proteins (Hiroki et al., http://dx.doi.org/10.1038/s41467-022-30279-7). As described in the Major comments 1) in the previous section, improvement of data presentation will be necessary to substantiate this novelty.

      We appreciate this thoughtful feedback. We agree that while the neuronal transcriptome has been explored in Lakhina et al., 2015 for C. elegans in the context of memory, our study represents the first to examine learning-induced changes in the total neuronal proteome. We particularly agree with the statement that “for some genes, protein levels may change even though mRNA levels remain the same”. This is essential rationale that we now discuss on page 42.

      Additionally, we acknowledge the relevance of the study by Hiroki et al., 2022, which used TurboID to identify learning-related proteins, though not in a trained versus control comparison. Our work builds on this by directly comparing trained and control conditions, thereby offering new insights into the proteomic landscape of learning. This is now clarified on page 36.

      To substantiate the novelty and significance of our approach, we have revised the data presentation throughout the manuscript, including clearer candidate selection criteria, frequency-based representation of proteomic hits (Table 2), and neuron-specific enrichment analyses (Table S7 & Figure 4). We hope these improvements help convey the unique contribution of our study to the field.

      2) Authors found six mutants that have abnormality in the salt learning (Fig. 4). These genes have not been described to have the abnormality, providing novel knowledge to the readers, especially those who work on C. elegans behavioural plasticity. Especially, involvement of acetylcholine neurotransmission has not been addressed. Although site of action (neurons involved) has not been tested in this manuscript, it will open the venue to further determine the way in which acetylcholine receptors, cAMP pathway etc. influences the learning process.

      Thank you Reviewer 4, for this encouraging feedback. To further strengthen the study and expand its relevance, we have tested additional mutants in response to Reviewer 3’s comments, as shown in Figures 6 & S7. These results provide even more candidate genes and pathways for future exploration, enhancing the significance and impact of our study.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      We thank all the reviewers for their helpful and constructive comments and for their time.


      Reviewer #1 (Evidence, reproducibility and clarity (Required)):*

      Summary: Dady et al have developed fluorescent reporters to enable live imaging of cell behaviour and morphology in human pluripotent stem cell lines (PSCs). These reporters target 3 main features, the plasma membrane, nucleus and cytoskeleton. Reporter PSCs have been generated using a piggyBac transposon-mediated stable integration strategy, using a hyperactive piggyBac transposase (HyPBase). The same constructs were also used for mosaic labelling of cells within 2D cultures using lipofectamine transfection.

      The reporters used are tagged with either eGFP or mKate2 (far red) and tag the plasma membrane (pm) via the addition of a 20 amino-acid sequence from rat GAP-43 to the N-terminus of the fluorescent protein, the nucleus via Histone 2B with a laser-mediated photo-conversion option (H2B-mEos3.2), and the cytoskeleton via F-Tractin. In total, the authors produced lines with the following:

      • pm-mKate2 (far red) • pm-eGFP (green) • H2B-mEos3.2 (green to red) • F-tractin-mKate2 (far red) • H2B-mEos3.2 and pm-mKate2 (green to red, plus far red)

      The cell lines used to generate these were the human embryonic stem cell line H9 and human induced pluripotent cell line ChiPS4. The constructs were also used to label cells in a mosaic fashion, using lipofectamine transfection of the original cell lines once they had formed neural rosettes.

      Using these cells, Dady et al then performed live imaging in vitro of human spinal cord rosettes and assessed cell behaviour. In particular they analysed mitotic cleavage planes and apical positioning of neural progenitor cells (NPCs), and assessed actin dynamics within these cells. They showed a slowing of the cell cycle length after the initial expansion phase, an increase in the rate of asymmetric division of these NPCs, and abscission of the apical membrane during these divisions. The F-tractin reporter showed enrichment at the basal nuclear membrane during these cell divisions, suggested to help prevent basal chromosome displacement during mitosis.

      Major comments: The data presented are convincing and could be strengthened by the following additions and clarifications:*

      1. How long do the fluorescent reports take to be visible when transfected via lipofectamine? How efficiently are they expressed? And what concentrations were tested to enable the mosaic expression presented? * We followed the manufacturer’s instructions for Lipofectamine 3000 transfection, using the protocol recommended for set up for a 6 wells plate. We detected fluorescence the following morning ~16h. We did not assess earlier time points or optimise efficiency as we observed the mosaic pattern of expression we set out to achieve, with small groups of labelled cells and single cells as shown in Figure 3 and movies 2 and 3. This information and the detailed protocol provided below are now included in the Methods section “Labelling individual cells in human spinal cord rosettes by lipofection”.

      Manufacturer’s instructions for Lipofectamine 3000 transfection (6 well plate):

      • 1 tube containing 125 ul of Opti-MEM and 7.5 ul of Lipofectamine 3000
      • 1 tube containing 250 ul of Opti-MEM with 5 ug of DNA (total mix DNAs of 2 ug/ul) and P3000 Reagent
      • Add diluted DNA to diluted Lipofectamine 3000 (Ratio 1:1) and incubate for 10 to 15 min at Room Temperature.
      • 20 ul of DNA-Lipid complex was added to neural rosettes growing in 8 well IBIDI dishes (20 ul/well).
      • The ratio of DNA (PiggyBac plasmid) and HypBase transposase was kept at 5:1 (for a final concentration of 2ug/ul).
      • Cells in IBIDI dishes were left to develop in a sterile incubator overnight and mosaic fluorescence was observed the following morning (~16h post-lipofection).

      • Will these cell lines and constructs be made publicly available after publication?*

      The cell lines can be made available: for those reporters made in the H9 WiCell line an MTA will first have to be signed between the requesting PI and WiCell and permission for us to share the line(s) confirmed by WiCell; similarly, for reporters in ChiPS4 line an MTA will first need to be signed between the requesting PI and Cellartis/TakaraBio Europe. We will need to make a charge to cover costs. Constructs will be deposited with Addgene.

      • Were the H9 and ChiPS4 lines characterised after the reporters were added to show they still proliferate/differentiate as they did prior to the reporter integration*?

      In the Results we make clear that all lines created are polyclonal, with exception of a pm-eGFP ChiPS4 line, which is a monoclonal line (lines 145-150). We do not have direct data measuring cell proliferation but collected cell passaging data for all the reporter lines. This showed that they grow to similar densities at each passage compared to the parental line (this metadata is now provided as Supplementary data 1 and is cited in the Methods, line 348).

      As a proof of principle for this approach, we created one monoclonal line from a polyclonal line ChIPS4-pm-eGFP. The latter was made by selecting an individual clone and this was then expanded and characterised for expression of pluripotency markers (immunocytochemistry data Figure S4), and the ability to differentiate into 3 germ layers (qPCR Supplementary data 1). This information is already cited in the Methods (Lines 358-362).

      • Can the novel actin dynamics described be quantified? How many cells imaged show these novel dynamics?* Some of this quantification data was already reported in the paper (in figure 4 legend and in the Methods); we have now updated this and provide the detailed metadata in an Excel spread sheet, Supplementary data 4 (cited in the Methods, line 489)

      Minor comments: 1. Some images in the figures and supplemental movies are low in resolution, for example the DAPI in Fig 4B, making it hard to distinguish individual cells. Please increase this.

      We consider the DAPI labelling in Figure 4b to be clear, however, we wonder whether the reviewer was expecting to also see this combined with the other markers. We have therefore now provided these merged additional images in a revised Figure 4.

      • Please show a merge of Phalloidin and F-Tractin in Fig4, this will help the colocalization to be fully appreciated.*

      This has now been provided in revised Figure 4B.

      • Some additional annotation on the supplemental movies would be useful to indicate to the **reader exactly what cell to follow. *

      We have added indicative arrows to the movies, and note that more detailed labelling of the series of still images from these movies are provided in the main figures (Figures 3D and 4E & F).

      *Reviewer #1 (Significance (Required)):

      Human neurogenesis is currently poorly understood compared to many model systems used, yet key differences have already been identified between the human and the mouse, prompting the need for further investigation of human neural development. A major reason that human neurogenesis has been difficult to study is a lack of tools to enable cell morphology and behaviours to be analysed in real time.

      The reporters and reporter PSC lines generated by Dady et al will allow many of these cell characteristics to be observed using live imaging. For example, the morphology of neural progenitors during and after cell divisions, how the apical and basal processes and membranes are divided, and how the actin cytoskeleton helps to regulate these processes.

      *Importantly, PSC lines can be very heterogeneous, making generating reporter lines costly and time intensive. The use of these reporters with lipofectamine transfection, for a mosaic labelling, allows the visualisation of the plasma membrane, nucleus and cytoskeleton in any human PSC/NPC line, or even in human tissue cultures, without the need to generate each specific reporter line, making it a valuable tool for many labs in the field.

      We strongly agree with this final point; this is a major reason for our study.

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):*

      The manuscript describes the generation of novel lines of human pluripotent stem cells bearing fluorescent reporters, engineered through piggyBac transposon-mediated integration. The cells are differentiated into neuronal organoids, allowing to capture cellular behaviors associated to cell division. A replating protocol allows the observation of aging neurons by reducing the thickness of the tissue thereby facilitating live imaging. The authors also leverage the transposon technology to create mosaically-labelled organoids which allows visualizing aspects of neuronal delamination, notably cytoskeleton dynamics. They discover an undescribed pattern of F-actin enrichment at the basal nuclear membrane prior to nuclear envelope breakdown.

      L104-109: "Moreover, the transposon system obviates drawbacks of directly engineering endogenous proteins...". Despite the risk of endogenous protein dysfunction, directly tagging allows the full regulation of gene expression (including the promoter, the enhancers and other regulatory regions rather than a strong constitutive promoter such as CAG). In addition, the number of copies integrated and the genomic regions are variable with PB, which does not reflect the endogenous expression. This could be rephrased by nuancing the advantages and drawbacks of each approach. The PiggyBac method is easier and faster, but it results in overexpression of a tagged protein that will be expressed since the hESC state and might not reflect the expression dynamics of the endogenous protein.* We agree and have now revised this in the Introduction L109-118.

      *L124-126: "To monitor cell shape and dynamics we used a plasma membrane (pm) localized protein tagged with eGFP or mKate2 (pm-eGFP or pm-mKate2)." Could the authors provide more details and a reference on the palmitoylated rat peptide use to force membrane expression? *

      This information, including the peptide sequence, is provided in the Methods (L330-331), we have now added a reference addressing its role in membrane localisation PMID: 2918027.

      L132-133: " Finally, to observe actin cytoskeletal dynamics we selected F-tractin, for its minimal impact on cytoskeletal homeostasis".

      A recent JCB paper (https://doi.org/10.1083/jcb.202409192) suggests that "F-tractin alters actin organization and impairs cell migration when expressed at high levels". Whether the overexpression of F-tractin in hESC using a CAG promoter reflects the physiological F-actin dynamics and/or if the high levels could lead to an alteration of cell behavior should be addressed or at least discussed. The paper we cite in this sentence (Belin et al 2014) evaluates F-tractin expression against other approaches to labelling and monitoring the actin cytoskeleton and concludes that in comparison F-tractin has minimal impact.

      We do appreciate that expression above the endogenous level has the potential to alter cell behaviour and have revised the paper to more explicitly acknowledge this: in the Introduction (L109-112), and in the Discussion/conclusion (L289-293) where we now note the recent advances reported in Shatskiy et al. 2025 PMID: 39928047.

      “A further potential limitation of this approach is that over-expression driven by the CAG promoter might not reflect physiological protein dynamics and/or alter cell behaviour; for example, high levels of F-Tractin can impair cell migration and induce actin bundling, interestingly, this can now be minimised by removing the N-terminal region (Shatskiy et al 2025)”.

      L146-147: "...to generate polyclonal cell lines selected for expression of easily detectable (medium level) fluorescence for live imaging studies". What are the criteria used to define medium level? Number of copies integrated into the genome? Or levels by FACS during clone selection?

      To clarify, all the lines presented here are polyclonal, except for one clonal line, pm-eGFP in ChiPS4. The numbers of copies integrated may vary from cell to cell in polyclonal lines. In this study, we selected cells for all lines with a FACS gate and this data is presented in Figure S1 (see line 147).

      L260-263: "Efficient stable integration and moderate expression levels were achieved by optimising, i) the quantity and ratio of piggyBac plasmids and transposase and ii) subsequent FACS to exclude high expressing cells, as well as iii) transfection methods, including temporally defined lipofection in hiPSC-derived tissues." The ration 5:1 is classically used for PB Transposase delivery, however there is still high variability in the number of copies integration. Lipofection in derived tissues has been shown to be challenging. Could the authors should provide quantitative data regarding the efficiency of their approaches, notably the level of mosaicism one could expect?

      We provide quantitative data for the efficiency of transfection using nucleoporation assays (FACS data presented in Supplementary figure S1), which shows more than 80-90% efficiency for eGFP in 82.82% of cells, mKate2 in 92.74% of cells, and H2B-mEos3 22.75% of cells, while 13.79% of cells co-expressed pm-Kate and H2B-mEos3.2. No comparative data regarding the efficiency of the tissue Lipofection assay was collected: our goal was to label single/small numbers of cells in order to monitor individual cell behaviours, and this “inefficient labelling” was readily achieved following the manufacturer’s instructions (please see response to Review 1 point 1), further details are now provided in the Methods.

      L191-194: "We further wished to monitor sub-cellular behaviour within the developing neuroepithelium. To achieve this, we devised a strategy to target a mosaic of cells in established neural rosettes using lipofection. PiggyBac constructs and HyPBase transposase were transfected into D8/D9 human spinal cord neural progenitors using lipofectamine (Felgner, et al., 1987)(Fig. 3A)." The mosaicism is not an all or nothing in this method but also leads to variations in expression levels among the positive cells. The protocol for lipofection could be better detailed to allow easy reproduction by other teams, and its expected efficiency should be discussed. It would be interesting to explore the relationship between individual cells phenotype and expression levels. Please see response to Reviewer 1 point 1 above for more detailed lipofection protocol which generated mosaic expression, this is now also included in the Methods. We agree that investigating the relationship between individual cell phenotypes and expression levels would be interesting, but we think this is beyond the scope of this paper.

      Additional comments: -Did the authors perform karyotyping of the hPSCs prior to use in the differentiation protocol?

      As these are polyclonal lines, we did not undertake karyotyping. This could be done for the one monoclonal line described here (pm-eGFP ChiPS4 line): we lack funds for commercial options, but we are exploring other possibilities.

      -Were pluripotency assays performed after reporter lines generation?

      These were carried out for the clonal pm-eGFP ChiPS4 line (lines 145-150). The latter was made by selecting an individual clone and this was then expanded and characterised for expression of pluripotency markers by IF (Figure S4), and the ability to differentiate into 3 germ layers by qPCR (Supplementary data 2). This information is provided in the Methods (Lines 358-362).

      *-Did the authors measure the cell proliferation rate in H2B-overexpressing cells and controls? Since H2B plays an important role in cytokinesis, it could interfere in cell division when H2B is overexpressed (see doi: 10.3390/cells8111391). *

      We did not directly measure cell division when H2B is over-expressed. However, we assessed cell -passaging time of all the transfected cell lines. This showed that they grow to similar densities at each passage compared to the parental line (this is now provided as Supplementary data 1 and is cited in the Methods, line 348). We also found no difference between apical visiting time of progenitors in spinal cord rosettes expressing pm-eGFP or H2B-mEoS3.2, further supporting the conclusion that levels of H2B-mEoS3.2 expression achieved in this line did not interfere with cell division (metadata provided in Supplementary data 3).

      The authors should provide data concerning the efficiency of expression of the distinct markers after electroporation. This is provided in Supplementary Figure S1 (FACS data) and detailed above for this reviewer.

      *At Fig 1C, the schematic representation describes clone selection, however in the methods it is stated (L348-349): "Sorted cells expressing medium levels of fluorescence were expanded and frozen then representative lots of each polyclonal cell line...". There is some confusion regarding which experiments were performed using polyclonal medium-level mixed populations or monoclonal populations. *

      We apologise for any confusion and have revised the Figure 1C schematic to indicate that cells can be selected to either make polyclonal lines or clonal lines.

      *Reviewer #2 (Significance (Required)):

      The study provides novel tools, as well as elements regarding neuroepithelium biology. It is well conducted and written, and the quality of images is excellent. It reads more as a resource paper in its current version, since the observation regarding neural cell division and delamination are interesting but not deeply explored, so this review will focus on those technical aspects rather than the novelty of the biological findings.

      This study would be of interests for researchers in stem cells and organoids, developmental biology, and neurosciences.

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      In the manuscript, "Engineering fluorescent reporters in human pluripotent cells and strategies for live imaging human neurogenesis" the authors Dady et al. describe the adaptation of a recent advancement in transposase technology (HyPBase) as a method to integrate live reporters in human pluripotent stem cells. They show that these florescent reporters paired with new imaging strategies can be used to confirm the existence cellular behaviour described in other species such as the interkinetic nuclear migration (IKNM) of dividing progenitors in neural tube development. Finally, they demonstrate that this live imaging system is also able to discover novel biology by identifying previously undescribed actin polymerization at the basal nuclear surface of cortical progenitors undergoing cell division. Overall, the study presents two examples in which this adapted tool will aid in live-imaging studies of cellular biology.

      Major Concerns: 1. This work needs more controls to properly demonstrate claims that their engineering strategy provides an advancement to current Piggyback methods. Their HyPBase strategy needs to be compared and quantified in terms of efficiency with other methods to support their claims (increased detection and reduced phototoxicity).*

      We do not make specific claims for our experiments with respect to the superiority of HyPBase strategy. Our comments on this approach referred to by the reviewer here are in the Introduction (L 94-103), are supported by the literature (e.g. more stable gene expression than native piggyBac or the Tc1/mariner transposase Sleeping Beauty (Doherty, et al., 2012, Yusa, et al., 2011) and serve to explain our selection of HyPBase for our experiments. We make a case for using HyPBase as opposed to another transposase and although it would be interesting to compare efficiencies, this comment does not specify what “other methods” might be informative.

      2.Throughout the manuscript more quantification is needed of the results. How many rosettes were examined? Were all the reported cells within one rosette? Were there differences between rosettes? This should be done for both the spinal and cortical differentiations.

      The reviewer appears to have missed this information – we placed detailed quantifications in the figure legends (numbers of independent experiments and rosettes) and in the Methods in a specific section on Quantification of cell behaviour (L465-486), rather than in the main text. These has since been further updated and we now also provide additional metadata in the form of Excel spreadsheets for quantifications and analyses made for both spinal cord and cortical rosettes (Supplementary data 3 and 4 respectively).

      Minor Comments: 1. Line 246 needs quantification shown in figures of the statements made. Specifically, how many cells were measured to get this number?

      This information was provided in the figure 4 legend and we have since added numbers to these data; we were able to monitor 169 divisions in 21 rosettes; 154/166 divisions had vertical cleavage planes (symmetric) and 12/166 had horizontal cleavage planes (asymmetric).

      These detailed observations were made in two independent experiments, along with observations of basal nuclear membrane F-Tractin localisation. This is noted in figure 4 legend, Methods and detailed metadata is provided in Supplementary data 4.

      2.How many cells in the cortical rosettes had the enriched actin at the basal nuclear surface?

      We confidently observed basal nuclear membrane F-Tractin enrichment in 141/146 divisions, for the remaining 20 cases (166-146), we could not tell whether F-Tractin is enriched or not at the basal nuclear membrane either because of low expression levels or because the basal nuclear membrane was out of focus at NEB. In 5 cases, we did not see the basal nuclear enrichment despite sufficient F-Tractin expression levels and the nucleus being in focus. We have updated the Fig4 legend excluding the non-analysable cases and see detailed metadata is provided in Supplementary data 4.

      *Reviewer #3 (Significance (Required)):

      General Assessment: This manuscript makes a very minor advancement in the field of stem cell engineering and developmental biology, but one that is worthy of publication with a few edits.

      Advance: While PiggyBac reporters are widely used in stem cell engineering, Dady et al. demonstrate a new workflow using HyPBase which would be beneficial to the field. However, to increase this benefit, much more description and quantification of the methods would be needed. The biological advances of this manuscript are also very minor, but interesting as most of them confirm that human neural rosettes mimic many of the observed cell behaviours seen in animal models. Along these lines is the actin dynamics observation in cortical rosettes is interesting, but a preliminary observation and in need of follow up experiments.

      Audience: Regardless, this technique would be of interest to the wider field of stem cell engineering.

      My Expertise: Human Stem Cell Engineering, Neural Tube Development*

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #1

      Evidence, reproducibility and clarity

      Summary:

      Dady et al have developed fluorescent reporters to enable live imaging of cell behaviour and morphology in human pluripotent stem cell lines (PSCs). These reporters target 3 main features, the plasma membrane, nucleus and cytoskeleton. Reporter PSCs have been generated using a piggyBac transposon-mediated stable integration strategy, using a hyperactive piggyBac transposase (HyPBase). The same constructs were also used for mosaic labelling of cells within 2D cultures using lipofectamine transfection.

      The reporters used are tagged with either eGFP or mKate2 (far red) and tag the plasma membrane (pm) via the addition of a 20 amino-acid sequence from rat GAP-43 to the N-terminus of the fluorescent protein, the nucleus via Histone 2B with a laser-mediated photo-conversion option (H2B-mEos3.2), and the cytoskeleton via F-Tractin. In total, the authors produced lines with the following:

      • pm-mKate2 (far red)
      • pm-eGFP (green)
      • H2B-mEos3.2 (green to red)
      • F-tractin-mKate2 (far red)
      • H2B-mEos3.2 and pm-mKate2 (green to red, plus far red)

      The cell lines used to generate these were the human embryonic stem cell line H9 and human induced pluripotent cell line ChiPS4. The constructs were also used to label cells in a mosaic fashion, using lipofectamine transfection of the original cell lines once they had formed neural rosettes.

      Using these cells, Dady et al then performed live imaging in vitro of human spinal cord rosettes and assessed cell behaviour. In particular they analysed mitotic cleavage planes and apical positioning of neural progenitor cells (NPCs), and assessed actin dynamics within these cells. They showed a slowing of the cell cycle length after the initial expansion phase, an increase in the rate of asymmetric division of these NPCs, and abscission of the apical membrane during these divisions. The F-tractin reporter showed enrichment at the basal nuclear membrane during these cell divisions, suggested to help prevent basal chromosome displacement during mitosis.

      Major comments:

      The data presented are convincing and could be strengthened by the following additions and clarifications: 1. How long do the fluorescent reports take to be visible when transfected via lipofectamine? How efficiently are they expressed? And what concentrations were tested to enable the mosaic expression presented? 2. Will these cell lines and constructs be made publicly available after publication? 3. Were the H9 and ChiPS4 lines characterised after the reporters were added to show they still proliferate/differentiate as they did prior to the reporter integration? 4. Can the novel actin dynamics described be quantified? How many cells imaged show these novel dynamics?

      Minor comments:

      1. Some images in the figures and supplemental movies are low in resolution, for example the DAPI in Fig 4B, making it hard to distinguish individual cells. Please increase this.
      2. Please show a merge of Phallodin and F-Tractin in Fig4, this will help the colocalization to be fully appreciated.
      3. Some additional annotation on the supplemental movies would be useful to indicate to the reader exactly what cell to follow.

      Significance

      Human neurogenesis is currently poorly understood compared to many model systems used, yet key differences have already been identified between the human and the mouse, prompting the need for further investigation of human neural development. A major reason that human neurogenesis has been difficult to study is a lack of tools to enable cell morphology and behaviours to be analysed in real time.

      The reporters and reporter PSC lines generated by Dady et al will allow many of these cell characteristics to be observed using live imaging. For example, the morphology of neural progenitors during and after cell divisions, how the apical and basal processes and membranes are divided, and how the actin cytoskeleton helps to regulate these processes.

      Importantly, PSC lines can be very heterogeneous, making generating reporter lines costly and time intensive. The use of these reporters with lipofectamine transfection, for a mosaic labelling, allows the visualisation of the plasma membrane, nucleus and cytoskeleton in any human PSC/NPC line, or even in human tissue cultures, without the need to generate each specific reporter line, making it a valuable tool for many labs in the field.

    1. Zwei Ex-Soldaten rechnen ab: So schlecht steht es um Deutschland wirklich

      https://www.youtube.com/watch?v=kOWDBy4fbqs

      Der Kipp-Punkt kommt, wenn die Kassen leer sind‼️ Dann gehen uns unsere Fachkräfte an die Gurgel‼️

      selbstjustiz und revolution, das ist das einzige was hilft, alles andere ist zeitverschwendung.

      4:51 Die Polizisten haben Angst, die Bürger haben Angst und das ist ja auch das Problem. Machst du jetzt irgendwas? Die sind ja nicht blöd, die kriegen deine Daten raus über die Staatsanwaltschaft, und dann auf einmal kriegst du Hausbesuche. Dasselbe Problem haben die Richter, dasselbe haben die Anwälte. Massive Einschüchterung, zumindest wenn es um Clankriminalität geht. Keiner traut sich mehr, was, also Deutschland hat fertig. Wir sind im Kriegszustand. nur hat es bis jetzt uns nur keiner gesagt.

      8:05 Das Problem ist auch mit diesen Einschüchterungen, das ist eine Form der Propaganda. Man weiß, man kann gegen die Leute nichts machen, also schüchtert man sie ein. Weil dann sozusagen, oh, eine Hausdurchsuchung links oder rechts von einen. Es wird juristisch nichts passieren, aber was passiert sozial? Was passiert mit den Job? Also, bestrafe einen und züchtige Hunderte. Das ist ein reines Abschreckungsmittel, was eigentlich in diktatorischen Gefilden normalerweise angewendet wird, aber anscheinend ist unsere Politik so weit, dass sie in die Enge getrieben ist, sich von der Realität verabschiedet haben, um jetzt sozusagen auf, ich nenn es mal "alte Methoden" zurückgreift, um dort einfach an der Macht zu bleiben.

      8:42 Weil das wissen wir, sei es die NGO Geschichten, sei es die vielen Skandale, die Masse wahrscheinlich von vielen vielen Amsträgern, die müssten wahrscheinlich auch im Knast landen. Ja, nur das kann man natürlich schön verheimlichen, indem man die Medien auf seiner Seite hat, die Richter, die alle auch politisch irgendwo ihre Pässe haben, ihre Parteibücher, und auf der anderen Seite mit den Medien. Also alles so ein Schornstein-Effekt, alle nutzen sich gegenseitig, und geben sich auch gegenseitig Autorität.

      11:04 Vorsorgen kann bis zu einem gewissen Grad ja wirklich jeder, ne? Ja, und es geht auch nicht immer um materielle Sachen. Körperlich, Geist, Netzwerk, Austauschen. Alleine bist du in der Krise nichts. Egal, was du für ein Background hast, egal wie gut du bewaffnet bist, egal wie viel Essen du hast, jeder ist Mal krank oder müde oder angeschlagen oder verletzt. Man braucht eine Schichtfähigkeit. Man braucht vor allem spezialisierte Leute, die verschiedene Fähigkeiten machen können, sich ergänzen können als Team. Ja, was ursprünglich eigentlich so die Volksseele war. Das ist ja durch die Atomisierung, ist auch wieder so eine so eine Technik, ist ja das ausgetrieben worden, ne? Oder Entwurzelungstechniken. Damit ist natürlich die Bevölkerung komplett sozusagen, jeder gegen jeden, und nur noch Ellenbogengesellschaft, und dass man eigentlich zusammen gehört, auch dieses links und rechts, grün gegen sonst was, oben gegen unten, das sind alles Techniken, nur um eigentlich "die da oben", sage ich mal, zu schützen, dass das Volk nicht ein irgendwo vorgeht. Und du hast gefragt, wie lange geht's noch? Es geht so lange, wie wir uns das gefallen lassen, und irgendwann, irgendwann stehen Leute auf und sagen, jetzt reicht's.

      12:10 Aber dieser Kippppunkt muss noch kommen, das ist das Problem an der deutschen Seele, ja, bei den Südländern ist es eher so eine Art "Tauziehen", sagt man in der Psychologie. Also, wenn sozusagen eine Reaktion kommt, Druck von Regierung, neue Steuern, dann wird direkt reagiert. Bei den Deutschen oder den, ich nenn es mal den Norddeuropäern, das ist eher so ein "Kipppunkt", da passiert nichts, passiert nichts, irgendwann reicht's und dann schnappt das um, und dann ist natürlich gleich wieder Volleskalation. Aber dieser Punkt ist noch nicht da. Wir haben noch Trinken, es gibt noch Bier, es kommt noch Fußball im Fernsehen.

      13:42 190.000 zusätzliche Arbeitslose mehr als im selben Zeitpunkt im Jahr davor, aber 6,2% Arbeitslosenquote. Aber sind wir mal ehrlich, das ist ja nicht die Wahrheit. Die Wahrheit ist ja, wie viele sind in Maßnahmen, wie viele gehen im vorzeitigen Ruhstand, wenn man ehrlich ist, kann man das ja mindestens verdoppeln. Und dann hast du natürlich von den zusätzlichen Beamten, die geschaffen werden, sei es in Berlin, sei es aber auf kommunaler Ebene, ich kriege das bei mir auf kommunale Ebene mit, wie viele Menschen dort verbeamtet werden, die in der Verwaltung sitzen. Ist für mich immer unbegreiflich, weiß du. Also Beamte brauchst du maximal Richter, Staatsanwälte, Polizisten. Brauchst du keine Lehrer als Beamter in meinen Augen. Ist völliger Nonsens.

      14:23 Aber es bläht sich halt komplett auf, dieser Wasserkopf, und diejenigen, die hier tatsächlich produktiv noch sind, die werden immer weniger, die werden immer mehr zur Kasse gebeten. Was habe ich mich gestern und heute mit Unternehmen unterhalten, die einfach die Schnauze voll haben und sagen, ich mach nicht mehr, ich hau ab, ihr könnt mich alle mal, und dann stehen wir da. Dann hast du eine extrem linke Bewegung. Ich glaube, gestern waren es ernsthaft die Linken in den Umfragen bei 16%, wo ich mir denke, sag mal, seid ihr alle nicht mehr ganz dicht oder was? Du kannst ja ne linke Einstellung haben. Die linke Einstellung endet für mich da, wenn man irgendwie das, weiß du, "Deutschland verrecke", "Alerta Alerta", die ganze Nummer, die ich da von morgens bis abends von irgendwelchen wirklich dummen Menschen höre, die aber auf meine Kosten leben, die vom Sozialstaat leben. Was glauben die denn, wo das herkommt?

      19:42 Die sind nicht alle blöd. Das Problem ist, vielen fehlen die Fakten, vielen fehlen sachliche neutrale Fakten. Alles was, sei es über öffentlich-rechtlichen Rundfunk ist, oder über Fernsehen, Radio, sonst was, durchläuft mindestens fünf Filter. Also fünf Filter von "hier ist die Explosion", hier ist die Primärquelle, und ehe wir das sehen, lesen oder sonst was, muss es mindestens durch fünf Filter durchgehen, teilweise auch sechs oder sieben Filter, und somit ist natürlich klar, die Leute können bloß auf der Datenlage, die die bekommen, eine eine Reaktion bzw. eine Lagefeststellung, eine Entscheidung treffen. Wenn aber die Rohdaten nur Lügen sind, und die das aber nicht wissen, dann können die einfach das nicht machen. Die denken wirklich vielleicht "aus bestem Wissen und Gewissen wähle ich jetzt das", oder mache ich jetzt das, oder "die sind böse und die sind gut". Aber woher ziehen die ihre Daten? Ja, und das sind so die Sachen. Einfach mehr hinterfragen, mehr selber nachdenken. Am Ende wird man selber drauf kommen, ne? Es ist es ist nicht so komplex, nur dadurch dass jeder arbeiten ist, keine Zeit hat. Ja, und wenn er dann abends kaputt nach 10 Stunden Arbeit, vor allem die Selbständigen, das ja dann eher Halbzeit, dann fällt man nur noch ins Bett oder auf Sofa, schaut Netflix, trinkt nen Wein und dann dann fängt der nächste Tag wieder vor los, also diese Narkotisierung durch viele Informationen und aber auch Überschwemmung mit 1000 Fake News und Desinformation, dadurch können die Leute leider, muss man sagen, gar nicht so richtig das urteilen. Das ist das Problem. Diese, beim NLP heißt das ja "unbewusste Inkompetenz". Ja, sie wissen gar nicht, dass die dumm sind bzw. wissen gar nicht, dass denen irgendwas fehlt. Dazu müssten die sozusagen erstmal die richtigen Fragen stellen, um eine "bewusste Inkompetenz". "Oh, hier habe ich eine Lücke." Ja, deswegen sage ich immer, vielfältig informieren. Es es reicht heutzutage nicht einfach nur um 19 Uhr die Glotze anzumachen.

      23:59 Also ich kann bloß das wiederholen, was einige Polizeipräsidenten zu mir gesagt haben, und da ging's ja einmal hier um das Beispiel Frankfurt, was sie gesagt hatten, dass die komplette Polizei und auch Bundeswehr nicht in der Lage wäre, allein gegen die Frankfurter Gangster und die Kriminellen anzugehen. Also das Gegenüber hat viel mehr Waffen, Munition, viel mehr Manpower. Von allen Behörden, die ich jemals getroffen und gesehen habe, seit 2004, sagen alle dasselbe. Sobald es kracht, nehmen Sie ihre Dienstwaffe und gehen nach Hause. Also, es ist kaum einer da, und auch viele Dienststellen sind schon infiltriert [Graue Wölfe, Bozkurt]. Auch da sind schon viele, ich sag mal, aus den Clans aus den Gangbereichen mit drin, die gezielt reingebracht wurden.

      26:42 Jeder, der sich mit dieser ganzen Situation mal intensiv befasst hat, weiß das. In Deutschland denken da kaum Menschen drüber nach. Die Naivität in diesem Land ist bemerkenswert. Ich habe in meinem letzten Video das von dem Delta Force Operator eingespielt, weil er, wie er gesagt hat, die Brutalität bei unseren Menschen, und die sind ja in diesem Land, das sind nicht alle, ja, aber es sind genügend mit eingesickert, die vom islamischen Staat kommen, und so weiter. Und wenn die dann die "Leutnante" sind, sage ich mal, auf der Straße, du hast das letztes mal gesagt, da werden viele folgen, da werden viele mitmachen.

      27:23 Ich habe eine Rede von dem ehemaligen Chef der Kommando Spezialkräfte, General Günzel, gehört, der gesagt hat, der Mensch ist von Natur aus schlecht und brutal. Geht es aber um religiöse Gründe, ist die Brutalität in keinster Weise in Worte zu fassen. "Dieses Bemühen um eine humane Kriegführung, wenn dieses Wort erlaubt ist, fiel jedoch regelmäßig und ironischerweise immer dann sofort wieder in sich zusammen, wenn das Volk im Namen Gottes zu den Waffen gerufen wurde. Glaubenskriege und Kreuzzüge waren die mit Abstand grausamsten der Menschheitsgeschichte."

      28:52 Die iranische Führung hat jetzt offiziell den heiligen Krieg erklärt gegen Israel und Amerika.

      29:36 Wann geht's hier richtig los? Wenn sozusagen der Heilige Krieg, also zwischen Christen und Juden gegen Muslime bzw. Muslime gegen die Christen und Juden, dann wird es hier verdammt eng.

      33:26 Lass uns den Menschen noch ein bisschen Hoffnung machen. Dass es knallen wird, das ist klar. Aber wahrscheinlich brauchen wir so ein "Reinigungsgewitter" wie Marc Friedrich, ich habe mit dem auch gestern noch so ein Interview gemacht, ganz interessant, der beschrieben. Es geht immer in Zyklen, alle 80 Jahre, und ich glaube er hat einfach recht. Ja und wir sind jetzt einfach dran. Die Frage ist, wie schlimm wird's? Die Frage ist, wie kommen wir da durch, und dann wie kommen wir auch schnell wieder nach oben? Weil wirtschaftlich ist ist hat Deutschland fertig. Hat Deutschland wirklich fertig. Das ist einfach wahr. Und das das kommt auch nicht zurück. Die Firmen, die weg sind, kommen kommen nicht wieder. Die Facharbeiter, die weg sind, kommen nicht wieder. Und ich glaube ja, da hat das, was Marc Friedrich wahrscheinlich gemeint hat, ist "das Prinzip der vier Generation" [good times create weak men…], was einfach wiederkehrend in der Geschichte der Menschheit immer wieder da ist. Und ja, ich glaube, wir brauchen es, und ich hoffe einfach noch, dass ein bisschen Restfunke, sage ich mal, unsere Ahnen irgendwie in uns drin ist, zwischen Dichtern, Denkern und auch Kämpfern. Ja, die German waren ist nicht unbedingt nur Leute, die da ganze Zeit Gedichte geschrieben haben. Ja, also auch das Wehrhafte, hoffe ich, dass das irgendwann mal wieder zurückkommt, und dann werden wir das sehen. Also, ich denke, wir zwei sehen uns dann irgendwann mal auf der Straße wieder, an der Seite von denjenigen, die Schutz brauchen. Ja, aber ich weiß nicht, wer sonst noch da ist. Das das ist genau der Punkt. Einige Kämpfer gibt es in diesem Land noch, und ich weiß, wenn wir uns auf der Straße treffen sollten, dass ich mich auf dich verlassen kann. Mein Lieber, grüß bitte alle deine Mitstreiter, weil es gibt noch genügend in diesem Land, die dieses Land lieben und nicht zum Kotzen finden ("Warum bist denn du heute hier? - Alerta Alerta!") und Deutschland nicht den Tod wünschen ("Deutschland verrecke") und von daher glaube ich schon, dass wir am Ende irgendwie wieder vernünftig vorgehen können, mein Lieber. Vielen Dank, Andre.

      35:22 "Glaubenskriege und Kreuzzüge waren die mit Abstand grausamsten der Menschheitsgeschichte. Denn hier kämpfte man ja nicht mehr gegen einen, wenn auch feindlich gesonnenen, aber doch immerhin menschlichen Gegner. Hier kämpfte man gegen den Leibhaftigen mit seinem gesamten höllischen Anhang. Hier ging es nicht mehr um irdische Güter, um Land, Macht oder Interessen. Hier ging es um das Wort und die Werke des wahren Gottes. Nicht um Sieg oder Niederlage, sondern um die Ausrottung des Bösen schlechthin. Und da aber natürlich auch jedes Mittel recht, denn wer mit Gott im Bunde war, der konnte ja nichts Unrechtes tun."

    1. Author response:

      The following is the authors’ response to the previous reviews

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      In this manuscript, Azlan et al. identified a novel maternal factor called Sakura that is required for proper oogenesis in Drosophila. They showed that Sakura is specifically expressed in the female germline cells. Consistent with its expression pattern, Sakura functioned autonomously in germline cells to ensure proper oogenesis. In sakura KO flies, germline cells were lost during early oogenesis and often became tumorous before degenerating by apoptosis. In these tumorous germ cells, piRNA production was defective and many transposons were derepressed. Interestingly, Smad signaling, a critical signaling pathway for the GSC maintenance, was abolished in sakura KO germline stem cells, resulting in ectopic expression of Bam in whole germline cells in the tumorous germline. A recent study reported that Bam acts together with the deubiquitinase Otu to stabilize Cyc A. In the absence of sakura, Cyc A was upregulated in tumorous germline cells in the germarium. Furthermore, the authors showed that Sakura co-immunoprecipitated Otu in ovarian extracts. A series of in vitro assays suggested that the Otu (1-339 aa) and Sakura (1-49 aa) are sufficient for their direct interaction. Finally, the authors demonstrated that the loss of otu phenocopies the loss of sakura, supporting their idea that Sakura plays a role in germ cell maintenance and differentiation through interaction with Otu during oogenesis.

      Strengths:

      To my knowledge, this is the first characterization of the role of CG14545 genes. Each experiment seems to be well-designed and adequately controlled

      Weaknesses:

      However, the conclusions from each experiment are somewhat separate, and the functional relationships between Sakura's functions are not well established. In other words, although the loss of Sakura in the germline causes pleiotropic effects, the cause-and-effect relationships between the individual defects remain unclear.

      Comments on latest version:

      The authors have attempted to address my initial concerns with additional experiments and refutations. Unfortunately, my concerns, especially my specific comments 1-3, remain unaddressed. The present manuscript is descriptive and fails to describe the molecular mechanism by which Sakura exerts its function in the germline. Nevertheless, this reviewer acknowledges that the observed defects in sakura mutant ovaries and the possible physiological significance of the Sakura-Out interaction are worth sharing with the research community, as they may lay the groundwork for future research in functional analysis.

      We thank the reviewer for valuable comments. We would like to investigate the molecular mechanism by which Sakura exerts its function in the germline in near future studies. 

      Reviewer #2 (Public review):

      In this study, the authors identified CG14545 (named it sakura), as a key gene essential for Drosophila oogenesis. Genetic analyses revealed that Sakura is vital for both oogenesis progression and ultimate female fertility, playing a central role in the renewal and differentiation of germ stem cells (GSC).

      The absence of Sakura disrupts the Dpp/BMP signaling pathway, resulting in abnormal bam gene expression, which impairs GSC differentiation and leads to GSC loss. Additionally, Sakura is critical for maintaining normal levels of piRNAs. Also, the authors convincingly demonstrate that Sakura physically interacts with Otu, identifying the specific domains necessary for this interaction, suggesting a cooperative role in germline regulation. Importantly, the loss of otu produces similar defects to those observed in sakura mutants, highlighting their functional collaboration.

      The authors provide compelling evidence that Sakura is a critical regulator of germ cell fate, maintenance, and differentiation in Drosophila. This regulatory role is mediated through modulation of pMad and Bam expression. However, the phenotypes observed in the germarium appear to stem from reduced pMad levels, which subsequently trigger premature and ectopic expression of Bam. This aberrant Bam expression could lead to increased CycA levels and altered transcriptional regulation, impacting piRNA expression. In this revised manuscript, the authors further investigated whether Sakura affects the function of Orb, a binding partner they identified, in deubiquitinase activity when Orb interacts with Bam.

      We appreciate the authors' efforts to address all our comments. While these revisions have greatly improved the clarity of certain sections, some of the concerns remain unclear, while details mentioned in the responses about these studies should be incorporated in the manuscript. Specifically, the manuscript still lacks the demonstration that Sakura co-localizes with Orb/Bam despite having the means for staining and visualization. This would bring insight into the selective binding of Orb with Bam vs. Sakura perhaps at different stages of oogenesis. Such analyses would allow for more specific conclusions, further alluding to the underlying mechanism, rather than the general observations currently presented.

      This elaborate study will be embraced by both germline-focused scientists and the developmental biology community.

      We thank the reviewer for valuable comments. We believe that the author meant Otu, not Orb, for the binding partner of Sakura that we identified. We would like to investigate the colocalization of Sakura with other proteins including Otu and the molecular mechanism by which Sakura exerts its function in the germline in near future studies. 

      Reviewer #3 (Public review):

      In this very thorough study, the authors characterize the function of a novel Drosophila gene, which they name Sakura. They start with the observation that sakura expression is predicted to be highly enriched in the ovary and they generate an anti-sakura antibody, a line with a GFP-tagged sakura transgene, and a sakura null allele to investigate sakura localization and function directly. They confirm the prediction that it is primarily expressed in the ovary and, specifically, that it is expressed in germ cells, and find that about 2/3 of the mutants lack germ cells completely and the remaining have tumorous ovaries. Further investigation reveals that Sakura is required for piRNA-mediated repression of transposons in germ cells. They also find evidence that sakura is important for germ cell specification during development and germline stem cell maintenance during adulthood. However, despite the role of sakura in maintaining germline stem cells, they find that sakura mutant germ cells also fail to differentiate properly such that mutant germline stem cell clones have an increased number of "GSC-like" cells. They attribute this phenotype to a failure in the repression of Bam by dpp signaling. Lastly, they demonstrate that sakura physically interacts with otu and that sakura and otu mutants have similar germ cell phenotypes. Overall, this study helps to advance the field by providing a characterization of a novel gene that is required for oogenesis. The data are generally high-quality and the new lines and reagents they generated will be useful for the field.

      Comments on latest version:

      With these revisions, the authors have addressed my main concerns.

      We thank the reviewer for valuable comments.

      Recommendations for the authors:

      Reviewer #2 (Recommendations for the authors):

      The manuscript is much improved based on the changes made upon recommendations from the reviewers.

      Though most of our comments have been addressed, we have a few more we wish to recommend. For previous points we made, we replied with further clarification for the authors.

      Figure 1

      (1) B should be the supplemental figure.

      We moved the former Fig 1B to Supplemental Figure 1.

      • Previous Fig1B (sakura mRNA expression level) is now Fig S2, not S1. Please make this data as Fig S1.

      We moved Fig S1 to main Fig7A and renumbered Fig S2-S16 to Fig S1-S15.

      (2) C - How were the different egg chamber stages selected in the WB? Naming them 'oocytes' is deceiving. Recommend labeling them as 'egg chambers', since an oocyte is claimed to be just the one-cell of that cyst.

      We changed the labeling to egg chambers.

      • The labels on lanes for Stages 12-13 and Stage 14, still only say "chambers", not "egg chambers". Also there is no Stage 1-3 egg chamber. More accurately, the label should be "Germarium - Stage 11 egg chambers".

      We updated the lables on lanes as suggested by the reviewer.

      (3) Is the antibody not detecting Sakura in IF? There is no mention of this anywhere in the manuscript.

      While our Sakura antibody detects Sakura in IF, it seems to detect some other proteins as well. Since we have Sakura-EGFP fly strain (which fully rescues sakuranull phenotypes) to examine Sakura expression and localization without such non-specific signal issues, we relied on Sakura-EGFP rather than anti-Sakura antibodies for IF.

      • Please put this info into the Methods section.

      We added this info into the Methods section.

      (4) Expand on the reliance of the sakura-EGFP fly line. Does this overexpression cause any phenotypes?

      sakura-EGFP does not cause any phenotypes in the background of sakura[+/+] and sakura[+/-].

      • Please add this detail into the manuscript.

      We added this info into the Methods section.

      Figure 5

      (1) D - It might make more sense if this graph showed % instead of the numbers.

      We did not understand the reviewer's point. We think using numbers, not %, makes more sense.

      • Having a different 'n' number for each experiment does not allow one to compare anything except numbers of the egg chambers. This must be normalized.

      We still don’t agree with the reviewer. In Fig 5D, we are showing the numbers of stage 14 oocytes per fly (= per a pair of ovaries). ‘n’ is the number of flies (= number of a pair of ovaries) examined. We now clarified this in the figure legend. Different ‘n’ number does not prevent us from comparing the numbers of stage 14 oocytes per fly. Therefore, we would like to show as it is now.

      (2) Line 213 - explain why RNAi 2 was chosen when RNAi 1 looks stronger.

      Fly stock of RNAi line 2 is much healthier than RNAi line 1 (without being driven Gal4) for some reasons. We had a concern that the RNAi line 1 might contain an unwanted genetic background. We chose to use the RNAi 2 line to avoid such an issue.

      • Please add this information to the manuscript.

      We added this info into the Methods section.

      Figure 7/8 - can go to Supplemental.

      We moved Fig 8 to supplemental. However, we think Fig 7 data is important and therefore we would like to present them as a main figure.

      • Current Fig S1 should go to Fig 7, to better understand the relationship between pMad and Bam expression.

      We moved Fig S1 to main Fig7A and renumbered Fig S2-S16 to Fig S1-S15.

      Figure 9C - Why the switch to S2 cells? Not able to use the Otu antibody in the IP of ovaries?

      We can use the Otu antibody in the IP of ovaries. However, in anti-Sakura Western after anti Otu IP, antibody light chain bands of the Otu antibodies overlap with the Sakura band. Therefore, we switched to S2 cells to avoid this issue by using an epitope tag.

      • Please add this info to the Methods section.

      We added this info into the Methods section.

      Figure 10- Some images would be nice here to show that the truncations no longer colocalize.

      We did not understand the reviewer's points. In our study, even for the full-length proteins. We have not shown any colocalization of Sakura and Otu in S2 cells or in ovaries, except that they both are enriched in developing oocytes in egg chambers.

      • Based on your binding studies, we would expect them to colocalize in the egg chamber, and since there are antibodies and a GFP-line available, it would be important to demonstrate that via visualization.

      As we wrote in the response and now in the manuscript, our antibodies are not best for immunostaining. We will try to optimize the experimental conditions in the future studies.

    1. Reviewer #2 (Public review):

      In this manuscript, Ross and Miscik et. al described the phenotypic discrepancies between F0 zebrafish mosaic mutant ("CRISPants") and morpholino knockdown (Morphant) embryos versus a set of 5 different loss-of-function (LOF) stable mutants in one particular gene involved in hepatic stellate cells development: podxl. While transient LOF and mosaic mutants induced a decrease of hepatic stellate cells number stable LOF zebrafish did not. The authors analyzed the molecular causes of these phenotypic differences and concluded that LOF mutants are genetically compensated through the upregulation of the expression of many genes. Additionally, they ruled out other better-known and described mechanisms such as the expression of redundant genes, protein feedback loops, or transcriptional adaptation.

      While the manuscript is clearly written and conclusions are, in general, properly supported, there are some aspects that need to be further clarified and studied.

      (1) It would be convenient to apply a method to better quantify potential loss-of-function mutations in the CRISPants. Doing this it can be known not only percentage of mutations in those embryos but also what fraction of them are actually generating an out-of-frame mutation likely driving gene loss of function (since deletions of 3-6 nucleotides removing 1-2 aminoacid/s will likely not have an impact in protein activity, unless that this/these 1-2 aminoacid/s is/are essential for the protein activity). With this, the authors can also correlate phenotype penetrance with the level of loss-of-function when quantifying embryo phenotypes that can help to support their conclusions.

      (2) It is unclear that 4.93 ng of morpholino per embryo is totally safe. The amount of morpholino causing undesired effects can differ depending on the morpholino used. I would suggest performing some sanity check experiments to demonstrate that morpholino KD is not triggering other molecular outcomes, such as upregulation of p53 or innate immune response.

      (3) Although the authors made a set of controls to demonstrate the specificity of the CRISPant phenotypes, I believe that a rescue experiment could be beneficial to support their conclusions. Injecting an mRNA with podxl ORF (ideally with a tag to follow protein levels up) together with the induction of CRISPants could be a robust manner to demonstrate the specificity of the approach. A rescue experiment with morphants would also be good to have, although these are a bit more complicated, to ultimately demonstrate the specificity of the approach.

      (4) In lines 314-316, the authors speculate on a correlation between decreased HSC and Podxl levels. It would be interesting to actually test this hypothesis and perform RT-qPCR upon CRISPant induction or, even better and if antibodies are available, western blot analysis.

      (5) Similarly, in lines 337-338 and 342-344, the authors discuss that it could be possible that genes near to podxl locus could be upregulated in the mutants. Since they already have a transcriptomic done, this seems an easy analysis to do that can address their own hypothesis.

      (6) Figures 4 and 5 would be easier to follow if panels B-F included what mutants are (beyond having them in the figure legend). Moreover, would it be more accurate and appropriate if the authors group all three WT and mutant data per panel instead of showing individual fish? Representing technical replicates does not demonstrate in vivo variability, which is actually meaningful in this context. Then, statistical analysis can be done between WT and mutant per panel and per set of primers using these three independent 3-month-old zebrafish.

    2. Author response:

      Reviewer #1 (Public review):

      Summary:

      The manuscript by Ross, Miscik, and others describes an intriguing series of observations made when investigating the requirement for podxl during hepatic development in zebrafish. Podxl morphants and CRISPants display a reduced number of hepatic stellate cells (HSCs), while mutants are either phenotypically wild type or display an increased number of HSCs.

      The absence of observable phenotypes in genetic mutants could indeed be attributed to genetic compensation, as the authors postulate. However, in my opinion, the evidence provided in the manuscript at this point is insufficient to draw a firm conclusion. Furthermore, the opposite phenotype observed in the two deletion mutants is not readily explainable by genetic compensation and invokes additional mechanisms.

      Major concerns:

      (1) Considering discrepancies in phenotypes, the phenotypes observed in podxl morphants and CRISPants need to be more thoroughly validated. To generate morphants, authors use "well characterized and validated ATG Morpholino" (lines 373-374). However, published morphants, in addition to kidney malformations, display gross developmental defects including pericardial edema, yolk sack extension abnormalities, and body curvature at 2-3 dpf (reference 7 / PMID: 24224085). Were these gross developmental defects observed in the knockdown experiments performed in this paper? If yes, is it possible that the liver phenotype observed at 5 dpf is, to some extent, secondary to these preceding abnormalities? If not, why were they not observed? Did kidney malformations reproduce? On the CRISPant side, were these gross developmental defects also observed in sgRNA#1 and sgRNA#2 CRISPants? Considering that morphants and CRISPants show very similar effects on HSC development and assuming other phenotypes are specific as well, they would be expected to occur at similar frequencies. It would be helpful if full-size images of all relevant morphant and CRISPant embryos were displayed, as is done for tyr CRISPant in Figure S2. Finally, it is very important to thoroughly quantify the efficacy of podxl sgRNA#1 and sgRNA#2 in CRISPants. The HRMA data provided in Figure S1 is not quantitative in terms of the fraction of alleles with indels. Figure S3 indicates a very broad range of efficacies, averaging out at ~62% (line 100). Assuming random distribution of indels among cells and that even in-frame indels result in complete loss of function (possible for sgRNA#1 due to targeting the signal sequence), only ~38% (.62*.62) of all cells will be mutated bi-allelically. That does not seem sufficient to reliably induce loss-of-function phenotypes. My guess is that the capillary electrophoresis method used in Figure S3 underestimates the efficiency of mutagenesis, and that much higher mutagenesis rates would be observed if mutagenesis were assessed by amplicon sequencing (ideally NGS but Sanger followed by deconvolution analysis would suffice). This would strengthen the claim that CRISPant phenotypes are specific.

      The reviewer points out some excellent caveats regarding the morphant experiments. We agree that at least some of the effects of the podxl morpholino may be related to its effects on kidney development and/or gross developmental defects that impede liver development. Because of these limitations, we focused our experiments on analysis of CRISPant and mutant phenotypes, including showing that podxl (Ex1(p)_Ex7Δ) mutants are resistant to CRISPant effects on HSC number when injected with sgRNA#1. We did not observe any gross morphologic defects in podxl CRISPants. Liver size was not significantly altered in podxl CRISPants (Figure 2A). We will add brightfield images of podxl CRISPant larvae to the supplemental data for the revised manuscript.

      We agree with the reviewer that HRMA is not quantitative with respect to the fraction of alleles with indels and that capillary electrophoresis likely underestimates mutagenesis efficiency. Nonetheless, even with 100% mutation efficiency, podxl CRISPant knockdown, like most CRISPR knockdowns, would not represent complete loss of function:  ~1/3 of alleles will contain in-frame mutations and likely retain at least some gene function, so ~1/3*1/3 = 1/9 of cells will have no out-of-frame indels and contain two copies of at least partially functional podxl and ~2/3*2/3 = 4/9 of cells will have one out-of-frame indel and one copy of at least partially functional podxl. Thus, the decreased HSCs we observe with podxl CRISPant likely represents a partial loss-of-function phenotype in any case.

      (2) In addition to confidence in morphant and CRISPant phenotypes, the authors' claim of genetic compensation rests on the observation that podxl (Ex1(p)_Ex7Δ) mutants are resistant to CRISPant effect when injected with sgRNA#1 (Figure 3L). Considering the issues raised in the paragraph above, this is insufficient. There is a very straightforward way to address both concerns, though. The described podxl(-194_Ex7Δ) and podxl(-319_ex1(p)Δ) deletions remove the binding site for the ATG morpholino. Therefore, deletion mutants should be refractive to the Morpholino (specificity assessment recommended in PMID: 29049395, see also PMID: 32958829). Furthermore, both deletion mutants should be refractive to sgRNA#1 CRISPant phenotypes, with the first being refractive to sgRNA#2 as well.

      The reviewer proposes elegant experiments to address the specificity of the morpholino. For the revision, we plan to perform additional morpholino studies, including morpholino injections of podxl mutants and assessment of tp53 and other immune response/cellular stress pathway genes in podxl morphants.

      Reviewer #2 (Public review):

      In this manuscript, Ross and Miscik et. al described the phenotypic discrepancies between F0 zebrafish mosaic mutant ("CRISPants") and morpholino knockdown (Morphant) embryos versus a set of 5 different loss-of-function (LOF) stable mutants in one particular gene involved in hepatic stellate cells development: podxl. While transient LOF and mosaic mutants induced a decrease of hepatic stellate cells number stable LOF zebrafish did not. The authors analyzed the molecular causes of these phenotypic differences and concluded that LOF mutants are genetically compensated through the upregulation of the expression of many genes. Additionally, they ruled out other better-known and described mechanisms such as the expression of redundant genes, protein feedback loops, or transcriptional adaptation.

      While the manuscript is clearly written and conclusions are, in general, properly supported, there are some aspects that need to be further clarified and studied.

      (1) It would be convenient to apply a method to better quantify potential loss-of-function mutations in the CRISPants. Doing this it can be known not only percentage of mutations in those embryos but also what fraction of them are actually generating an out-of-frame mutation likely driving gene loss of function (since deletions of 3-6 nucleotides removing 1-2 aminoacid/s will likely not have an impact in protein activity, unless that this/these 1-2 aminoacid/s is/are essential for the protein activity). With this, the authors can also correlate phenotype penetrance with the level of loss-of-function when quantifying embryo phenotypes that can help to support their conclusions.

      Reviewer #2 raises an excellent point that is similar to Reviewer #1’s first concern. Please see our response above. In general, we agree that correlating phenotype penetrance with level of loss-of-function is a very good way to support conclusions regarding specificity in knockdown experiments. Unfortunately, because the phenotype we are examining (HSC number) has a relatively large standard deviation even in control/wildtype larvae (for example, 63 ± 19 (mean ± standard deviation) HSCs per liver in uninjected control siblings in Figure 1) it would be technically very difficult to do this experiment for podxl.

      (2) It is unclear that 4.93 ng of morpholino per embryo is totally safe. The amount of morpholino causing undesired effects can differ depending on the morpholino used. I would suggest performing some sanity check experiments to demonstrate that morpholino KD is not triggering other molecular outcomes, such as upregulation of p53 or innate immune response.

      Reviewer #2 raises an excellent point that is similar to Reviewer #1’s second concern. Please see our response above. We acknowledge that some of the effects of the podxl morpholino may be non-specific. To address this concern in the revised manuscript, we plan to perform additional morpholino studies, including morpholino injections of podxl mutants and assessment of tp53 and other immune response/cellular stress pathway genes in podxl morphants.

      (3) Although the authors made a set of controls to demonstrate the specificity of the CRISPant phenotypes, I believe that a rescue experiment could be beneficial to support their conclusions. Injecting an mRNA with podxl ORF (ideally with a tag to follow protein levels up) together with the induction of CRISPants could be a robust manner to demonstrate the specificity of the approach. A rescue experiment with morphants would also be good to have, although these are a bit more complicated, to ultimately demonstrate the specificity of the approach.

      (4) In lines 314-316, the authors speculate on a correlation between decreased HSC and Podxl levels. It would be interesting to actually test this hypothesis and perform RT-qPCR upon CRISPant induction or, even better and if antibodies are available, western blot analysis.

      We appreciate the reviewer’s acknowledgement of the controls we performed to demonstrate the specificity of the CRISPant phenotypes. The proposed experiments (rescue, assessment of Podxl levels) would help bolster our conclusions but are technically difficult due to the relatively large standard deviation for the HSC number phenotype even in wildtype larvae and the lack of well-characterized zebrafish antibodies against Podxl.

      (5) Similarly, in lines 337-338 and 342-344, the authors discuss that it could be possible that genes near to podxl locus could be upregulated in the mutants. Since they already have a transcriptomic done, this seems an easy analysis to do that can address their own hypothesis.

      Thank you for this suggestion. We were referring in these sections to genes that are near the podxl locus with respect to three-dimensional chromatin structure; such genes would not necessarily be near the podxl locus on chromosome 4. We will clarify the text in this paragraph for the revised manuscript. At the same time, we will examine our transcriptomic data to check expression of mkln1, cyb5r3, and other nearby genes on chromosome 4 as suggested and include this analysis in the revised manuscript.

      (6) Figures 4 and 5 would be easier to follow if panels B-F included what mutants are (beyond having them in the figure legend). Moreover, would it be more accurate and appropriate if the authors group all three WT and mutant data per panel instead of showing individual fish? Representing technical replicates does not demonstrate in vivo variability, which is actually meaningful in this context. Then, statistical analysis can be done between WT and mutant per panel and per set of primers using these three independent 3-month-old zebrafish.

      Thank you for this suggestion. We will modify these figures to clarify our results.

      Reviewer #3 (Public review):

      Summary:

      Ross et al. show that knockdown of zebrafish podocalyxin-like (podxl) by CRISPR/Cas or morpholino injection decreased the number of hepatic stellate cells (HSC). The authors then generated 5 different mutant alleles representing a range of lesions, including premature stop codons, in-frame deletion of the transmembrane domain, and deletions of the promoter region encompassing the transcription start site. However, unlike their knockdown experiment, HSC numbers did not decrease in podxl mutants; in fact, for two of the mutant alleles, the number of HSCs increased compared to the control. Injection of podxl CRISPR/Cas constructs into these mutants had no effect on HSC number, suggesting that the knockdown phenotype is not due to off-target effects but instead that the mutants are somehow compensating for the loss of podxl. The authors then present multiple lines of evidence suggesting that compensation is not exclusively due to transcriptional adaptation - evidence of mRNA instability and nonsense-mediated decay was observed in some but all mutants; expression of the related gene endoglycan (endo) was unchanged in the mutants and endo knockdown had no effect on HSC numbers; and, expression profiling by RNA sequencing did not reveal changes in other genes that share sequence similarity with podxl. Instead, their RNA-seq data showed hundreds of differentially expressed genes, especially ECM-related genes, suggesting that compensation in podxl mutants is complex and multi-genic.

      Strengths:

      The data presented is impressively thorough, especially in its characterization of the 5 different podxl alleles and exploration of whether these mutants exhibit transcriptional adaptation.

      Thank you very much for appreciating the hard work that went into this manuscript.

      Weaknesses:

      RNA sequencing expression profiling was done on adult livers. However, compensation of HSC numbers is apparent by 6 dpf, suggesting compensatory mechanisms would be active at larval or even embryonic stages. Although possible, it's not clear that any compensatory changes in gene expression would persist to adulthood.

      This reviewer makes an excellent point. Our finding that the largest changes in gene expression were in extracellular matrix (ECM) genes and ECM modulation is a major function of HSCs supports the hypothesis that genetic compensation is occurring in adults. Nonetheless, we agree that compensatory changes in adults may not fully reflect the compensatory changes during development, so it would bolster the conclusions of the paper to perform the RNA sequencing and qPCR experiments on zebrafish larval livers.

      We tried very hard to do this experiment proposed by Reviewer #3. In our hands, obtaining sufficient high-quality RNA for robust gene expression analysis typically requires pooling of ~10-15 larval livers. These larvae need to be obtained from a heterozygous in-cross in order to have matched wildtype sibling controls. Livers must be dissected from freshly euthanized (not fixed) zebrafish. Thus, this experiment requires genotyping live, individual larvae from a small amount of tissue (without sacrificing the larvae) before dissecting and pooling the livers. Unfortunately we were unable to confidently and reproducibly genotype individual live podxl larvae with these small amounts of tissue despite trying multiple approaches. Therefore we were not able to perform gene expression analysis on podxl mutant larval livers.

  6. Jun 2025
    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Revision Plan

      June 28, 2025

      Manuscript number: RC-2025-02982

      Corresponding author(s): Babita Madan, Nathan Harmston, David Virshup

      General Statements In Wnt signaling, the relative contributions of ‘canonical (β-catenin dependent) and non- canonical (β-catenin independent) signaling remains unclear. Here, we exploited a unique and highly robust in vivo system to study this. Our study is therefore the first comprehensive analysis of the β-catenin independent arm of the Wnt signaling pathway in a cancer model and illustrates how a combination of cis-regulatory elements can determine Wnt-dependent gene regulation.

      We are very pleased with the reviews; it appears we communicated our goal and our findings clearly, and in general the reviewers felt the study provided important information, was well planned and the results were “crystal clear”.

      While more experiments could strengthen and extend the results, we feel our results are already very robust due to the use of multiple replicates in the in vivo system.

      The Virshup lab in Singapore closed July 1, 2025 and so additional wet lab studies are not feasible.

      1. Description of the planned revisions

      Insert here a point-by-point reply that explains what revisions, additional experimentations and analyses are planned to address the points raised by the referees.

      Below we address the points raised by the reviewers:

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      The article has the merit of addressing a yet-unsolved question in the field (if beta-catenin can also repress genes) that only a limited number of studies has tried to tackle, and provides useful datasets for the community. The system employed is elegant, and the PORCN-inhibition bypassed by a ____constitutively active beta-catenin is clean and ingenious. The manuscript is clearly written.

      We thank the reviewers for their kind comments on the importance of the data. Our orthotopic model provides the opportunity to exploit robust Wnt regulated gene expression in a more responsive microenvironment than can be achieved in cell culture and simple flank xenograft models.

      Here we propose a series of thoughts and comments that, if addressed, would in our opinion improve the study and its description.

      1) We wonder why a xenograft model is necessary to induce a robust WNT response in these cells.

      The authors describe this set-up as a strength, as it is supposed to provide physiological relevance, yet it is not clear to us why this is the case.

      We welcome the opportunity to expand on our choice of an orthotopic xenograft model. It has been long established that cancer cells behave differently in different in vivo locations (Killion et al., 1998). Building on this, we confirmed this in our system that identical pancreatic cancer cells treated with the same PORCN inhibitor had very different responses in vitro, in the flank and in their orthotopic environment (Madan et al., 2018). To quote from our prior paper, “Looking only at genes decreasing more than 1.5-fold at 56 hours, we would have missed 817/1867 (44%) genes using a subcutaneous or 939/1867 (50%) using an in vitro model. Thus, the overall response to Wnt inhibition was reduced in the subcutaneous model and further blunted in vitro. An orthotopic model more accurately represents real biology.

      The reason for this is presumably the very different orthotopic microenvironment, including tissue appropriate stroma-tumor, vascular-tumor, lymphatic-tumor, and humoral interactions.

      Moreover, as the authors homogenize the tumour to perform bulk RNA-seq, we wonder whether they are not only sequencing mRNA from the cancer cells but also from infiltrating immune cells and/or from the surrounding connective tissue.

      In experiments generating RNA-seq data from xenograft models, the resulting sequences can originate from either human (graft) or mouse (host). In order to account for this, following standard practice, we filtered reads prior to alignment using Xenome (Conway et al., 2012). We have added additional text to the methods to highlight this step in our pipeline.

      2) If, as the established view implies, Wnt/beta-catenin only leads to gene activation, pathway

      inhibition would free up the transcriptional machinery - there is evidence that some of its constituents are rate-limiting. The free machinery could now activate some other genes: the net effect observed would be their increased transcription upon Wnt inhibition, irrespective of beta-catenin's presence. Could this be considered as an alternative explanation for the genes that go up in both control and bcat4A lines upon ETC-159 administration? This, we think, is in part corroborated by the absence of enrichment of biological pathways in this group of genes. The genes that are beta-catenin-dependent and downregulated (D&R) are obviously not affected by this alternative explanation.

      This is an interesting suggestion, and we will incorporate this thought into our discussion of potential mechanisms.

      3) The authors mention that HPAF-II are Wnt addicted. Do they die upon ETC-159 administration, and is this effect rescued by exogenous WNT addition?

      We and several others have previously reported that Wnt-addicted cells differentiate and/or senesce upon Wnt withdrawal in vivo but not in vitro. This is related to the broader changes in gene expression in the orthotopic tumors. The effect of PORCN inhibition has been demonstrated by us and others and is rescued by Wnt addition, downstream activation of Wnt signaling by e.g. APC mutation, and, as we show here, stabilized β-catenin.

      4) Line 120: the authors write about Figure 1C: "This demonstrates that the growth of β-cat4A cells in vitro largely requires Wnts to activate β-catenin signaling." The opposite is true: control cells require WNT and form less colony with ETC159, while β-cat4A are independent from Wnt secretion.

      We appreciate the reviewer pointing out our mis-statement. This error has now been corrected in the revised manuscript.

      5) Lines 226-229: "The β-catenin independent repressed genes were notably enriched for motifs bound by homeobox factors including GSC2, POU6F2, and MSGN1. This finding aligns with the known role of non-canonical Wnt signaling in embryonic development" This statement assumes that target genes, or at least the beta-catenin independent ones, are conserved across tissues, including developing organs. This contrasts with the view that target genes in addition to the usual suspects (e.g., AXIN2, SP5 etc.) are modulated tissue-specifically - a view that the authors (and in fact, these reviewers) appear to support in their introduction.

      We agree with the reviewer that a majority of Wnt-regulated genes are tissue specific. Indeed, the β-catenin independent Wnt-repressed genes may also be tissue specific. In other tissues, we speculate that other β-catenin independent Wnt-repressed genes may also have homeobox factor binding sites as well and so the general concept remains valid. We do not have sufficient data in other tissues to resolve this issue.

      7) The luciferase and mutagenesis work presented in Figure 5 are crystal-clear. One important aspect that remains to be clarified is whether beta-catenin and/or TCF7L2 directly bind to the NRE sites. Or do the authors hypothesize that another factor binds here? We suggest the authors to show TCF7L2 binding tracks at the NRE/WRE motifs in the main figures.

      A major question of the reviewers was, can we provide additional evidence that the NRE is bound by LEF/TCF family members. Our initial analysis of more datasets indicates TCF7L2 peaks are enriched on NREs in Wnt-β-catenin responsive cell lines like HCT116 and PANC1. These analyses appear to further support the model that the NRE binds TCF7L2, but we fully agree these analyses can neither prove nor disprove the model.

      In our revision, we will analyze additional cut and run datasets as suggested and look at the HEPG2 datasets suggested by reviewer 1. We are concerned about tissue specificity as some of the genes are not expressed in e.g. HEPG2 or HEK293 cells where datasets are available. However, our data continues to support a functional role for the NRE in the modulation of β-catenin regulated genes. The best analysis would be more ChIP-Seq or Cut and Run assays on tissues, not cells, but these studies are beyond what we can do.

      What about other TCF/LEFs and beta-catenin? Are there relevant datasets that could be explored to test whether all these bind here during Wnt activation?

      As above, We will analyze additional ChIP and Cut & Run datasets to address this question looking at β-catenin and other LEF/TCF family members. We also reflect on the fact that ChIP-Seq does not necessarily imply that the targeted factor (e.g.,TCF7L2) is bound in the target site in all the cells.

      The repression might be mediated by beta-catenin partnering with other factors that bind the NRE even by competing with TCF7L2.

      We appreciate the insightful comments and now incorporate this into our discussion.

      8) In general, while we greatly appreciate the github page to replicate the analysis, we feel that the methods' description is lacking, both concerning analytical details (e.g., the cutoff used for MACS2 peak calling) or basic experimental planning (e.g, how the luciferase assays were performed).

      We thank reviewers for the suggestions and will add further details regarding the analysis

      and experimental planning in the method sections.

      9) The paper might benefit from the addition of quality metrics on the RNA-seq. Interesting for example would be to see a PCA analysis - as a more unbiased approach - rather than the kmeans clustering.

      We have this data and will add it to the revised manuscript.

      10) It seems that in Figure 3A the clusters are mislabelled as compared to Figure 3B and Figure 1. Here the repressor clusters are labelled DR5, DR6 and DN7 whereas in the rest of the paper they are labelled DR1, DR2 and DN1.

      Thank you for pointing out this issue. This has now been corrected in Figure 3.

      11) The siCTNNB1 in Figure 5E is described to be a significant effect in the text whereas in Figure 5E this has a p value of 0.075.

      Thank you for pointing out the p value did not cross the 0.05 threshold. We have modified the text to remove the word ‘significant’.

      12) Line 396: 'Here we confirm and extend the identification of a TCF-dependent negative regulatory element (NRE), where beta-catenin interacts with TCF to repress gene expression'. We suggest caution in stating that beta-catenin and TCF directly repress gene expression by binding to NRE. In the current state the authors do not show that TCF & beta-catenin bind to these elements. See our previous point 7.

      We appreciate the suggestion of the reviewers. We will be more cautious in our interpretation.

      Further suggestions - or food for thoughts:

      13) A frequently asked question in the field concerns the off-target effects of CHIR treatment as opposed to exposure to WNT ligands. CHIR treatment - in parallel to bcat4A overexpression - would allow the authors to delineate WNT independent effects of CHIR treatment and settle this debate.

      We thank the reviewers for suggesting this interesting experiment to sort out the non- Wnt effects of GSK3 inhibition. Such a study would require a new set of animal experiments and a different analysis; we think this is beyond the scope of this manuscript.

      14) We think that Figure 4C could be strengthened by adding more public TCF-related datasets (e.g., from ENCODE) to confirm the observation across datasets from different laboratories. In particular, the HEPG2 could possibly be improved as there is an excellent TCF7L2 dataset available by ENCODE.

      Many more datasets are easily searchable through: https://www.factorbook.org/.

      As above, we will analyze the HEPG2 dataset. We plan on updating Fig 4 with data from analysis from different datasets such as (Blauwkamp et al., 2008; Zambanini et al., 2022).

      15) The authors show that there is no specific spacing between NREs and WREs. This implies that it is not likely that TCF7L2 recognizes both at the same time through the C-clamp. Do the authors think that there might be a pattern discernible when comparing the location of WRE and NRE in relation to the TCF7L2 ChIP-seq peak summit? This would allow inferring whether TCF7L2 more likely directly binds the WRE (presumably) and if the NRE is bound by a cofactor.

      This is an interesting suggestion and we will conduct this analysis as suggested on available datasets (as the result may be different in different tissue types with varying degrees of Wnt/β-catenin signaling).

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      Overall, the study provides a solid framework for understanding noncanonical transcriptional ____outputs of Wnt signaling in a cancer context. The majority of the conclusions are well supported by the data. However, there are a few substantive points that require clarification before the manuscript is ready for publication.

      Major Comments

      The authors' central claim-that their findings represent a comprehensive analysis of the β-catenin- independent arm of Wnt signaling and uncover a "cis-regulatory grammar" governing Wnt-dependent gene activation versus repression-is overstated based on the presented data.

      We appreciate the reviewers concern and will temper our language.

      Specifically:

      • Figure 3B identifies TF-binding motifs enriched among different Wnt-responsive gene clusters, but the authors only functionally investigate the role of NRE in β-catenin-dependent repression, particularly in the context of TCF motif interaction.

      • To support a broader claim regarding cis-regulatory grammar, additional analyses are required:

      o What is the distribution of NREs across all clusters? Are they exclusive to β-catenin-dependent repressed clusters, or more broadly present?

      The distribution of the NREs is a statistically significant enrichment; they are observed in the repressed clusters more frequently than expected by chance alone, but they are present elsewhere as well. We have tempered our language around the cis-regulatory grammar.

      o Do NREs interact with other enriched motifs beyond TCF? Is this interaction specific to repression or also involved in activation?

      This is an interesting question beyond the scope of this analysis. Our dataset uses multiple interventions; The NREs may interact with other motifs but we would need more transcriptional analysis data with biological intervention to assess this.

      o A more comprehensive analysis of cis-element combinations is needed to draw conclusions about their collective influence on gene regulation across clusters.

      We agree; This would be a great question if we had TCF binding data in our orthotopic xenograft model. It’s a dataset we do not have, nor do we have the resources to pursue this.

      Other important clarifications:

      • The use of the term "wild-type" to describe HPAF-II cells is potentially misleading. These cells are not genetically wild-type and harbor multiple oncogenic alterations.

      Thank you for pointing this out. We will use the word “parental” in the text

      • The manuscript does not clearly present the kinetics of Wnt target downregulation upon ETC-159 treatment of HPAF-II cells. Understanding whether repression mirrors activation dynamics (e.g., delay or persistence of Wnt effects) is essential to interpreting the system's temporal behavior.

      We previously addressed the temporal dynamics of activation and repression in our more comprehensive time course papers (Harmston et al., 2020; Madan et al., 2018); there are differences in the dynamics that are difficult to tease out in this new dataset as the density of time points is less. Having said that, we will compare the time course and annotate the sets of genes identified in this current study with the data from our original study to provide more information on the temporal dynamics of this system.

      Minor Comment

      • The statement in Figure 1C (lines 119-120) that "growth of β-cat4A cells in vitro largely requires Wnts to activate β-catenin signaling" is inconsistent with the data. As the β-cat4A allele encodes a constitutively active form of β-catenin, Wnts should not be required. Please revise this conclusion for clarity.

      We thank the reviewers for pointing out this mis-statement. We have corrected this.

      Reviewer #2 (Significance (Required)):

      This study offers a systematic classification of Wnt-responsive gene expression dynamics, differentiating between β-catenin-dependent and -independent mechanisms. The insights into temporal expression patterns and the potential role of the NRE element in transcriptional repression add depth to our understanding of Wnt signaling. These findings have relevance for developmental biology, stem cell biology, and cancer research-particularly in understanding how Wnt-mediated repression may influence tumor progression and therapeutic response.

      Nice review; thank you.

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      … The work advances understanding of Wnt mediated repression via cis regulatory grammar.

      Major Concerns

      1) Statistical thresholds and clustering - The criteria for classifying β catenin-dependent versus - independent genes rely on FDR cutoffs above or below 0.1. If the more stringent cutoff of 0.05 was used, how many genes would still be considered Wnt regulated?

      We can readily address this in a revised manuscript.

      2) Validation of selected β catenin-dependent and -independent Wnt target genes - While the authors identify β catenin-dependent and -independent Wnt target genes (4 selected genes from different clusters in Fig.2), RT-qPCR based validation of Axin2 has been performed in Fig. S3. Authors should also validate other 3 genes as well.

      We had considered performing qPCR to re-validate some of our gene-expression changes but qPCR analyses is intrinsically more error prone than RNAseq, and we believe the literature shows that qPCR from the same samples will not add any extra utility. Previous studies that have examined this question have reported excellent correlation between the RNAseq and pPCR (Asmann et al., 2009; Griffith et al., 2010; Wu et al., 2014).

      3) NRE mechanistic insight - The most important contribution of this manuscript is the extension of the importance of the NRE motif in Wnt regulated enhancers. But the mutagenesis data provided is insufficient to conclusively nail down that the NREs are responsible for the repression. The effects in the synthetic reporters in Fig. 4D are small - it's not clear that there is much activity in the MimRep to be repressed by the NREs. The data in Fig. 5 is a better context to test the importance of the NREs, but the authors use deletion analysis which is too imprecise and settle for single nucleotide mutants in individual NREs in the ABHD11-AS1 reporter. In the Axin2 report, they mutate sequences outside of the NRE. It's too inconsistent. They should mutate 3 or 4 positions within the NRE in BOTH motifs in the context of the ABHD11-AS1 reporter. Same for the Axin2 reporter.

      We feel our analysis, coupled with the Kim paper (Kim et al., 2017), support the role of the NRE. We agree that more data is always desirable, but in our current circumstances are we cannot add additional wetlab experiments.

      Regarding Figure 4D, this is a synthetic system lacking the endogenous elements in the promoter. We agree with the reviewer that the effect is small but we would also like to point out that adding the well-established 2WRE in front of the MinRep increased the transcription activity to 1.5 fold, which is of similar magnitude change of the 2NRE deceasing the transcriptional activity 1/1.5 = 0.6.

      In Kim et al, it was shown that mutating the 11st nucleotide of the NRE motif showed the strongest effect, so we followed their lead in only mutated the 11st nucleotide in ABHD11- AS1 NRE.

      As for the putative NRE sequence present in AXIN2 promoter, its downstream sequence is polyT (__GTGTTTTTTTT__TTTTTTTTTT), if we only mutate 11st nucleotide to G/C, we could create similar sequence to NRE, so we mutated sequences outside of the NRE to fully disrupt it.

      4) Even if the mutagenesis is done more completely, the results simply replicate that of the Goentoro group. In Kim et al 2017, they provide suggestive (not convincing) evidence that TCFs directly bind to the NRE. The authors of this manuscript should explore that in more detail, e.g., can purified TCF bind to the NRE sequence? Can the authors design experiments to directly test whether beta-catenin is acting through the NRE - their data currently only demonstrates that the NRE provide a negative input to the reporters - that's an important mechanistic difference.

      We point out that our minimal reporter studies with the NRE showed a repressive effect in HCT116 (colorectal cancer cells with stabilized β-catenin) but not HT1080 (sarcoma cells with low Wnt) supporting the importance of β-catenin acting through the NRE (Figs. 4D, 4E).

      We fully agree with the reviewers that additional study of TCF interaction with the NRE would be of value. While EMSA and culture-based ChIP assays would be of some value, the best study should be done in vivo where the system is most robust. We are not in a position to do these studies, but we will add in a discussion of this as a limitation of the current study.

      5) In vertebrates, some TCFs are more repressive than others and TLEs have been implicated in repressive. Exploring these factors in the context of the NRE would increase the value of this story.

      This is an interesting idea but beyond the scope of the current manuscript. It is likely this would be dependent on tissue specific expression, local expression levels, and local binding of co-factors. As we look at other TCF members in other datasets we may be able to address this. Further wetlab experiments are beyond the scope of this work.

      **Referees cross-commenting**

      I respectfully disagree that the luciferase assays are sufficient. Using deletion analysis to understand the function of specific binding sites is insufficient and the more specific mutations of NREs are incomplete. Regarding this paper extending our knowledge of direct transcriptional repression by Wnt/bcat signaling, I don't agree that it adds much - there are numerous datasets where Wnt signaling activates and represses genes - the trick is determining whether any of the repressed genes are the result and direct regulation by TCF/bcat. They don't explore that. The main finding is an extension of the work by Lea Goentoro on the importance of the NRE motif, but they don't address whether TCF directly associates with this sequence. Goentoro argued in the 2017 paper that it does, but that data is unconvincing to me. Can purified TCF bind the NRE? Without that information (done carefully) this manuscript is very limited.

      We respectfully disagree with the reviewer regarding the contribution of this manuscript. There are certainly many datasets looking at Wnt-regulated genes in tissue culture, but these cell-based studies are underpowered to really understand Wnt biology. There are only two papers, ours and Cantú’s, that address Wnt repressed genes in any depth. No prior papers have differentiated β-catenin dependent from β-catenin independent genes before, and certainly not in an orthotopic animal model.

      A major impact of our study is the finding that only 10% of Wnt regulated genes are independent of β-catenin, at least in pancreatic cancer. We feel this is a major contribution. We further add to this analysis by re-enforcing/extend the prior evidence on the NRE in humans (and correct the motif sequence!) for Wnt-repressed genes. Our data supports the fine-tuning of the Wnt/β-catenin regulated genes by a cis-regulatory grammar.

      Reviewer #3 (Significance (Required)):

      Overall, this study advances our understanding of the dual roles of Wnt signaling in gene activation and repression, highlighting the role of the NRE motif. But this is an extension of the original NRE paper (Kim et al 2017) with no mechanistic advance beyond that original work. The transcriptomics in the first part of the manuscript have some value, but similar data sets already exist.

      We respectfully but strongly disagree with the reviewer. First, our work examines the NRE in a large-scale in vivo transcriptome dataset, significantly extending the candidate gene approach of Kim et al. Secondly, we disagree with the comment that “similar data sets already exist.” Indeed, reviewer 1 (C. Cantú) specifically pointed out we had addressed an “yet-unsolved question in the field” on whether and how β-catenin repressed genes.

      __3. __Description of the revisions that have already been incorporated in the transferred manuscript

      To date we have only corrected several typographical errors.

      1. Description of analyses that authors prefer not to carry out

      We fully agree with the reviewers that additional study of TCF interaction with the NRE would be of value. While EMSA and cell culture-based ChIP assays would be of some modest value, they have already been done in vitro by Kim et al. (Kim et al., 2017) and the best next study should be done in vivo in Wnt-responsive cancers or tissues where the biology is most robust (Madan et al., 2018) . We are not in a position to do these studies, but we will add this into the discussion as a limitation of the current study. We also acknowledge that the NRE may interact with other currently unidentified factors.

      Reviewer 1 asked about considering experiments to determine non-Wnt effects of GSK3 inhibitors like CHIR. Such a study, while interesting, would require a new set of animal experiments and a different analysis; we think this is beyond the scope of this manuscript.

      Finally, we note that the Virshup lab at Duke-NUS Medical School in Singapore, where these in vivo studies were performed, has closed as of July 1, 2025 and the various lab members have moved on to new adventures. Because of this, we are unable to undertake new wet-lab studies.

      Thank you for your consideration,

      For the authors,

      David Virshup

      References:

      Asmann YW, Klee EW, Thompson EA, Perez EA, Middha S, Oberg AL, Therneau TM, Smith DI,

      Poland GA, Wieben ED, Kocher J-PA. 2009. 3’ tag digital gene expression profiling of human

      brain and universal reference RNA using Illumina Genome Analyzer. BMC Genom 10:531–

      1. doi:10.1186/1471-2164-10-531

      Blauwkamp TA, Chang MV, Cadigan KM. 2008. Novel TCF-binding sites specify transcriptional

      repression by Wnt signalling. The EMBO Journal 27:1436–1446. doi:10.1038/emboj.2008.80

      Conway T, Wazny J, Bromage A, Tymms M, Sooraj D, Williams ED, Beresford-Smith B. 2012.

      Xenome—a tool for classifying reads from xenograft samples. Bioinformatics 28:i172–i178.

      doi:10.1093/bioinformatics/bts236

      Griffith M, Griffith OL, Mwenifumbo J, Goya R, Morrissy AS, Morin RD, Corbett R, Tang MJ, Hou

      Y-C, Pugh TJ, Robertson G, Chittaranjan S, Ally A, Asano JK, Chan SY, Li HI, McDonald H,

      Teague K, Zhao Y, Zeng T, Delaney A, Hirst M, Morin GB, Jones SJM, Tai IT, Marra MA.

      1. Alternative expression analysis by RNA sequencing. Nat Methods 7:843–847.

      doi:10.1038/nmeth.1503

      Harmston N, Lim JYS, Arqués O, Palmer HG, Petretto E, Virshup DM, Madan B. 2020.

      Widespread Repression of Gene Expression in Cancer by a Wnt/β-Catenin/MAPK Pathway.

      Cancer Res 81:464–475. doi:10.1158/0008-5472.can-20-2129

      Killion JJ, Radinsky R, Fidler IJ. 1998. Orthotopic models are necessary to predict therapy of

      transplantable tumors in mice. Cancer metastasis reviews 17:279–284.

      Kim K, Cho J, Hilzinger TS, Nunns H, Liu A, Ryba BE, Goentoro L. 2017. Two-Element

      Transcriptional Regulation in the Canonical Wnt Pathway. Current Biology 27:2357-2364.e5.

      doi:10.1016/j.cub.2017.06.037

      Madan B, Harmston N, Nallan G, Montoya A, Faull P, Petretto E, Virshup DM. 2018. Temporal

      dynamics of Wnt-dependent transcriptome reveals an oncogenic Wnt/MYC/ribosome axis. J

      Clin Invest 128:5620–5633. doi:10.1172/jci122383

      Wu AR, Neff NF, Kalisky T, Dalerba P, Treutlein B, Rothenberg ME, Mburu FM, Mantalas GL,

      Sim S, Clarke MF, Quake SR. 2014. Quantitative assessment of single-cell RNA-sequencing

      methods. Nat Methods 11:41–46. doi:10.1038/nmeth.2694

      Zambanini G, Nordin A, Jonasson M, Pagella P, Cantù C. 2022. A new cut&run low volume-

      urea (LoV-U) protocol optimized for transcriptional co-factors uncovers Wnt/b-catenin tissue-

      specific genomic targets. Development 149. doi:10.1242/dev.201124

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      PAPS is required for all sulfotransferase reactions in which a sulfate group is covalently attached to amino acid residues of proteins or to side chains of proteoglycans. This sulfation is crucial for properly organizing the apical extracellular matrix (aECM) and expanding the lumen in the Drosophila salivary gland. Loss of Papss potentially leads to decreased sulfation, disorganizing the aECM, and defects in lumen formation. In addition, Papss loss destabilizes the Golgi structures.

      In Papss mutants, several changes occur in the salivary gland lumen of Drosophila. The tube lumen is very thin and shows irregular apical protrusions. There is a disorganization of the apical membrane and a compaction of the apical extracellular matrix (aECM). The Golgi structures and intracellular transport are disturbed. In addition, the ZP domain proteins Piopio (Pio) and Dumpy (Dpy) lose their normal distribution in the lumen, which leads to condensation and dissociation of the Dpy-positive aECM structure from the apical membrane. This results in a thin and irregularly dilated lumen.

      1. The authors describe various changes in the lumen in mutants, from thin lumen to irregular expansion. I would like to know the correct lumen diameter, and length, besides the total area, by which one can recognize thin and irregular.

      We have included quantification of the length and diameter of the salivary gland lumen in the stage 16 salivary glands of control, Papss mutant, and salivary gland-specific rescue embryos (Figure 1J, K). As described, Papss mutant embryos have two distinct phenotypes, one group with a thin lumen along the entire lumen and the other group with irregular lumen shapes. Therefore, we separated the two groups for quantification of lumen diameter. Additionally, we have analyzed the degree of variability for the lumen diameter to better capture the range of phenotypes observed (Figure 1K'). These quantifications enable a more precise assessment of lumen morphology, allowing readers to distinguish between thin and irregular lumen phenotypes.

      The rescue is about 30%, which is not as good as expected. Maybe the wrong isoform was taken. Is it possible to find out which isoform is expressed in the salivary glands, e.g., by RNA in situ Hyb? This could then be used to analyze a more focused rescue beyond the paper.

      Thank you for this point, but we do not agree that the rescue is about 30%. In Papss mutants, about 50% of the embryos show the thin lumen phenotype whereas the other 50% show irregular lumen shapes. In the rescue embryos with a WT Papss, few embryos showed thin lumen phenotypes. About 40% of the rescue embryos showed "normal, fully expanded" lumen shapes, and the remaining 60% showed either irregular (thin+expanded) or slightly overexpanded lumen. It is not uncommon that rescue with the Gal4/UAS system results in a partial rescue because it is often not easy to achieve the balance of the proper amount of the protein with the overexpression system.

      To address the possibility that the wrong isoform was used, we performed in situ hybridization to examine the expression of different Papss spice forms in the salivary gland. We used probes that detect subsets of splice forms: A/B/C/F/G, D/H, and E/F/H, and found that all probes showed expression in the salivary gland, with varying intensities. The original probe, which detects all splice forms, showed the strongest signals in the salivary gland compared to the new probes which detect only a subset. However, the difference in the signal intensity may be due to the longer length of the original probe (>800 bp) compared to other probes that were made with much smaller regions (~200 bp). Digoxigenin in the DIG labeling kit for mRNA detection labels the uridine nucleotide in the transcript, and the probes with weaker signals contain fewer uridines (all: 147; ABCFG, 29; D, 36; EFH, 66). We also used the Papss-PD isoform, for a salivary gland-specific rescue experiment and obtained similar results to those with Papss-PE (Figure 1I-L, Figure 4D and E).

      Furthermore, we performed additional experiments to validate our findings. We performed a rescue experiment with a mutant form of Papss that has mutations in the critical rescues of the catalytic domains of the enzyme, which failed to rescue any phenotypes, including the thin lumen phenotype (Figure 1H, J-L), the number and intensity of WGA puncta (Figure 3I, I'), and cell death (Figure 4D, E). These results provide strong evidence that the defects observed in Papss mutants are due to the lack of sulfation.

      Crb is a transmembrane protein on the apicolateral side of the membrane. Accordingly, the apicolateral distribution can be seen in the control and the mutant. I believe there are no apparent differences here, not even in the amount of expression. However, the view of the cells (frame) shows possible differences. To be sure, a more in-depth analysis of the images is required. Confocal Z-stack images, with 3D visualization and orthogonal projections to analyze the membranes showing Crb staining together with a suitable membrane marker (e.g. SAS or Uif). This is the only way to show whether Crb is incorrectly distributed. Statistics of several papas mutants would also be desirable and not just a single representative image. When do the observed changes in Crb distribution occur in the development of the tubes, only during stage 16? Is papss only involved in the maintenance of the apical membrane? This is particularly important when considering the SJ and AJ, because the latter show no change in the mutants.

      We appreciate your suggestion to more thoroughly analyze Crb distribution. We adapted a method from a previous study (Olivares-Castiñeira and Llimargas, 2017) to quantify Crb signals in the subapical region and apical free region of salivary gland cells. Using E-Cad signals as a reference, we marked the apical cell boundaries of individual cells and calculated the intensity of Crb signals in the subapical region (along the cell membrane) and in the apical free region. We focused on the expanded region of the SG lumen in Papss mutants for quantification, as the thin lumen region was challenging to analyze. This quantification is included in Figure 2D. Statistical analysis shows that Crb signals were more dispersed in SG cells in Papss mutants compared to WT.

      A change in the ECM is only inferred based on the WGA localization. This is too few to make a clear statement. WGA is only an indirect marker of the cell surface and glycosylated proteins, but it does not indicate whether the ECM is altered in its composition and expression. Other important factors are missing here. In addition, only a single observation is shown, and statistics are missing.

      We understand your concern that WGA localization alone may not be sufficient to conclude changes in the ECM. However, we observed that luminal WGA signals colocalize with Dpy-YFP in the WT SG (Figure 5-figure supplement 2C), suggesting that WGA detects the aECM structure containing Dpy. The similar behavior of WGA and Dpy-YFP signals in multiple genotypes further supports this idea. In Papss mutants with a thin lumen phenotype, both WGA and Dpy-YFP signals are condensed (Figure 5E-H), and in pio mutants, both are absent from the lumen (Figure 6B, D). We analyzed WGA signals in over 25 samples of WT and Papss mutants, observing consistent phenotypes. We have included the number of samples in the text. While we acknowledge that WGA is an indirect marker, our data suggest that it is a reliable indicator of the aECM structure containing Dpy.

      Reduced WGA staining is seen in papss mutants, but this could be due to other circumstances. To be sure, a statistic with the number of dots must be shown, as well as an intensity blot on several independent samples. The images are from single confocal sections. It could be that the dots appear in a different Z-plane. Therefore, a 3D visualization of the voxels must be shown to identify and, at best, quantify the dots in the organ.

      We have quantified cytoplasmic punctate WGA signals. Using spinning disk microscopy with super-resolution technology (Olympus SpinSR10 Sora), we obtained high-resolution images of cytoplasmic punctate signals of WGA in WT, Papss mutant, and rescue SGs with the WT and mutant forms of Papss-PD. We then generated 3D reconstructed images of these signals using Imaris software (Figure 3E-H) and quantified the number and intensity of puncta. Statistical analysis of these data confirms the reduction of the number and intensity of WGA puncta in Papss mutants (Figure 3I, I'). The number of WGA puncta was restored by expressing WT Papss but not the mutant form. By using 3D visualization and quantification, we have ensured that our results are not limited to a single confocal section and account for potential variations in Z-plane localization of the dots.

      A colocalization analysis (statistics) should be shown for the overlap of WGA with ManII-GFP.

      Since WGA labels multiple structures, including the nuclear envelope and ECM structures, we focused on assessing the colocalization of the cytoplasmic WGA punctate signals and ManII-GFP signals. Standard colocalization analysis methods, such as Pearson's correlation coefficient or Mander's overlap coefficient, would be confounded by WGA signals in other tissues. Therefore, we used a fluorescent intensity line profile to examine the spatial relationship between WGA and ManII-GFP signals in WT and Papss mutants (Figure 3L, L').

      I do not understand how the authors describe "statistics of secretory vesicles" as an axis in Figure 3p. The TEM images do not show labeled secretory vesicles but empty structures that could be vesicles.

      Previous studies have analyzed "filled" electron-dense secretory vesicles in TEM images of SG cells (Myat and Andrew, 2002, Cell; Fox et al., 2010, J Cell Biol; Chung and Andrew, 2014, Development). Consistent with these studies, our WT TEM images show these vesicles. In contrast, Papss mutants show a mix of filled and empty structures. For quantification, we specifically counted the filled electron-dense vesicles (now Figure 3W). A clear description of our analysis is provided in the figure legend.

      1. The quality of the presented TEM images is too low to judge any difference between control and mutants. Therefore, the supplement must present them in better detail (higher pixel number?).

      We disagree that the quality of the presented TEM images is too low. Our TEM images have sufficient resolution to reveal details of many subcellular structures, such as mitochondrial cisternae. The pdf file of the original submission may not have been high resolution. To address this concern, we have provided several original high-quality TEM images of both WT and Papss mutants at various magnifications in Figure 2-figure supplement 2. Additionally, we have included low-magnification TEM images of WT and Papss mutants in Figure 2H and I to provide a clearer view of the overall SG lumen morphology.

      Line 266: the conclusion that apical trafficking is "significantly impaired" does not hold. This implies that Papss is essential for apical trafficking, but the analyzed ECM proteins (Pio, Dumpy) are found apically enriched in the mutants, and Dumpy is even secreted. Moreover, they analyze only one marker, Sec15, and don't provide data about the quantification of the secretion of proteins.

      We agree and have revised our statement to "defective sulfation affects Golgi structures and multiple routes of intracellular trafficking".

      DCP-1 was used to detect apoptosis in the glands to analyze acellular regions. However, the authors compare ST16 control with ST15 mutant salivary glands, which is problematic. Further, it is not commented on how many embryos were analyzed and how often they detect the dying cells in control and mutant embryos. This part must be improved.

      Thank you for the comment. We agree and have included quantification. We used stage 16 samples from WT and Papss mutants to quantify acellular regions. Since DCP-1 signals are only present at a specific stage of apoptosis, some acellular regions do not show DCP-1 signals. Therefore, we counted acellular regions regardless of DCP-1 signals. We also quantified this in rescue embryos with WT and mutant forms of Papss, which show complete rescue with WT and no rescue with the mutant form, respectively. The graph with a statistical analysis is included (Figure 4D, E).

      WGA and Dumpy show similar condensed patterns within the tube lumen. The authors show that dumpy is enriched from stage 14 onwards. How is it with WGA? Does it show the same pattern from stage 14 to 16? Papss mutants can suffer from a developmental delay in organizing the ECM or lack of internalization of luminal proteins during/after tube expansion, which is the case in the trachea.

      Dpy-YFP and WGA show overlapping signals in the SG lumen throughout morphogenesis. Dpy-YFP is SG enriched in the lumen from stage 11, not stage 14 (Figure 5-figure supplement 2). WGA is also detected in the lumen throughout SG morphogenesis, similar to Dpy. In the original supplemental figure, only a stage 16 SG image was shown for co-localization of Dpy-YFP and WGA signals in the SG lumen. We have now included images from stage 14 and 15 in Figure 5-figure supplement 2C.

      Given that luminal Pio signals are lost at stage 16 only and that Dpy signals appear as condensed structures in the lumen of Papss mutants, it suggests that the internalization of luminal proteins is not impaired in Papss mutants. Rather, these proteins are secreted but fail to organize properly.

      Line 366. Luminal morphology is characterized by bulging and constrictions. In the trachea, bulges indicate the deformation of the apical membrane and the detachment from the aECM. I can see constrictions and the collapsed tube lumen in Fig. 6C, but I don't find the bulges of the apical membrane in pio and Np mutants. Maybe showing it more clearly and with better quality will be helpful.

      Since the bulging phenotype appears to vary from sample to sample, we have revised the description of the phenotype to "constrictions" to more accurately reflect the consistent observations. We quantified the number of constrictions along the entire lumen in pio and Np mutants and included the graph in Figure 6F.

      The authors state that Papss controls luminal secretion of Pio and Dumpy, as they observe reduced luminal staining of both in papss mutants. However, the mCh-Pio and Dumpy-YFP are secreted towards the lumen. Does papss overexpression change Pio and Dumpy secretion towards the lumen, and could this be another explanation for the multiple phenotypes?

      Thank you for the comment. To clarify, we did not observe reduced luminal staining of Pio and Dpy in Papss mutants, nor did we state that Papss controls luminal secretion of Pio and Dpy. In Papss mutants, Pio luminal signals are absent specifically at stage 16 (Figure 5H), whereas strong luminal Pio signals are present until stage 15 (Figure 5G). For Dpy-YFP, the signals are not reduced but condensed in Papss mutants from stages 14-16 (Figure 5D, H).

      It remains unclear whether the apparent loss of Pio signals is due to a loss of Pio protein in the lumen or due to epitope masking resulting from protein aggregation or condensation. As noted in our response to Comment 11 internalization of luminal proteins seems unaffected in Papss mutants; proteins like Pio and Dpy are secreted into the lumen but fail to properly organize. Therefore, we have not tested whether Papss overexpression alters the secretion of Pio or Dpy.

      In our original submission, we incorrectly stated that uniform luminal mCh-Pio signals were unchanged in Papss mutants. Upon closer examination, we found these signals are absent in the expanded luminal region in stage 16 SG (where Dpy-YFP is also absent), and weak mCh-Pio signals colocalize with the condensed Dpy-YFP signals (Figure 5C, D). We have revised the text accordingly.

      Regulation of luminal ZP protein level is essential to modulate the tube expansion; therefore, Np releases Pio and Dumpy in a controlled manner during st15/16. Thus, the analysis of Pio and Dumpy in NP overexpression embryos will be critical to this manuscript to understand more about the control of luminal ZP matrix proteins.

      Thanks for the insightful suggestion. We overexpressed both the WT and mutant form of Np using UAS-Np.WT and UAS-Np.S990A lines (Drees et al., 2019) and analyzed mCh-Pio, Pio antibody, and Dpy-YFP signals. It is important to note that these overexpression experiments were done in the presence of the endogenous WT Np.

      Overexpression of Np.WT led to increased levels of mCh-Pio, Pio, and Dpy-YFP signals in the lumen and at the apical membrane. In contrast, overexpression of Np.S990A resulted in a near complete loss of luminal mCh-Pio signals. Pio antibody signals remained strong at the apical membrane but was weaker in the luminal filamentous structures compared to WT.

      Due to the GFP tag present in the UAS-Np.S990A line, we could not reliably analyze Dpy-YFP signals because of overlapping fluorescent signals in the same channel. However, the filamentous Pio signals in the lumen co-localized with GFP signals, suggesting that these structures might also include Dpy-YFP, although this cannot be confirmed definitively.

      These results suggest that overexpressed Np.S990A may act in a dominant-negative manner, competing with endogenous Np and impairing proper cleavage of Pio (and mCh-Pio). Nevertheless, some level of cleavage by endogenous Np still appears to occur, as indicated by the residual luminal filamentous Pio signals. These new findings have been incorporated into the revised manuscript and are shown in Figure 6H and 6I.

      Minor: Fig. 5 C': mChe-Pio and Dumpy-YFP are mixed up at the top of the images.

      Thanks for catching this error. It has been corrected.

      Sup. Fig7. A shows Pio in purple but B in green. Please indicate it correctly.

      It has been corrected.

      Reviewer #1 (Significance (Required)):

      In 2023, the functions of Pio, Dumpy, and Np in the tracheal tubes of Drosophila were published. The study here shows similar results, with the difference that the salivary glands do not possess chitin, but the two ZP proteins Pio and Dumpy take over its function. It is, therefore, a significant and exciting extension of the known function of the three proteins to another tube system. In addition, the authors identify papss as a new protein and show its essential function in forming the luminal matrix in the salivary glands. Considering the high degree of conservation of these proteins in other species, the results presented are crucial for future analyses and will have further implications for tubular development, including humans.

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      Summary: There is growing appreciation for the important of luminal (apical) ECM in tube development, but such matrices are much less well understood than basal ECMs. Here the authors provide insights into the aECM that shapes the Drosophila salivary gland (SG) tube and the importance of PAPSS-dependent sulfation in its organization and function.

      The first part of the paper focuses on careful phenotypic characterization of papss mutants, using multiple markers and TEM. This revealed reduced markers of sulfation (Alcian Blue staining) and defects in both apical and basal ECM organization, Golgi (but not ER) morphology, number and localization of other endosomal compartments, plus increased cell death. The authors focus on the fact that papss mutants have an irregular SG lumen diameter, with both narrowed regions and bulged regions. They address the pleiotropy, showing that preventing the cell death and resultant gaps in the tube did not rescue the SG luminal shape defects and discussing similarities and differences between the papss mutant phenotype and those caused by more general trafficking defects. The analysis uses a papss nonsense mutant from an EMS screen - I appreciate the rigorous approach the authors took to analyze transheterozygotes (as well as homozygotes) plus rescued animals in order to rule out effects of linked mutations.

      The 2nd part of the paper focuses on the SG aECM, showing that Dpy and Pio ZP protein fusions localize abnormally in papss mutants and that these ZP mutants (and Np protease mutants) have similar SG lumen shaping defects to the papss mutants. A key conclusion is that SG lumen defects correlate with loss of a Pio+Dpy-dependent filamentous structure in the lumen. These data suggest that ZP protein misregulation could explain this part of the papss phenotype.

      Overall, the text is very well written and clear. Figures are clearly labeled. The methods involve rigorous genetic approaches, microscopy, and quantifications/statistics and are documented appropriately. The findings are convincing, with just a few things about the fusions needing clarification.

      minor comments 1. Although the Dpy and Qsm fusions are published reagents, it would still be helpful to mention whether the tags are C-terminal as suggested by the nomenclature, and whether Westerns have been performed, since (as discussed for Pio) cleavage could also affect the appearance of these fusions.

      Thanks for the comment. Dpy-YFP is a knock-in line in which YFP is inserted into the middle of the dpy locus (Lye et al., 2014; the insertion site is available on Flybase). mCh-Qsm is also a knock-in line, with mCh inserted near the N-terminus of the qsm gene using phi-mediated recombination using the qsmMI07716 line (Chu and Hayashi, 2021; insertion site available on Flybase). Based on this, we have updated the nomenclature from Qsm-mCh to mCh-Qsm throughout the manuscript to accurately reflect the tag position. To our knowledge, no western blot has been performed on Dpy-YFP or mCh-Qsm lines. We have mentioned this explicitly in the Discussion.

      The Dpy-YFP reagent is a non-functional fusion and therefore may not be a wholly reliable reporter of Dpy localization. There is no antibody confirmation. As other reagents are not available to my knowledge, this issue can be addressed with text acknowledgement of possible caveats.

      Thanks for raising this important point. We have added a caveat in the Discussion noting this limitation and the need for additional tools, such as an antibody or a functional fusion protein, to confirm the localization of Dpy.

      TEM was done by standard chemical fixation, which is fine for viewing intracellular organelles, but high pressure freezing probably would do a better job of preserving aECM structure, which looks fairly bad in Fig. 2G WT, without evidence of the filamentous structures seen by light microscopy. Nevertheless, the images are sufficient for showing the extreme disorganization of aECM in papss mutants.

      We agree that HPF is a better method and intent to use the HPF system in future studies. We acknowledge that chemical fixation contributes to the appearance of a gap between the apical membrane and the aECM, which we did not observe in the HPF/FS method (Chung and Andrew, 2014). Despite this, the TEM images still clearly reveal that Papss mutants show a much thinner and more electron-dense aECM compared to WT (Figure 2H, I), consistent to the condensed WGA, Dpy, and Pio signals in our confocal analyses. As the reviewer mentioned, we believe that the current TEM data are sufficient to support the conclusion of severe aECM disorganization and Golgi defects in Papss mutants.

      The authors may consider citing some of the work that has been done on sulfation in nematodes, e.g. as reviewed here: https://pubmed.ncbi.nlm.nih.gov/35223994/ Sulfation has been tied to multiple aspects of nematode aECM organization, though not specifically to ZP proteins.

      Thank you for the suggestion. Pioneering studies in C. elegans have highlighted the key role of sulfation in diverse developmental processes, including neuronal organization, reproductive tissue development, and phenotypic plasticity. We have now cited several works.

      Reviewer #2 (Significance (Required)):

      This study will be of interest to researchers studying developmental morphogenesis in general and specifically tube biology or the aECM. It should be particularly of interest to those studying sulfation or ZP proteins (which are broadly present in aECMs across organisms, including humans).

      This study adds to the literature demonstrating the importance of luminal matrix in shaping tubular organs and greatly advances understanding of the luminal matrix in the Drosophila salivary gland, an important model of tubular organ development and one that has key matrix differences (such as no chitin) compared to other highly studied Drosophila tubes like the trachea.

      The detailed description of the defects resulting from papss loss suggests that there are multiple different sulfated targets, with a subset specifically relevant to aECM biology. A limitation is that specific sulfated substrates are not identified here (e.g. are these the ZP proteins themselves or other matrix glycoproteins or lipids?); therefore it's not clear how direct or indirect the effects of papss are on ZP proteins. However, this is clearly a direction for future work and does not detract from the excellent beginning made here.

      My expertise: I am a developmental geneticist with interests in apical ECM

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      In this work Woodward et al focus on the apical extracellular matrix (aECM) in the tubular salivary gland (SG) of Drosophila. They provide new insights into the composition of this aECM, formed by ZP proteins, in particular Pio and Dumpy. They also describe the functional requirements of PAPSS, a critical enzyme involved in sulfation, in regulating the expansion of the lumen of the SG. A detailed cellular analysis of Papss mutants indicate defects in the apical membrane, the aECM and in Golgi organization. They also find that Papss control the proper organization of the Pio-Dpy matrix in the lumen. The work is well presented and the results are consistent.

      Main comments

      • This work provides a detailed description of the defects produced by the absence of Papss. In addition, it provides many interesting observations at the cellular and tissular level. However, this work lacks a clear connection between these observations and the role of sulfation. Thus, the mechanisms underlying the phenotypes observed are elusive. Efforts directed to strengthen this connection (ideally experimentally) would greatly increase the interest and relevance of this work.

      Thank you for this thoughtful comment. To directly test whether the phenotypes observed in Papss mutants are due to the loss of sulfation activity, we generated transgenic lines expressing catalytically inactive forms of Papss, UAS-PapssK193A, F593P, in which key residues in the APS kinase and ATP sulfurylase domains are mutated. Unlike WT UAS-Papss (both the Papss-PD or Papss-PE isoforms), the catalytically inactive UAS-Papssmut failed to rescue any of the phenotypes, including the thin lumen phenotype (Figure 1I-L), altered WGA signals (Figure I, I') and the cell death phenotype (Figure 4D, E). These findings strongly support the conclusion that the enzymatic sulfation activity of Papss is essential for the developmental processes described in this study.

      • A main issue that arises from this work is the role of Papss at the cellular level. The results presented convincingly indicate defects in Golgi organization in Papss mutants. Therefore, the defects observed could stem from general defects in the secretion pathway rather than from specific defects on sulfation. This could even underly general/catastrophic cellular defects and lead to cell death (as observed). This observation has different implications. Is this effect observed in SGs also observed in other cells in the embryo? If Papss has a general role in Golgi organization this would be expected, as Papss encodes the only PAPs synthatase in Drosophila. Can the authors test any other mutant that specifically affect Golgi organization and investigate whether this produces a similar phenotype to that of Papss?

      Thank you for the comment. To address whether the defects observed in Papss mutants stem from general disruption of the secretory pathway due to Golgi disorganization, we examined mutants of two key Golgi components: Grasp65 and GM130.

      In Grasp65 mutants, we observed significant defects in SG lumen morpholgy, including highly irregular SG lumen shape and multiple constrictions (100%; n=10/10). However, the lumen was not uniformly thin as in Papss mutants. In contrast, GM130 mutants-although this line was very sick and difficult to grow-showed relatively normal salivary glands morphology in the few embryos that survived to stage 16 (n=5/5). It is possible that only embryos with mild phenotypes progressed to this stages, limiting interpretation. These data have now been included in Figure 3-figure supplement 2. Overall, while Golgi disruption can affect SG morphology, the specific phenotypes seen in Papss mutants are not fully recapitulated by Grasp65 or GM130 loss.

      • A model that conveys the different observations and that proposes a function for Papss in sulfation and Golgi organization (independent or interdependent?) would help to better present the proposed conclusions. In particular, the paper would be more informative if it proposed a mechanism or hypothesis of how sulfation affects SG lumen expansion. Is sulfation regulating a factor that in turn regulates Pio-Dpy matrix? Is it regulating Pio-Dpy directly? Is it regulating a product recognized by WGA? For instance, investigating Alcian blue or sulfotyrosine staining in pio, dpy mutants could help to understand whether Pio, Dpy are targets of sulfation.

      Thank you for the comment. We're also very interested in learning whether the regulation of the Pio-Dpy matrix is a direct or indirect consequence of the loss of sulfation on these proteins. One possible scenario is that sulfation directly regulates the Pio-Dpy matrix by regulating protein stability through the formation of disulfide bonds between the conserved Cys residues responsible for ZP module polymerization. Additionally, the Dpy protein contains hundreds of EGF modules that are highly susceptible to O-glycosylation. Sulfation of the glycan groups attached to Dpy may be critical for its ability to form a filamentous structure. Without sulfation, the glycan groups on Dpy may not interact properly with the surrounding materials in the lumen, resulting in an aggregated and condensed structure. These possibilities are discussed in the Discussion.

      We have not analyzed sulfation levels in pio or dpy mutants because sulfation levels in mutants of single ZP domain proteins may not provide much information. A substantial number of proteoglycans, glycoproteins, and proteins (with up to 1% of all tyrosine residues in an organism's proteins estimated to be sulfated) are modified by sulfation, so changes in sulfation levels in a single mutant may be subtle. Especially, the existing dpy mutant line is an insertion mutant of a transposable element; therefore, the sulfation sites would still remain in this mutant.

      • Interpretation of Papss effects on Pio and Dpy would be desired. The results presented indicate loss of Pio antibody staining but normal presence of cherry-Pio. This is difficult to interpret. How are these results of Pio antibody and cherry-Pio correlating with the results in the trachea described recently (Drees et al. 2023)?

      In our original submission, we stated that the uniform luminal mCh-Pio signals were not changed in Papss mutants, but after re-analysis, we found that these signals were actually absent from the expanded luminal region in stage 16 SG (where Dpy-YFP is also absent), and weak mCh-Pio signals colocalize with the condensed Dpy-YFP signals (Figure 5C, D). We have revised the text accordingly.

      After cleavages by Np and furin, the Pio protein should have three fragments. The N-terminal region contains the N-terminal half of the ZP domain, and mCh-Pio signals show this fragment. The very C-terminal region should localize to the membrane as it contains the transmembrane domain. We think the middle piece, the C-terminal ZP domain, is recognized by the Pio antibody. The mCh-Pio and Pio antibody signals in the WT trachea (Drees et al., 2023) are similar to those in the SG. mCh-Pio signals are detected in the tracheal lumen as uniform signals, at the apical membrane, and in cytoplasmic puncta. Pio antibody signals are exclusively in the tracheal lumen and show more heterogenous filamentous signals.

      In Papss mutants, the middle fragment (the C-terminal ZP domain) seems to be most affected because the Pio antibody signals are absent from the lumen. The loss of Pio antibody signals could be due to protein degradation or epitope masking caused by aECM condensation and protein misfolding. This fragment seems to be key for interacting with Dpy, since Pio antibody signals always colocalize with Dpy-YFP. The N-terminal mCh-Pio fragment does not appear to play a significant role in forming a complex with Dpy in WT (but still aggregated together in Papss mutants), and this can be tested in future studies.

      In response to Reviewer 1's comment, we performed an additional experiment to test the role of Np in cleaving Pio to help organize the SG aECM. In this experiment, we overexpressed the WT and mutant form of Np using UAS-Np.WT and UAS-Np.S990A lines (Drees et al., 2019) and analyzed mCh-Pio, Pio antibody, and Dpy-YFP signals. Np.WT overexpression resulted in increased levels of mCh-Pio, Pio, and Dpy-YFP signals in the lumen and at the apical membrane. However, overexpression of Np.S990A resulted in the absence of luminal mCh-Pio signals. Pio antibody signals were strong at the apical membrane but rather weak in the luminal filamentous structures. Since the UAS-Np.S990A line has the GFP tag, we could not reliably analyze Dpy-YFP signals due to overlapping Np.S990A.GFP signals in the same channel. However, the luminal filamentous Pio signals co-localized with GFP signals, and we assume that these overlapping signals could be Dpy-YFP signals.

      These results suggest that overexpressed Np.S990A may act in a dominant-negative manner, competing with endogenous Np and impairing proper cleavage of Pio (and mCh-Pio). Nevertheless, some level of cleavage by endogenous Np still appears to occur, as indicated by the residual luminal filamentous Pio signals. These new findings have been incorporated into the revised manuscript and are shown in Figure 6H and 6I.

      A proposed model of the Pio-Dpy aECM in WT, Papss, pio, and Np mutants has now been included in Figure 7.

      • What does the WGA staining in the lumen reveal? This staining seems to be affected differently in pio and dpy mutants: in pio mutants it disappears from the lumen (as dpy-YFP does), but in dpy mutants it seems to be maintained. How do the authors interpret these findings? How does the WGA matrix relate to sulfated products (using Alcian blue or sulfotyrosine)?

      WGA binds to sialic acid and N-acetylglucosamine (GlcNAc) residues on glycoproteins and glycolipids. GlcNAc is a key component of the glycosaminoglycan (GAG) chains that are covalently attached to the core protein of a proteoglycan, which is abundant in the ECM. We think WGA detects GlcNAc residues in the components of the aECM, including Dpy as a core component, based on the following data. 1) WGA and Dpy colocalize in the lumen, both in WT (as thin filamentous structures) and Papss mutant background (as condensed rod-like structures), and 2) are absent in pio mutants. WGA signals are still present in a highly condensed form in dpy mutants. That's probably because the dpy mutant allele (dpyov1) has an insertion of a transposable element (blood element) into intron 11 and this insertion may have caused the Dpy protein to misfold and condense. We added the information about the dpy allele to the Results section and discussed it in the Discussion.

      Minor points:

      • The morphological phenotypic analysis of Papss mutants (homozygous and transheterozygous) is a bit confusing. The general defects are higher in Papss homozygous than in transheterozygotes over a deficiency. Maybe quantifying the defects in the heterozygote embryos in the Papss mutant collection could help to figure out whether these defects relate to Papss mutation.

      We analyzed the morphology of heterozygous Papss mutant embryos. They were all normal. The data and quantifications have now been added to Figure 1-figure supplement 3.

      • The conclusion that the apical membrane is affected in Papss mutants is not strongly supported by the results presented with the pattern of Crb (Fig 2). Further evidences should be provided. Maybe the TEM analysis could help to support this conclusion

      We quantified Crb levels in the sub-apical and medial regions of the cell and included this new quantification in Figure 2D. TEM images showed variation in the irregularity of the apical membrane, even in WT, and we could not draw a solid conclusion from these images.

      • It is difficult to understand why in Papss mutants the levels of WGA increase. Can the authors elaborate on this?

      We think that when Dpy (and many other aECM components) are condensed and aggregated into the thin, rod-like structure in Papss mutants, the sugar residues attached to them must also be concentrated and shown as increased WGA signals.

      • The explanation about why Pio antibody and mcherry-Pio show different patterns is not clear. If the antibody recognizes the C-t region, shouldn't it be clearly found at the membrane rather than the lumen?

      The Pio protein is also cleaved by furin protease (Figure 5B). We think the Pio fragment recognized by the antibody should be a "C-terminal ZP domain", which is a middle piece after furin + Np cleavages.

      • The qsm information does not seem to provide any relevant information to the aECM, or sulfation.

      Since Qsm has been shown to bind to Dpy and remodel Dpy filaments in the muscle tendon (Chu and Hayashi, 2021), we believe that the different behavior of Qsm in the SG is still informative. As mentioned briefly in the Discussion, the cleaved Qsm fragment may localize differently, like Pio, and future work will need to test this. We have shortened the description of the Qsm localization in the manuscript and moved the details to the figure legend of Figure 5-figure supplement 3.

      Reviewer #3 (Significance (Required)):

      Previous reports already indicated a role for Papss in sulfation in SG (Zhu et al 2005). Now this work provides a more detailed description of the defects produced by the absence of Papss. In addition, it provides relevant data related to the nature and requirements of the aECM in the SG. Understanding the composition and requirements of aECM during organ formation is an important question. Therefore, this work may be relevant in the fields of cell biology and morphogenesis.

    1. Reviewer #2 (Public review):

      Summary:

      In the manuscript by Walter-McNeill, Kruglyak, and team, the authors provide solid evidence of another toxin-antidote (TA) system in C. elegans. Generally, TA systems involve selfish and linked genetic elements, one encoding a toxin that kills progeny inheriting it, unless an antidote (the second element) is also present. Currently, only two TA systems have been characterized in this species, pointing to the importance of identifying new instances of such systems to understand their transmission dynamics, prevalence, and functions in shaping worm populations.

      Strengths:

      This novel TA system (mll-1/smll-1) was identified on LGV in wild C. elegans isolates from the Hawaiian islands, by crossing divergent strains and observing allele frequency distortions by high-throughput genome sequencing after 10 generations. These allele frequency distortions were subsequently confirmed in another set of crosses with a separate divergent strain, and crosses of heterozygous males or hermaphrodites resulted in a pattern of L1 lethality in progeny (with a rod arrest phenotype) that suggested the maternal transmission of this TA system from the XZ1516 genetic background. By elegantly combining the use of near-isogenic lines, CRISPR editing to generate knock-outs, and a transgene rescue of the antidote gene, the authors identified the genes encoding the toxin and the antidote, which they refer to as mll-1 and smll-1. Moreover, the specific mll-1 isoform responsible for the production of the toxin was identified and mll-1 transcripts were observed by FISH in early and late embryos, as well as in larvae. Inducible expression of the toxin in various strains resulted in larval arrest and rod phenotypes. The authors then characterized the genetic variation of 550 wild isolates at the toxin/antidote region on LGV and distinguished three clades: (1) one with the conserved TA system, (2) one having lost the toxin and retaining a mostly functional antidote, and (3) one having lost the antidote and retaining a divergent yet coding toxin (this includes the reference strain Bristol N2, in which the homologous toxin gene has acquired mutations and is known as B0250.8). Further, the authors show that this region is under positive selection. These data are compelling and provide very strong evidence of a new TA system in this species.

      Weaknesses:

      The question remained as to how one clade, including N2, could retain the toxin gene but not possess a functional antidote. In the second part of the manuscript, the authors hypothesized that small RNA targeting (RNAi) of the toxin transcript could provide the necessary repression to allow worms to survive without the antidote. Through a meta-analysis of multiple small RNA datasets from the literature, the authors found evidence to support this idea, in which the toxin transcript is targeted by 22G siRNAs whose biogenesis is dependent on the Mutator foci protein, MUT-16. They note that from previous studies, mut-16 null mutants displayed a varied penetrance of larval arrest. In their own hands, mut-16 mutants displayed 15% varied larval arrest and 2% rod phenotypes. In an attempt to link B0250.8 to mut-16/siRNAs, they made a double mutant and examined body length as a proxy for developmental stage. Here, they observed a partial rescue of the mut-16 size defect by B0250.8 mutation. Finally, the authors also highlight data from further meta-analysis, which predicts the recognition of B0250.8 by several piRNAs. Also based on existing data from the literature, the authors link loss of Piwi (PRG-1), which binds piRNAs, to a depletion of 22G-RNAs targeting B0250.8 and an upregulation of B0250.8 expression in gonads, suggesting that piRNAs are the primary small RNAs that target B0250.8 for downregulation. The data in this portion of the manuscript are intriguing, but somewhat preliminary and incomplete, as they are based on little primary experimentation and a collection of different datasets (which have been acquired by slightly different methods in most cases). This portion of the study would require subsequent experimentation to firmly establish this mechanistic link. For example, to be able to claim that "the N2 toxin allele has acquired mutations that enable piRNA binding to initiate MUT-16-dependent 22G small RNA amplification that targets the transcript for degradation" the identified piRNA sites should be mutated and protein and transcript levels analysed in wild-type and in the strain with mutated piRNA sites. At a minimum, the protein levels in wild-type and mut-16, prg-1, and/or wago-1 mutants should be measured by western blot and/or by live imaging (introducing a GFP or some other tag to the endogenous protein via CRISPR editing) to show that the toxin is not accumulated as a protein in wt, but increases in levels in these mutants. mRNA levels in Figure S5A suggest there is still some expression of the B0250.8 transcript in a wild-type situation.

    1. NATIONAL DISASTER RISKFINANCING FRAMEWORKAND IMPLEMENTATION PLAN

      Hi Colleagues!

      Highlight any part of the text to leave a comment, question, or insight. You can also reply to others’ annotations.

      Tag your comments if needed, e.g., #question, #suggestion to help us filter key themes later.

      Let’s use this space to: Clarify content Share reflections and experiences Suggest collaboration opportunities

    1. we used a very high level um uh commu communication that this build an I here and like any good intelligence it has a multiscale hierarchical control where it took care of all of the downstream molecular um details.

      for - example - importance of multiscale hierarchical intelligence and control - Michael Levin - high level instruction is issued and the multiscale structure ensures that all the lower level details are executed - like a software function call

      new plexmark - person assigned to each comment in multiplayer conversational environment - have a way to - detect then - discriminate and finally - tag - each sequentially different conversant' s comments in the conversation - This will help with Indyweb provenance by attributing the person with each sentence

    1. 对于检测模型,有标注框的是正样本,无标注信息的是负样本,日常工作需要对正负样本进行拆分,需要支持按文本信息划分(可能原始数据集自带,也可能数据清洗标注后有tag)

      目的和上面的不一样

    2. 日常工作中需要对原始数据集进行BMK和Training的划分,需要支持按文本信息划分(可能原始数据集自带,也可能数据清洗标注后有tag),及设置划分比例

      自带的标记,按比例,数据清洗的标记 数据处理和数据集管理逻辑明确

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      In this manuscript, the authors present a novel CRISPR/Cas9-based genetic tool for the dopamine receptor dop1R2. Based on the known function of the receptor in learning and memory, they tested the efficacy of the genetic tool by knocking out the receptor specifically in mushroom body neurons. The data suggest that dop1R2 is necessary for longer-lasting memories through its action on ⍺/ß and ⍺'/ß' neurons but is dispensable for short-term memory and thus in ɣ neurons. The experiments impressively demonstrate the value of such a genetic tool and illustrate the specific function of the receptor in subpopulations of KCs for longer-term memories. The data presented in this manuscript are significant.

      Reviewer #2 (Public Review):

      Summary:

      This manuscript examines the role of the dopamine receptor, Dop1R2, in memory formation. This receptor has complex roles in supporting different stages of memory, and the neural mechanisms for these functions are poorly understood. The authors are able to localize Dop1R2 function to the vertical lobes of the mushroom body, revealing a role in later (presumably middle-term) aversive and appetitive memory. In general, the experimental design is rigorous, and statistics are appropriately applied. While the manuscript provides a useful tool, it would be strengthened further by additional mechanistic studies that build on the rich literature examining the roles of dopamine signaling in memory formation. The claim that Dop1R2 is involved in memory formation is strongly supported by the data presented, and this manuscript adds to a growing literature revealing that dopamine is a critical regulator of olfactory memory. However, the manuscript does not necessarily extend much beyond our understanding of Dop1R2 in memory formation, and future work will be needed to fully characterize this reagent and define the role of Dop1R2 in memory.

      Strengths:

      (1) The FRT lines generated provide a novel tool for temporal and spatially precise manipulation of Dop1R2 function. This tool will be valuable to study the role of Dop1R2 in memory and other behaviors potentially regulated by this gene.

      (2) Given the highly conserved role of Dop1R2 in memory and other processes, these findings have a high potential to translate to vertebrate species.

      Weaknesses:

      (1) The authors state Dop1R2 associates with two different G-proteins. It would be useful to know which one is mediating the loss of aversive and appetitive memory in Dop1R2 knockout flies.

      We thank you for the insightful comment. We agree that it would be very useful to know which G-proteins are transmitting Dop1R2 signaling. To that extent, we examined single-cell transcriptomics data to check the level of co-expression of Dop1R2 with G-proteins that are of interest to us. (Figure 1 S1)

      Lines 312-325

      “Some RNA binding proteins and Immediate early genes help maintain identities of Mushroom body cells and are regulators of local transcription and translation (de Queiroz et al., 2025; Raun et al., 2025). So, the availability of different G-proteins may change in different lobes and during different phases of memory. The G-protein via which GPCRs signal, may depend on the pool of available G-proteins in the cell/sub-cellular region (Hermans, 2003)., Therefore, Dop1R2 may signal via different G-proteins in different compartments of the Mushroom body and also different compartments of the neuron. We looked at Gαo and Gαq as they are known to have roles in learning and forgetting (Ferris et al., 2006; Himmelreich et al., 2017). We found that Dop1R2 co-expresses more frequently with Gαo than with Gαq (Figure 1 S1). While there is evidence for Dop1R2 to act via Gαq (Himmelreich et al., 2017). It is difficult to determine whether this interaction is exclusive, or if Dop1R2 can also be coupled to other G-proteins. It will be interesting to determine the breadth of G-proteins that are involved in Dop1R2 signaling.”

      (2) It would be interesting to examine 24hr aversive memory, in addition to 24hr appetitive memory.

      This is indeed an important point and we agree that it will complete the assessment of temporally distinct memory traces. We therefore performed the Aversive LTM experiments and include them in the results.

      Lines 208-228

      “24h memory is impaired by loss of Dop1R2

      Next, we wanted to see if later memory forms are also affected. One cycle of reward training is sufficient to create LTM (Krashes & Waddell, 2008), while for aversive memory, 5-6 cycles of electroshock-trainings are required to obtain robust long-term memory scores (Tully et al., 1994). So, we looked at both, 24h aversive and appetitive memory. For aversive LTM, the flies were tested on the Y-Maze apparatus as described in (Mohandasan et al., (2022).

      Flipping out Dop1R2 in the whole MB causes a reduced 24h memory performance (Figure 4A, E). No phenotype was observed when Ddop1R2 was flipped out in the γ-lobe (Figure 4B, F). However, similar to 2h memory, loss of Ddop1R2 in the α/β-lobes (Figure 4C, G) or the α’/β’-lobes (Figure 4D, H) causes a reduction in memory performance. Thus, Dop1R2 seems to be involved in aversive and appetitive LTM in the α/β-lobes and the α’/β’-lobes.

      Previous studies have shown mutation in the Dop1R2 receptor leads to improvement in LTM when a single shock training paradigm is used (Berry et al., 2012). As we found that it disrupts LTM, we wanted to verify if the absence of Dop1R2 outside the MB is what leads to an improvement in memory. To that extent, we tested panneuronal flip-out of Dop1R2 flies for 6hr and 24hr memory upon single shock using the elav-Gal4 driver. We found that it did not improve memory at both time points (Figure 4 S1). Confirming that flipping out Dop1R2 panneuronally does not improve LTM (Figure 4 S1C) and highlighting its irrelevance in memory outside the MB.”

      (3) The manuscript would be strengthened by added functional analysis. What are the DANs that signal through Dop1R. How do these knockouts impact MBONs?

      We thank you for this question. We indeed agree that it is a highly relevand and open question, how distinct DANs signal via distinct Dopamine receptors. Our work here uniquely focusses on Dop1R2 within the MB. We aim to investigate other DopRs and the connection between DANs in the future using similar approaches.

      (4) Also in Figure 2, the lobe-specific knockouts might be moved to supplemental since there is no effect. Instead, consider moving the control sensory tests into the main figure.

      We thank you for this suggestion and understand that in Figure 2 no significant difference is seen. However, we have emphasized in the text that the results from the supplementary figures are just to confirm that the modifications made at the Dop1R2 locus did not alter its normal function.

      Lines 156-162

      “We wanted to see if flipping out Dop1R2 in the MB affects memory acquisition and STM by using classical olfactory conditioning. In short, a group of flies is presented with an odor coupled to an electric shock (aversive) or sugar (appetitive) followed by a second odor without stimulus. For assessing their memory, flies can freely choose between the odors either directly after training (STM) or at a later timepoint.

      To ensure that the introduced genetic changes to the Dop1R2 locus do not interfere with behavior we first checked the sensory responses of that line”

      (5) Can the single-cell atlas data be used to narrow down the cell types in the vertical lobes that express Dop1R2? Is it all or just a subset?

      This is indeed an interesting question, and we thank you for mentioning it. To address this as best as we could, we analyzed the single cell transcriptomic data from (Davie et al., 2018) and presented it in Figure 1 S1.

      Reviewer #3 (Public Review):

      Summary:

      Kaldun et al. investigated the role of Dopamine Receptor Dop1R2 in different types and stages of olfactory associative memory in Drosophila melanogaster. Dop1R2 is a type 1 Dopamine receptor that can act both through Gs-cAMP and Gq-ERCa2+ pathways. The authors first developed a very useful tool, where tissue-specific knock-out mutants can be generated, using Crispr/Cas9 technology in combination with the powerful Gal4/UAS gene-expression toolkit, very common in fruit flies.

      They direct the K.O. mutation to intrinsic neurons of the main associative memory centre fly brain-the mushroom body (MB). There are three main types of MB-neurons, or Kenyon cells, according to their axonal projections: a/b; a'/b', and g neurons.

      Kaldun et al. found that flies lacking dop1R2 all over the MB displayed impaired appetitive middle-term (2h) and long-term (24h) memory, whereas appetitive short-term memory remained intact. Knocking-out dop1R2 in the three MB neuron subtypes also impaired middle-term, but not short-term, aversive memory.

      These memory defects were recapitulated when the loss of the dop1R2 gene was restricted to either a/b or a'/b', but not when the loss of the gene was restricted to g neurons, showcasing a compartmentalized role of Dop1R2 in specific neuronal subtypes of the main memory centre of the fly brain for the expression of middle and long-term memories.

      Strengths:

      (1) The conclusions of this paper are very well supported by the data, and the authors systematically addressed the requirement of a very interesting type of dopamine receptor in both appetitive and aversive memories. These findings are important for the fields of learning and memory and dopaminergic neuromodulation among others. The evidence in the literature so far was generated in different labs, each using different tools (mutants, RNAi knockdowns driven in different developmental stages...), different time points (short, middle, and long-term memory), different types of memories (Anesthesia resistant, which is a type of protein synthesis independent consolidated memory; anesthesia sensitive, which is a type of protein synthesis-dependent consolidated memory; aversive memory; appetitive memory...) and different behavioral paradigms. A study like this one allows for direct comparison of the results, and generalized observations.

      (2) Additionally, Kaldun and collaborators addressed the requirement of different types of Kenyon cells, that have been classically involved in different memory stages: g KCs for memory acquisition and a/b or a'/b' for later memory phases. This systematical approach has not been performed before.

      (3) Importantly, the authors of this paper produced a tool to generate tissue-specific knock-out mutants of dop1R2. Although this is not the first time that the requirement of this gene in different memory phases has been studied, the tools used here represent the most sophisticated genetic approach to induce a loss of function phenotypes exclusively in MB neurons.

      Weaknesses:

      (1) Although the paper does have important strengths, the main weakness of this work is that the advancement in the field could be considered incremental: the main findings of the manuscript had been reported before by several groups, using tissue-specific conditional knockdowns through interference RNAi. The requirement of Dop1R2 in MB for middle-term and long-term memories has been shown both for appetitive (Musso et al 2015, Sun et al 2020) and aversive associations (Plaçais et al 2017).

      Thank you for this comment. We believe that the main takeaway from the paper is the elegant tool we developed, to study the role of Dop1R2 in fruit flies by effectively flipping it out spatio-temporally. Additionally, we studied its role in all types of olfactory associative memory to establish it as a robust tool that can be used for further research in place of RNAi knockouts which are shown to be less efficient in insects as mentioned in the texts in line 394-398.

      “The genetic tool we generated here to study the role of the Dop1R2 dopamine receptor in cells of interest, is not only a good substitute for RNAi knockouts, which are known to be less efficient in insects (Joga et al., 2016), but also provides versatile possibilities as it can be used in combination with the powerful genetic tools of Drosophila.”

      (2) The approach used here to genetically modify memory neurons is not temporally restricted. Considering the role of dopamine in the correct development of the nervous system, one must consider the possible effects that this manipulation can have in the establishment of memory circuits. However, previous studies addressing this question restricted the manipulation of Dop1R2 expression to adulthood, leading to the same findings than the ones reported in this paper for both aversive and appetitive memories, which solidifies the findings of this paper.

      We thank you for this comment and we agree that it would be important to show a temporally restricted effect of Dop1R2 knockout. To assess this and rule out potential developmental defects we decided to restrict the knockout to the post-eclosion stage and to include these results.

      Lines 230-250

      “Developmental defects are ruled out in a temporally restricted Dop1R2 conditional knockout.

      To exclude developmental defects in the MB caused by flip-out of Dop1R2, we stained fly brains with a FasII antibody. Compared to genetic controls, flies lacking Dop1R2 in the mushroom body had unaltered lobes (Figure 4 S2C).

      Regardless, we wanted to control for developmental defects leading to memory loss in flip-out flies. So, we generated a Gal80ts-containing line, enabling the temporal control of Dop1R2 knockout in the entire mushroom body (MB). Given that the half-life of the receptor remains unknown, we assessed both aversive short-term memory (STM) and long-term memory (LTM) to determine whether post-eclosion ablation of Dop1R2 in the MB produced differences compared to our previously tested line, in which Dop1R2 was constitutively knocked out from fertilization. To achieve this, flies were maintained at 18°C until eclosion and subsequently shifted to 30°C for five to seven days. On the fifth day, training was conducted, followed by memory testing. Our results indicate that aversive STM was not significantly impaired in Dop1R2-deficient MBs compared to control flies (Figure 4 S3), consistent with our previous findings (Figure 2). However, aversive LTM was significantly impaired relative to control lines (Figure 4 S3), which also aligned with prior observations. These findings strongly indicate that memory loss caused by Dop1R2 flip-out is not due to developmental defects.”

      (3) The authors state that they aim to resolve disparities of findings in the field regarding the specific role of Dop1R2 in memory, offering a potent tool to generate mutants and addressing systematically their effects on different types of memory. Their results support the role of this receptor in the expression of long-term memories, however in the experiments performed here do not address temporal resolution of the genetic manipulations that could bring light into the mechanisms of action of Dop1R2 in memory. Several hypotheses have been proposed, from stabilization of memory, effects on forgetting, or integration of sequences of events (sensory experiences and dopamine release).

      We thank you for this comment. We agree that it would be interesting to dissect the memory stages by knocking out the receptor selectively in some of them (encoding, consolidation, retrieval). However, our tool irreversibly flips out Dop1R2 preventing us from investigating the receptor’s role in retrieval. Our results show that the receptor is dispensable for STM formation (Figure 2, Figure 4 Supplement 3), suggesting that it is not involved in encoding new information. On the other hand, it is instead involved in consolidation and/or retrieval of long-term and middle-term memories (Figure 3, Figure 4, Figure 5B).

      Overall, the authors generated a very useful tool to study dopamine neuromodulation in any given circuit when used in combination with the powerful genetic toolkit available in Drosophila. The reports in this paper confirmed a previously described role of Dop1R2 in the expression of aversive and appetitive LTM and mapped these effects to two specific types of memory neurons in the fly brain, previously implicated in the expression and consolidation of long-term associative memories.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      (1) On the first view, the results shown here are different from studies published earlier, while in the same line with others (e.g. Sun et al, for appetitive 24h memories). For example, Berry et al showed that the loss of dop1R2 impairs immediate memory, while memory scores are enhanced 3h, 6h, and 24h after training. Further, they showed data that shock avoidance, at least for higher shock intensities, is reduced in mutant (damb) flies. All in all, this favors how important it is to improve the genetic tools for tissue-specific manipulation. Despite the authors nicely discussing their data with respect to the previous studies, I wondered whether it would be suitable to use the new tool and knock out dop1R2 panneuronally to see whether the obtained data match the results published by Berry et al.. Further, as stated in line 105ff: "As these studies used different learning assays - aversive and appetitive respectively as well as different methods, it is unclear if Dop1R2 has different functions for the different reinforcement stimulus" I wondered why the authors tested aversive and appetitive learning for STM and 2h memory, but only appetitive memory for 24h.

      Thank you for this comment. To that extent, as mentioned above in response to reviewer #2, we included in the results the aversive LTM experiment (Figure 4). Moreover, we performed experiments along the line of Berry et al. using our tool as shown in Figure 4 S1. Our results support that Dop1R2 is required for LTM, rather than to promote forgetting.

      (2) Line 165ff: I can´t find any of the supplementary data mentioned here. Please add the corresponding figures.

      Thank you for pointing this out. In that line we don’t refer to any supplementary data, but to the Figure 1F, showing the absence of the HA-tag in our MB knock-out line. We have clarified this in the text (lines 151-153)

      (3) I can't imagine that the scale bar in Figure 1D-F is correct. I would also like to suggest to show a more detailed analysis of the expression pattern. For example, both anterior and posterior views would be appropriate, perhaps including the VNC. This would allow the expression pattern obtained with this novel tool to be better compared with previously published results. Also, in relation to my comment above (1), it may help to understand the functional differences with previous studies, especially as the authors themselves state that the receptor is "mainly" expressed in the mushroom body (line 99). It would be interesting to see where else it is expressed (if so). This would also be interesting for the panneuronal knockdown experiment suggested under (1). If the receptor is indeed expressed outside the mushroom body, this may explain the differences to Berry et al.

      Thank you for noting this, there was indeed a mistake in the scale bar which we now fixed. Since with our HA-tag immunostaining we could not detect any noticeable signal outside of the MB, we decided to analyze previously existing single cell transcriptomics data that showed expression of the receptor in 7.99% of cells in the VNC and in 13.8% of cells outside the MB (lines 98-100) confirming its sparse expression in the nervous system. The lack of detection of these cells is likely due to the sparse and low expression of the protein. The HA-tag allows to detect the endogenous level of the locus (it is possible that a Gal4/UAS amplification of the signal might allow to detect these cells).

      Regarding the panneuronal knockout, we decided to try to replicate the experiment shown in Berry et al. in Figure 4 S1 and found that Dop1R2 is required for LTM.

      (4) Related to learning data shown in Figures 2-4, the authors should show statistical differences between all groups obtained in the ANOVA + PostHoc tests. Currently, only an asterisk is placed above the experimental group, which does not adequately reflect the statistical differences between the groups. In addition, I would like to suggest adding statistical tests to the chance level as it may be interesting to know whether, for example, scores of knockout flies in 3C and 3D are different from the chance level.

      Many thanks for this correction, we agree with the fact that the way significance scores were shown was not informative enough. We fixed the point by now showing significance between all the control groups and the experimental ones. We also inserted the chance level results in the figure legends.

      (5) Unfortunately, the manuscript has some typing errors, so I would like to ask the authors to check the manuscript again carefully.

      Some Examples:

      Line 31: the the

      Line 56: G-Protein

      Line 64: c-AMP

      Line 68: Dopamine

      Line 70: G-Protein (It alternates between G-protein and G-Protein)

      Line 76: References are formatted incorrectly

      Line 126: Ha-Tag (It alternates between Ha and HA)

      Line 248: missing space before the bracket...is often found

      Thank you for noticing these errors, we have now corrected the spelling throughout the manuscript.

      (6) In the figures the axes are labelled Preference Index (Pref"I"). In the methods, however, the calculation formula is defined as "PREF".

      We thank you for drawing attention to this. To avoid confusion, we changed the definition in the methods section so that it could be clear and coherent (“Memory tests” paragraph in the methods section).

      “PREF = ((N<sub>arm1</sub> - N<sub>arm2</sub>) 100) / N<sub>total</sub> the two preference indices were calculated from the two reciprocal experiments. The average of these two PREFs gives a learning index (LI). LI = (PREF<sub>1</sub> + PREF<sub>2</sub>) / 2.

      In case of all Long-term Aversive memory experiments, Y-Maze protocol was adapted to test flies 24 hours post training. Testing using the Y-Maze was done following the protocol as described in (Mohandasan et al., 2022) where flies were loaded at the bottom of 20-minutes odorized 3D-printed Y-Mazes from where they would climb up to a choice point and choose between the two odors. The learning index was then calculated after counting the flies in each odorized vial as follows: LI = ((N<sub>CS-</sub> - N<sub>CS+</sub>) 100) / N<sub>total</sub>. Where NCS- and NCS+ are the number of flies that were found trapped in the untrained and trained odor tube respectively.

      Reviewer #2 (Recommendations For The Authors):

      (1) In Figures 2 and 3, the legends running two different subfigures is confusing. Would be helpful to find a different way to present.

      Thank you for your suggestion. We modified how we present legends, placing them vertically so that it is clearer.

      (2) Use additional drivers to verify middle and long-term memory phenotypes.

      We agree that it would be interesting to see the role of Dop1R2 in other neurons. To that extent, we looked at long term aversive memory in flies where the receptor was panneuronaly flipped out, and did not find evidence that suggested involvement of Dop1R2 in memory processes outside the MB. (Figure 4 S1)

      (3) Additional discussion of genetic background for fly lines would be helpful.

      Thank you for your advice. We have mentioned the genetic background of flies in the key resources table of the methods sections. Additionally, we also included further explanation on how the lines were created and their genetic background (see “Fly Husbandry” paragraph in the methods section).

      “UAS-flp;;Dop1R2 cko flies and Gal4;Dop1R2<sup>cko</sup> flies were crossed back with ;;Dop<sup>cko</sup> flies to obtain appropriate genetic controls which were heterozygous for UAS and Gal4 but not Dop1R2<sup>cko</sup>.”

      Reviewer #3 (Recommendations For The Authors):

      Line 109 states that to resolve the problem a tool is developed to knock down Dop1R2 in s spatial and temporal specific manner- while I agree that this is within the potential of the tool, there is no temporal control of the flipase action in this study; at least I cannot find references to the use of target/gene switch to control stages of development or different memory phases. However the version available for download is missing supplementary information, so I did not have access to supplementary figures and tables.

      Thank you for the comment, as mentioned before it would be great to be able to dissect the memory phases. We show in lines 232 – 250 and Figure 4 S3 that the temporally restricted flip-out to the post-eclosion life stage gave us coherent results with the previous findings, ruling out potential developmental defects.

      In relation to my comment on the possible developmental effects of the loss of the gene, Figure 1F could showcase an underdeveloped g lobe when looking at the lobe profiles. I understand this is not within the scope of the figure, but maybe a different z projection can be provided to confirm there are no obvious anatomical alterations due to the loss of the receptor.

      We understand the doubt about the correct development of the MB and we thank you for your insightful comment. To that extent we decided to perform a FasII immunostaining that could show us the MB in the different lines (Figure 4 S2) and it appears that there are no notable differences in the lobes development in our knockout line.

      It seems that the obvious missing piece of the puzzle would be to address the effects of knocking out Dop1R2 in aversive LTM. The idea of systematically addressing different types of memory at different time points and in different KCs is the most attractive aspect of this study beyond the technical sophistication, and it feels that the aim of the study is not delivered without that component.

      We agree and we thank you for the clarification. As mentioned above in response to Reviewer #2, we decided to test aversive LTM as described in lines –208-228, Figure 4, Figure 4 S1.

      Some statements of the discussion seem too vague, and I think could benefit from editing:

      Line 284 "however other receptors could use Gq and mediate forgetting"- does this refer to other dopamine receptors? Other neuromodulators? Examples?

      Thank you for pointing this out. We Agree and therefore decided to omit this line.

      Line 289 "using a space training protocol and a Dop1R2 line" - this refers to RNAi lines, but it should be stated clearly.

      That is correct, we thank you for bringing attention to this and clarified it in the manuscript.

      –Lines 329-330

      “Interestingly, using a spaced training protocol and a Dop1R2 RNAi knockout line another study showed impaired LTM (Placais et al., 2017).”

      The paragraph starting in line 305 could be re-written to improve clarity and flow. Some statements seem disconnected and require specific citations. For example "In aversive memory formation, loss of Dop1R2 could lead to enhanced or impaired memory, depending on the activated signaling pathways and the internal state of the animal...". This is not accurate. Berry et al 2012 report enhanced LTM performance in dop1R2 mutants whereas Plaçais et al 2017 report LTM defects in Dop1R2 knock-downs, but these different findings do not seem to rely on different internal states or signaling pathways. Maybe further elaboration can help the reader understand this speculation.

      We agree and we thank you for this advice. We decided to add additional details and citations to validate our speculation

      Lines 350-353

      “In aversive memory formation, loss of Dop1R2 could lead to enhanced or impaired memory, depending on the activated signaling pathways. The signaling pathway that is activated further depends on the available pool of secondary messengers in the cell (Hermans, 2003) which may be regulated by the internal state of the animal.”

      "...for reward memory formation, loss of Dop1R2 seems to impair memory", this seems redundant at this point, as it has been discussed in detail, however, citations should be provided in any case (Musso 2015, Sun 2020)

      Thank you for noting this. We recognize the redundancy and decided to exclude the line.

      Finally, it would be useful to additionally refer to the anatomical terminology when introducing neuron names; for example MBON MVP2 (MBON-g1pedc>a/b), etc.

      Thank you for this suggestion. We understand the importance of anatomical terminologies for the neurons. Therefore, we included them when we introduce neurons in the paper.

      We thank you for your observations. We recognize their value, so we have made appropriate changes in the discussion to sound less vague and more comprehensive.

    1. Reviewer #1 (Public review):

      Summary:<br /> This manuscript describes the role of PRDM16 in modulating BMP response during choroid plexus (ChP) development. The authors combine PRDM16 knockout mice and cultured PRDM16 KO primary neural stem cells (NSCs) to determine the interactions between BMP signaling and PRDM16 in ChP differentiation.<br /> They show PRDM16 KO affects ChP development in vivo and BMP4 response in vitro. They determine genes regulated by BMP and PRDM16 by ChIP-seq or CUT&TAG for PRDM16, pSMAD1/5/8, and SMAD4. They then measure gene activity in primary NSCs through H3K4me3 and find more genes are corepressed than coactivated by BMP signaling and PRDM16 and focus on the 31 genes found to be co-repressed by BMP and PRDM16. Wnt7b is in this set and the authors then provide evidence that PRDM16 and BMP signaling together repress Wnt activity in the developing choroid plexus.

      Strengths:<br /> Understanding context-dependent response to cell signals during development is an important problem. The authors use a powerful combination of in vivo and in vitro systems to dissect how PRDM16 may modulate BMP response in early brain development.

      Main weakness of the experimental setup:<br /> (1) Because the authors state that primary NSCs cultured in vitro lose endogenous Prdm16 expression, they drive expression by a constitutive promoter. However, this means the expression levels is very different from endogenous levels (as explicitly shown in Supp. Fig. 2B) and the effect of many transcription factors is strongly dose-dependent, likely creating differences between the PRDM16-dependent transcriptional response in the in vitro system and in vivo. Although the authors combine in vitro and in vivo evidence on the role of PRDM16 as a co-factor for MBP signaling and verified that BMP induces quiescence in their NSC model in a PRDM16-dependent manner, this experimental setup remains a weakness and likely affects the results of the various genomics experiments.

      Other experimental weaknesses that make the evidence less convincing:

      (1) It seems that the authors compare Prdm16_KO cells to Prdm16 WT cells overexpressing flag_Prdm16. Aside from the possible expression of endogenous Prdm16, other cell differences may have arisen between these cell lines. A properly controlled experiment would compare Prdm16_KO ctrl (possibly infected with a control vector without Prdm16) to Prdm16_KO_E (i.e. the Prdm16_KO cells with and without Prdm16 overexpression.) The authors acknowledged this problem in their rebuttal, stating that they were unable to overexpress PRDM16 in KO cells.

      (2) The authors show in Fig.2E that Ttr is not upregulated by BMP4 in PRDM16_KO NSCs. This appears inconsistent with the presence of Ttr expression in the PRDM16_KO brain in Fig.1C. The authors explained in their rebuttal that the Ttr protein levels are not detectable in the NSCs with antibodies but the effect is still visible at the level of mRNA. The dramatic difference in protein expression is curious.

    2. Author response:

      The following is the authors’ response to the original reviews

      Reviewer #1 (Public review):

      Summary:

      This manuscript describes the role of PRDM16 in modulating BMP response during choroid plexus (ChP) development. The authors combine PRDM16 knockout mice and cultured PRDM16 KO primary neural stem cells (NSCs) to determine the interactions between BMP signaling and PRDM16 in ChP differentiation.

      They show PRDM16 KO affects ChP development in vivo and BMP4 response in vitro. They determine genes regulated by BMP and PRDM16 by ChIP-seq or CUT&TAG for PRDM16, pSMAD1/5/8, and SMAD4. They then measure gene activity in primary NSCs through H3K4me3 and find more genes are co-repressed than co-activated by BMP signaling and PRDM16. They focus on the 31 genes found to be co-repressed by BMP and PRDM16. Wnt7b is in this set and the authors then provide evidence that PRDM16 and BMP signaling together repress Wnt activity in the developing choroid plexus.

      Strengths:

      Understanding context-dependent responses to cell signals during development is an important problem. The authors use a powerful combination of in vivo and in vitro systems to dissect how PRDM16 may modulate BMP response in early brain development.

      We thank the reviewer for the thoughtful summary and positive feedback. We appreciate the recognition of our integrative in vivo and in vitro approach. We're glad the reviewer found our findings on context-dependent gene regulation and developmental signaling valuable.

      Main weaknesses of the experimental setup:

      (1) Because the authors state that primary NSCs cultured in vitro lose endogenous Prdm16 expression, they drive expression by a constitutive promoter. However, this means the expression levels are very different from endogenous levels (as explicitly shown in Supplementary Figure 2B) and the effect of many transcription factors is strongly dose-dependent, likely creating differences between the PRDM16-dependent transcriptional response in the in vitro system and in vivo.

      We acknowledge that our in vitro experiments may not ideally replicate the in vivo situation, a common limitation of such experiments, our primary aim was to explore the molecular relationship between PRDM16 and BMP signaling in gene regulation. Such molecular investigations are challenging to conduct using in vivo tissues. In vitro NSCs treated with BMP4 has been used a model to investigate NSC proliferation and quiescence, drawing on previous studies (e.g., Helena Mira, 2010; Marlen Knobloch, 2017). Crucially, to ensure the relevance of our in vitro findings to the in vivo context, we confirmed that cultured cells could indeed be induced into quiescence by BMP4, and this induction necessitated the presence of PRDM16. Furthermore, upon identifying target genes co-regulated by PRDM16 and SMADs, we validated PRDM16's regulatory role on a subset of these genes in the developing Choroid Plexus (ChP) (Fig. 7 and Suppl.Fig7-8). Only by combining evidence from both in vitro and in vivo experiments could we confidently conclude that PRDM16 serves as an essential co-factor for BMP signaling in restricting NSC proliferation.

      (2) It seems that the authors compare Prdm16_KO cells to Prdm16 WT cells overexpressing flag_Prdm16. Aside from the possible expression of endogenous Prdm16, other cell differences may have arisen between these cell lines. A properly controlled experiment would compare Prdm16_KO ctrl (possibly infected with a control vector without Prdm16) to Prdm16_KO_E (i.e. the Prdm16_KO cells with and without Prdm16 overexpression.)

      We agree that Prdm16 KO cells carrying the Prdm16-expressing vector would be a good comparison with those with KO_vector. However, despite more than 10 attempts with various optimization conditions, we were unable to establish a viable cell line after infecting Prdm16 KO cells with the Prdm16-expressing vector. The overall survival rate for primary NSCs after viral infection is low, and we observed that KO cells were particularly sensitive to infection treatment when the viral vector was large (the Prdm16 ORF is more than 3kb).

      As an alternative oo assess vector effects, we instead included two other control cell lines, wt and KO cells infected with the 3xNLS_Flag-tag viral vector, and presented the results in supplementary Fig 2.  When we compared the responses of the four lines — wt, KO, wt infected with the Flag vector, KO infected with the Flag vector — to the addition and removal of BMP4, we confirmed that the viral infection itself has no significant impacts on the responses of these cells to these treatments regarding changes in cell proliferation and Ttr induction.

      Given that wt cells and the KO cells, with or without viral backbone infection behave quite similarly in terms of cell proliferation, we speculate that even if we were successful in obtaining a cell line with Prdm16-expressing vector in the KO cells, it may not exhibit substantial differences compared to wt cells infected with Prdm16-expressing vector.

      Other experimental weaknesses that make the evidence less convincing:

      (1) The authors show in Figure 2E that Ttr is not upregulated by BMP4 in PRDM16_KO NSCs. Does this appear inconsistent with the presence of Ttr expression in the PRDM16_KO brain in Figure1C?

      The reviwer’s point is that there was no significant increase in Ttr expression in Prdm16_KO cells after BMP4 treatment (Fig. 2E), but there remained residule Ttr mRNA signals in the Prdm16 mutant ChP (Fig. 1C). We think the difference lies in the measuable level of Ttr expression between that induced by BMP4 in NSC culture and that in the ChP. This is based on our immunostaining expreriment in which we tried to detect Ttr using a Ttr antibody. This antibody could not detect the Ttr protein in BMP4-treated Prdm16_expressing NSCs but clearly showed Ttr signal in the wt ChP. This means that although Ttr expression can be significantly increased by BMP4 in vitro to a level measurable by RT-qPCR, its absolute quantity even in the Prdm16_expressing condition is much lower compared to that in vivo. Our results in Fig 1C and Fig 2E, as well as Fig 7B, all consistently showed that Prdm16 depletion significantly reduced Ttr expression in in vitro and in vivo.

      (2) Figure 3: The authors use H3K4me3 to measure gene activity. This is however, very indirect, with bulk RNA-seq providing the most direct readout and polymerase binding (ChIP-seq) another more direct readout. Transcription can be regulated without expected changes in histone methylation, see e.g. papers from Josh Brickman. They verify their H3K4me3 predictions with qPCR for a select number of genes, all related to the kinetochore, but it is not clear why these genes were picked, and one could worry whether these are representative.

      H3K4me3 has widely been used as an indicator of active transcription and is a mark for cell identity genes. And it has been demonstrated that H3K4me3 has a direct function in regulating transciption at the step of RNApolII pausing release. As stated in the text, there are advantages and disadvantages of using H3K4me3 compared to using RNA-seq. RNA-seq profiles all gene products, which are affected by transcription and RNA stability and turnover. In contrast, H3K4me3 levels at gene promoter reflects transcriptional activity. In our case, we aimed to identify differential gene expression between proliferation and quiescence states. The transition between these two states is fast and dynamic. RNA-seq may not be able to identify functionally relevant genes but more likely produces false positive and negative results. Therefore, we chose H3K4me3 profiling.

      We agree that transcription may change without histone methylation changes. This may cause an under-estimation of the number of changed genes between the conditions. 

      We validated 7 out of 31 genes (Wnt7b, Id3, Mybl2, Spc24, Spc25, Ndc80 and Nuf2). We chose these genes based on two critira: 1) their function is implicated in cell proliferation and cell-cycle regulation based on gene ontology analysis; 2) their gene products are detectable in the developing ChP based on the scRNA-seq data. Three of these genes (Wnt7b, Id3, Mybl2) are not related to the kinetochore. We now clarify this description in the revised text.

      (3) Line 256: The overlap of 31 genes between 184 BMP-repressed genes and 240 PRDM16-repressed genes seems quite small.

      This result indicates that in addition to co-repressing cell-cycle genes, BMP and PRDM16 have independent fucntions. For example, it was reported that BMP regulates neuronal and astrocyte differentiation (Katada, S. 2021), while our previous work demonstrated that Prdm16 controls temporal identity of NSCs (He, L. 2021).

      (4) The Wnt7b H3K4me3 track in Fig. 3G is not discussed in the text but it shows H3K4me3 high in _KO and low in _E regardless of BMP4. This seems to contradict the heatmap of H3K4me3 in Figure 3E which shows H3K4me3 high in _E no BMP4 and low in _E BMP4 while omitting _KO no BMP4. Meanwhile CDKN1A, the other gene shown in 3G, is missing from 3E.

      The track in Fig 3G shows the absolute signal of H3K4me3 after mapping the sequencing reads to the genome and normaliz them to library size. Compare the signal in Prdm16_E with BMP4 and that in Prdm16_E without BMP4, the one with BMP4 has a lower peak. The same trend can be seen for the pair of Prdm16_KO cells with or without BMP4.  The heatmap in Fig. 3E shows the relative level of H3K4me3 in three conditions. The Prdm16_E cells with BMP4 has the lowest level, while the other two conditions (Prdm16_KO with BMP4 and Prdm16_E without BMP4) display higher levels. These two graphs show a consistent trend of H3K4me3 changes at the Wnt7b promoter across these conditions. Figure 3E only includes genes that are co-repressed by PRDM16 and BMP. CDKN1A’s H3K4me3 signals are consistent between the conditions, and thus it is not a PRDM16- or BMP-regulated gene. We use it as a negative control. 

      (5) The authors use PRDM16 CUT&TAG on dissected dorsal midline tissues to determine if their 31 identified PRDM16-BMP4 co-repressed genes are regulated directly by PRDM16 in vivo. By manual inspection, they find that "most" of these show a PRDM16 peak. How many is most? If using the same parameters for determining peaks, how many genes in an appropriately chosen negative control set of genes would show peaks? Can the authors rigorously establish the statistical significance of this observation? And why wasn't the same experiment performed on the NSCs in which the other experiments are done so one can directly compare the results? Instead, as far as I could tell, there is only ChIP-qPCR for two genes in NSCs in Supplementary Figure 4D.

      In our text, we indicated the genes containing PRDM16 binding peaks in the figures and described them as “Text in black in Fig. 6A and Supplementary Fig. 5A”. We will add the precise number “25 of these genes” in the main text to clarify it. We used BMP-only repressed 184-31 =153 genes (excluding PRDM16-BMP4 co-repressed) as a negative control set of genes. By computationally determine the nearest TSS to a PRDM16 peak, we identified 24/31 co-repressed genes and 84/153 BMP-only-repressed genes, containing PRDM16 peaks in the E12.5 ChP data. Fisher’s Exact Test comparing the proportions yields the P-value = 0.015.

      We are confused with the second part of the comment “And why wasn't the same experiment performed on the NSCs in which the other experiments are done so one can directly compare the results? Instead, as far as I could tell, there is only ChIP-qPCR for two genes in NSCs in Supplementary Figure 4D.” If the reviewer meant why we didn’t sequence the material from sequential-ChIP or validate more taget genes, the reason is the limitation of the material. Sequential ChIP requires a large quantity of the antibodies, and yields little material barely sufficient for a few qPCR after the second round of IP. This yielded amount was far below the minimum required for library construction. The PRDM16 antibody was a gift, and the quantity we have was very limited. We made a lot of efforts to optimize all available commercial antibodies in ChIP and Cut&Tag, but none of them worked in these assays.

      (6) In comparing RNA in situ between WT and PRDM16 KO in Figure 7, the authors state they use the Wnt2b signal to identify the border between CH and neocortex. However, the Wnt2b signal is shown in grey and it is impossible for this reviewer to see clear Wnt2b expression or where the boundaries are in Figure 7A. The authors also do not show where they placed the boundaries in their analysis. Furthermore, Figure 7B only shows insets for one of the regions being compared making it difficult to see differences from the other region. Finally, the authors do not show an example of their spot segmentation to judge whether their spot counting is reliable. Overall, this makes it difficult to judge whether the quantification in Figure 7C can be trusted.

      In the revised manuscript we have included an individal channel of Wnt2b and mark the boundaries. We also provide full-view images and examples of spot segmentation in the new supplementary figure 8. 

      (7) The correlation between mKi67 and Axin2 in Figure 7 is interesting but does not convincingly show that Wnt downstream of PRDM16 and BMP is responsible for the increased proliferation in PRDM16 mutants.

      We agree that this result (the correlation between mKi67 and Axin2) alone only suggests that Wnt signaling is related to the proliferation defect in the Prdm16 mutant, and does not necessarily mean that Wnt is downstream of PRDM16 and BMP. Our concolusion is backed up by two additional lines of evidences:  the Cut&Tag data in which PRDM16 binds to regulatory regions of Wnt7b and Wnt3a; BMP and PRDM16 co-repress Wnt7b in vitro.

      An ideal result is that down-regulating Wnt signaling in Prdm16 mutant can rescue Prdm16 mutant phenotype. Such an experiment is technically challenging. Wnt plays diverse and essential roles in NSC regulation, and one would need to use a celltype-and stage-specific tool to down-regulate Wnt in the background of Prdm16 mutation. Moreover, Wnt genes are not the only targets regulated by PRDM16 in these cells, and downregulating Wnt may not be sufficient to rescue the phenotype. 

      Weaknesses of the presentation:

      Overall, the manuscript is not easy to read. This can cause confusion.

      We have revised the text to improve clarity.

      Reviewer #1 (Recommendations for the authors):

      (1) Overall, the manuscript is not easy to read. Here are some causes of confusion for which the presentation could be cleaned up:

      We are grateful for the reviewer’s suggestion. In the revised manuscript, we have made efforts to improve the clarity of the text.

      (a) Part of the first section is confusing in that some statements seem contradictory, in particular:

      "there is no overall patterning defect of ChP and CH in the Prdm16 mutant" (line 125)

      "Prdm16 depletion disrupted the transition from neural progenitors into ChP epithelia" (line 144)

      It would be helpful if the authors could reformulate this more clearly.

      We modified the text to clarify that while the BMP-patterned domain is not affected, the transition of NSCs into ChP epithelial cells is compromised in the Prdm16 mutant.

      (b) Flag_PRDM16, PRDM16_expressing, PRDM16_E, PRDM16 OE all seem to refer to the same PRDM16 overexpressing cells, which is very confusing. The authors should use consistent naming. Moreover, it would be good if they renamed these all to PRDM16_OE to indicate expression is not endogenous but driven by a constitutive promoter.

      We appreciate the comment and agree that the use of multiple terms to refer to the same PRDM16-overexpressing condition was confusing. Our original intention in using Prdm16_E was to distinguish cells expressing PRDM16 from the two other groups: wild-type cells and Prdm16_KO cells, which both lack PRDM16 protein expression. However, we acknowledge that Prdm16_E could be misinterpreted as indicating expression from the endogenous Prdm16 promoter. To avoid this confusion and ensure consistency, we have now standardized the terminology and refer to this condition as Prdm16_OE, indicating Flag-tagged PRDM16 expression driven by a constitutive promoter.

      (c) Line 179 states "generated a cell line by infecting Prdm16_KO cells with the same viral vector, expressing 3xNSL_Flag". Do the authors mean 3xNLS_Flag_Prdm16, so these are the Prdm16_KO_E cells by the notation suggested above? Or is this a control vector with Flag only? The following paragraph refers to Supplementary Figure 2C-F where the same construct is called KO_CDH, suggesting this was an empty CDH vector, without Flag, or Prdm16. This is confusing.

      We appreciate the reviewer’s careful reading and helpful comment. We acknowledge the confusion caused by the inconsistent terminology. To clarify: in line 179, we intended to describe an attempt to generate a Prdm16_KO cell line expressing 3xNLS_Flag_Prdm16, not a control vector with Flag only. However, despite repeated attempts, we were unable to establish this line due to low viral efficiency and the vulnerability of Prdm16_KO cells to infection with the large construct. Therefore, these cells were not included in the subsequent analyses.

      The term KO_CDH refers to Prdm16_KO cells infected with the empty CDH control vector, which lacks both Flag and Prdm16. This is the line used in the experiments shown in Supplementary Fig. 2C–F. We have revised the text throughout the manuscript to ensure consistent use of terminology and to avoid this confusion.

      (2) The introductory statements on lines 53-54 could use more references.

      Thanks for the suggestion. We have now included more references.

      (3) It would be helpful if all structures described in the introduction and first section were annotated in Figure 1, or otherwise, if a cartoon were included. For example, the cortical hem, and fourth ventricle.

      Thanks for the suggestion. We have now indicated the structures, ChP, CH and the fourth ventricle, in the images in Figure 1 and Supplementary Figure 1.

      (4) In line 115, "as previously shown.." - to keep the paper self-contained a figure illustrating the genetics of the KO allele would be helpful.

      Thanks for the suggestion. We have now included an illustration of the Prdm16 cGT allele in Figure 1B.

      (5) In Figure 1D as costain for a ChP marker would be helpful because it is hard to identify morphologically in the Prdm16 KO.

      Appoligize for the unclarity. The KO allele contains a b-geo reporter driven by Prdm16 endogenous promoter. The samples were co-stained for EdU, b-Gal and DAPI. To distingquish the ChP domain from the CH, we used the presence of b b-Gal as a marker. We indicated this in the figure legend, but now have also clarified this in the revised text.

      (6) The details in Figure 1E are hard to see, a zoomed-in inset would help.

      A zoomed-in inset is now included in the figure.

      (7) Supplementary Figure 2A does not convincingly show that PRDM16 protein is undetectable since endogenous expression may be very low compared to the overexpression PRDM16_E cells so if the contrast is scaled together it could appear black like the KO.

      We appreciate the reviewer’s point and have carefully considered this concern. We concluded that PRDM16 protein is effectively undetectable in cultured wild-type NSCs based on direct comparison with brain tissue. Both cultured NSCs and brain sections were processed under similar immunostaining and imaging conditions. While PRDM16 showed robust and specific nuclear localization in embryonic brain sections (Fig. 1B and Supplementary Fig. 1A), only a small subset of cultured NSCs exhibited PRDM16 signal, primarily in the cytoplasm (middle panel of Fig. 2A). This stark contrast supports our conclusion that endogenous PRDM16 protein is either absent or significantly downregulated in vitro. Because of this limitation, we turned to over-expressing Prdm16 in NSC culture using a constitutive promoter. 

      (9) Line 182 "Following the washout step" - no such step had been described, maybe replace by "After washout of BMP".

      Yes, we have revised the text.

      (8) Line 214: "indicating a modest level" - what defines modest? Compared to what? Why is a few thousand moderate rather than low? Does it go to zero with inhibitors for pathways?

      Here a modest level means a lower level than to that after adding BMP4. To clarify this, we revised the description to “indicating endogenous levels of …”

      (9) The way qPCR data are displayed makes it difficult to appreciate the magnitude of changes, e.g. in Supplementary Figure 2B where a gap is introduced on the scale. Displaying log fold change / relative CT values would be more informative.

      We used a segmented Y-axis in Supplementary Figure 2B because the Prdm16 overexpression samples exhibited much higher experssion levels compared to other conditions. In response to this suggestion, we explored alternative ways to present the result, including ploting log-transformed values and log fold changes. However, these methods did not enhance the clarity of the differences – in fact, log scaling made the magnitude of change appear less apparent. To address this, we now present the overexpression samples in a separate graph, thereby eliminating the need for a broken Y-axis and improving the overall readability of the data.

      (10) Writing out "3 days" instead of 3D in Figure 2A would improve clarity. It would be good if the used time interval is repeated in other figures throughout the paper so it is still clear the comparison is between 0 and 3 days.

      We have changed “3D” to “3 days”. All BMP4 treatments in this study were 3 days.

      (11) Line 290: "we found that over 50% of SMAD4 and pSMAD1/5/8 binding peaks were consistent in Prdm16_E and Prdm16_KO cells, indicating that deletion of Prdm16 does not affect the general genomic binding ability of these proteins" - this only makes sense to state with appropriate controls because 50% seems like a big difference, what is the sample to sample variability for the same condition? Moreover, the next paragraph seems to contradict this, ending with "This result suggests that SMAD binding to these sites depends on PRDM16". The authors should probably clarify the writing.

      We appreciate the reviwer’s comment and agree that clarification was needed. Our point was that SMAD4 and pSMAD1/5/8 retain the ability to bind DNA broadly in the Prdm16 KO cells, with more than half of the original binding sites still occupied. This suggests that deletion of Prdm16 does not globally impair SMAD genomic binding. Howerever, our primary interest lies in the subset of sites that show differential by SMAD binding between wt and Prdm16 KO conditions, as thse are likely to be PRDM16-dependent. 

      In the following paragraph, we focused specifically on describing SMAD and PRDM16 co-bound sites. At these loci, SMAD4 and pSMAD1/5/8 showed reduced enrichment in the absence of PRDM16, suggesting PRDM16 facilitates SMAD binding at these particular regions. We have revised the text in the manuscript to more clearly distinguish between global SMAD binding and PRDM16-dependent sites.

      (12) Much more convincing than ChIP-qPCR for c-FOS for two loci in Figures 5F-G would be a global analysis of c-FOS ChIP-seq data.

      We agree that a global c-FOS ChIP-seq analysis would provide a more comprehensive view of c-FOS binding patterns. However, the primary focus of this study is the interaction between BMP signaling and PRDM16. The enrichment of AP-1 motifs at ectopic SMAD4 binding sites was an unexpected finding, which we validated using c-FOS ChIP-qPCR at selected loci. While a genome-wide analysis would be valuable, it falls beyond the current scope. We agree that future studies exploring the interplay among SMAD4/pSMAD, PRDM16, and AP-1 will be important and informative.

      (13) Figure 6A is hard to read. A heatmap would make it much easier to see differences in expression. Furthermore, if the point is to see the difference between ChP and CH, why not combine the different subclusters belonging to those structures? Finally, why are there 28 genes total when it is said the authors are evaluating a list of 31 genes and also displaying 6 genes that are not expressed (so the difference isn't that unexpressed genes are omitted)?

      For the scRNA-seq data, we chose violin plots because they display both gene expression levels and the number of cells that express each gene. However, we agree that the labels in Figure 6A were too small and difficult to read. We have revised the figure by increasing the font size and moved genes with low expression to  Supplementary Figure 5A. Figure 6A includes 17 more highly expressed genes together with three markers, and  Supplementary Figure 5A contains 13 lowly expressed genes. One gene Mrtfb is missing in the scRNA-seq data and thus not included. We have revised the description of the result in the main text and figure legends.

      Reviewer #2 (Public review):

      Summary:

      This article investigates the role of PRDM16 in regulating cell proliferation and differentiation during choroid plexus (ChP) development in mice. The study finds that PRDM16 acts as a corepressor in the BMP signaling pathway, which is crucial for ChP formation.

      The key findings of the study are:

      (1) PRDM16 promotes cell cycle exit in neural epithelial cells at the ChP primordium.

      (2) PRDM16 and BMP signaling work together to induce neural stem cell (NSC) quiescence in vitro.

      (3) BMP signaling and PRDM16 cooperatively repress proliferation genes.

      (4) PRDM16 assists genomic binding of SMAD4 and pSMAD1/5/8.

      (5) Genes co-regulated by SMADs and PRDM16 in NSCs are repressed in the developing ChP.

      (6) PRDM16 represses Wnt7b and Wnt activity in the developing ChP.

      (7) Levels of Wnt activity correlate with cell proliferation in the developing ChP and CH.

      In summary, this study identifies PRDM16 as a key regulator of the balance between BMP and Wnt signaling during ChP development. PRDM16 facilitates the repressive function of BMP signaling on cell proliferation while simultaneously suppressing Wnt signaling. This interplay between signaling pathways and PRDM16 is essential for the proper specification and differentiation of ChP epithelial cells. This study provides new insights into the molecular mechanisms governing ChP development and may have implications for understanding the pathogenesis of ChP tumors and other related diseases.

      Strengths:

      (1) Combining in vitro and in vivo experiments to provide a comprehensive understanding of PRDM16 function in ChP development.

      (2) Uses of a variety of techniques, including immunostaining, RNA in situ hybridization, RT-qPCR, CUT&Tag, ChIP-seq, and SCRINSHOT.

      (3) Identifying a novel role for PRDM16 in regulating the balance between BMP and Wnt signaling.

      (4) Providing a mechanistic explanation for how PRDM16 enhances the repressive function of BMP signaling. The identification of SMAD palindromic motifs as preferred binding sites for the SMAD/PRDM16 complex suggests a specific mechanism for PRDM16-mediated gene repression.

      (5) Highlighting the potential clinical relevance of PRDM16 in the context of ChP tumors and other related diseases. By demonstrating the crucial role of PRDM16 in controlling ChP development, the study suggests that dysregulation of PRDM16 may contribute to the pathogenesis of these conditions.

      We thank the reviewer for the thorough and thoughtful summary of our study. We’re glad the key findings and significance of our work were clearly conveyed, particularly regarding the role of PRDM16 in coordinating BMP and Wnt signaling during ChP development. We also appreciate the recognition of our integrated approach and the potential implications for understanding ChP-related diseases.

      Weaknesses:

      (1) Limited investigation of the mechanism controlling PRDM16 protein stability and nuclear localization in vivo. The study observed that PRDM16 protein became nearly undetectable in NSCs cultured in vitro, despite high mRNA levels. While the authors speculate that post-translational modifications might regulate PRDM16 in NSCs similar to brown adipocytes, further investigation is needed to confirm this and understand the precise mechanism controlling PRDM16 protein levels in vivo.

      While mechansims controlling PRDM16 protein stability and nuclear localization in the developing brain are interesting, the scope of this paper is revealing the function of PRDM16 in the choroid plexus and its interaction with BMP signaling. We will be happy to pursuit this direction in our next study.

      (2) Reliance on overexpression of PRDM16 in NSC cultures. To study PRDM16 function in vitro, the authors used a lentiviral construct to constitutively express PRDM16 in NSCs. While this approach allowed them to overcome the issue of low PRDM16 protein levels in vitro, it is important to consider that overexpressing PRDM16 may not fully recapitulate its physiological role in regulating gene expression and cell behavior.

      As stated above, we acknowledge that findings from cultured NSCs may not directly apply to ChP cells in vivo. We are cautious with our statements. The cell culture work was aimed to identify potential mechanisms by which PRDM16 and SMADs interact to regulate gene expression and target genes co-regulated by these factors. We expect that not all targets from cell culture are regulated by PRDM16 and SMADs in the ChP, so we validated expression changes of several target genes in the developing ChP and now included the new data in Fig. 7 and Supplementary Fig. 7. Out of the 31 genes identified from cultured cells, four cell cycle regulators including Wnt7b, Id3, Spc24/25/nuf2 and Mybl2, showed de-repression in Prdm16 mutant ChP. These genes can be relevant downstream genes in the ChP, and other target genes may be cortical NSC-specific or less dependent on Prdm16 in vivo.

      (3) Lack of direct evidence for AP1 as the co-factor responsible for SMAD relocation in the absence of PRDM16. While the study identified the AP1 motif as enriched in SMAD binding sites in Prdm16 knockout cells, they only provided ChIP-qPCR validation for c-FOS binding at two specific loci (Wnt7b and Id3). Further investigation is needed to confirm the direct interaction between AP1 and SMAD proteins in the absence of PRDM16 and to rule out other potential co-factors.

      We agree that the finding of the AP1 motif enriched at the PRDM16 and SMAD co-binding regions in Prdm16 KO cells can only indirectly suggest AP1 as a co-factor for SMAD relocation. That’s why we used ChIP-qPCR to examine the presence of C-fos at these sites. Although we only validated two targets, the result confirms that C-fos binds to the sites only in the Prdm16 KO cells but not Prdm16_expressing cells, suggesting AP1 is a co-factor.  Our results cannot rule out the presence of other co-factors.

      Reviewer #2 (Recommendations for the authors):

      Minor typo: [7, page 3] "sicne" should be "since".

      We appreciate the reviewer’s careful reading. We have now corrected the typo and revised some part of the text to improve clarity.

      Reviewer #3 (Public review):

      Summary:

      Bone morphogenetic protein (BMP) signaling instructs multiple processes during development including cell proliferation and differentiation. The authors set out to understand the role of PRDM16 in these various functions of BMP signaling. They find that PRDM16 and BMP co-operate to repress stem cell proliferation by regulating the genomic distribution of BMP pathway transcription factors. They additionally show that PRDM16 impacts choroid plexus epithelial cell specification. The authors provide evidence for a regulatory circuit (constituting of BMP, PRDM16, and Wnt) that influences stem cell proliferation/differentiation.

      Strengths:

      I find the topics studied by the authors in this study of general interest to the field, the experiments well-controlled and the analysis in the paper sound.

      We thank the reviewer for their positive feedback and thoughtful summary. We appreciate the recognition of our efforts to define the role of PRDM16 in BMP signaling and stem cell regulation, as well as the soundness of our experimental design and analysis.

      Weaknesses:

      I have no major scientific concerns. I have some minor recommendations that will help improve the paper (regarding the discussion).

      We have revised the discussion according to the suggestions.

      Reviewer #3 (Recommendations for the authors):

      Specific minor recommendations:

      Page 18. Line 526: In a footnote, the authors point out a recent report which in parallel was investigating the link between PRDM16 and SMAD4. There is substantial non-overlap between these two papers. To aid the reader, I would encourage the authors to discuss that paper in the discussion section of the manuscript itself, highlighting any similarities/differences in the topic/results.

      Thanks for the suggestion. We now included the comparison in the discussion. One conclusion between our study and this publication is consistent, that PRDM16 functions as a co-repressor of SMAD4. However, the mechanims are different. Our data suggests a model in which PRDM16 facilitates SMAD4/pSMAD binding to repress proliferation genes under high BMP conditions. However, the other report suggests that SMAD4 steadily binds to Prdm16 promoter and switches regulatory functions depending on the co-factors. Together with PRDM16, SMAD4 represses gene expression, while with SMAD3 in response to high levels of TGF-b1, it activates gene expression. These differences could be due to different signaling (BMP versus TGF-b), contexts (NSCs versus Pancreatic cancers) etc.

      Page 3. Line 65: typo 'since'

      We appreciate the reviewer’s careful reading. We have now corrected the typo and revised the text to improve clarity.

    1. Perform oral prophylaxis procedure using nonfluoridated and oil less prophylaxis pastes.• Clean and wash the teeth with water. Isolate to prevent any contamination from salivaor gingival crevicular fluid• Apply acid etchant in the form of gel for 15 to 30 seconds. Deciduous teeth requirelonger time for etching than permanent teeth because of the presence of aprismaticenamel in deciduous teeth• Wash the etchant continuously for 10 to 15 seconds• Note the appearance of a properly etched surface. It should give a frosty whiteappearance on drying• If any sort of contamination occurs, repeat the procedure• Now apply bonding agent and low viscosity monomers over the etched enamel surface.Generally, bonding agents contain Bis-GMA or UDMA with TEGDMA added to lower theviscosity of the bonding agent. The bonding agents due to their low viscosity, rapidly wetand penetrate the clean, dried, conditioned enamel into the microspaces forming resintags. The resin tags which form between enamel prisms are known as Macrotags.

      ① Perform oral prophylaxis procedure using nonfluoridated and oil less prophylaxis pastes. ① Florürsüz ve yağsız profilaksi patları kullanarak ağız hijyen uygulaması yapın.

      ② Clean and wash the teeth with water. Isolate to prevent any contamination from saliva or gingival crevicular fluid ② Dişleri suyla temizleyip yıkayın. Tükürük veya diş eti oluğu sıvısından gelebilecek bulaşmaları önlemek için izolasyon sağlayın.

      ③ Apply acid etchant in the form of gel for 15 to 30 seconds. Deciduous teeth require longer time for etching than permanent teeth because of the presence of aprismatic enamel in deciduous teeth ③ Asit ajanı jel formunda 15 ila 30 saniye süreyle uygulayın. Süt dişlerinde aprismatik mine bulunduğu için, daimi dişlere göre daha uzun süre asitlenmeleri gerekir.

      ④ Wash the etchant continuously for 10 to 15 seconds ④ Asit ajanı sürekli şekilde 10 ila 15 saniye boyunca yıkayın.

      ⑤ Note the appearance of a properly etched surface. It should give a frosty white appearance on drying ⑤ Uygun şekilde asitlenmiş yüzeyin görünümüne dikkat edin. Kuruduğunda buzlu beyaz bir görünüm vermelidir.

      ⑥ If any sort of contamination occurs, repeat the procedure ⑥ Herhangi bir kontaminasyon meydana gelirse işlemi tekrarlayın.

      ⑦ Now apply bonding agent and low viscosity monomers over the etched enamel surface. ⑦ Şimdi, asitlenmiş mine yüzeyine bağlayıcı ajan ve düşük viskoziteli monomerleri uygulayın.

      ⑧ Generally, bonding agents contain Bis-GMA or UDMA with TEGDMA added to lower the viscosity of the bonding agent. ⑧ Genellikle bağlayıcı ajanlar, viskoziteyi azaltmak için TEGDMA ile birlikte Bis-GMA veya UDMA içerir.

      ⑨ The bonding agents due to their low viscosity, rapidly wet and penetrate the clean, dried, conditioned enamel into the microspaces forming resin tags. ⑨ Bağlayıcı ajanlar düşük viskoziteleri nedeniyle temizlenmiş, kurutulmuş ve hazırlanmış mineyi hızla ıslatır ve mikro boşluklara nüfuz ederek rezin çıkıntılar (resin tag) oluştururlar.

      ⑩ The resin tags which form between enamel prisms are known as Macrotags. ⑩ Mine prizmaları arasında oluşan rezin çıkıntılara makrotag (macrotag) adı verilir.

    Annotators

    1. Author response:

      Our response aims to address the following:

      The lack of pleiotropy is an unconfirmable assumption of MR, and the addition of those models is therefore quite important, as this is a primary weakness of the MR approach. Given that concern, I read the sensitivity analyses using pleiotropy-robust models as the main result, and in that case, they can't test their hypotheses as these models do not show a BMI instrumental variable association. The other weakness, which might be remedied, is that the power of the tests here is not described. When a hypothesis is tested with an under-powered model, the apparent lack of association could be due to inadequate sample size rather than a true null. Typically, when a statistically significant association is reported, power concerns are discounted as long as the study is not so small as to create spurious findings. That is the case with their primary BMI instrumental variable model - they find an association so we can presume it was adequately powered. But the primary models they share are not the pleiotropy-robust methods MR-Egger, weighted median, and weighted mode. The tests for these models are null, and that could mean a couple of things: (1) the original primary significant association between the BMI genetic instrument was due to pleiotropy, and they therefore don't have a robust model to explore the effects of the tobacco genetic instrument. (2) The power for the sensitivity analysis models (the pleiotropy-robust methods) is inadequate, and the authors share no discussion about the relative power of the different MR approaches. If they do have adequate power, then again, there is no need to explore the tobacco instrument.

      We would like to highlight that post-hoc power calculations are often considered redundant since the statistical power estimated for an observed association is directly related to its p-value[1]. In other words, the uncertainty of the association is already reflected in its 95% confidence interval. However, we understand power calculations may still be of interest to the reader, so we will incorporate them in the revised manuscript.

      The reason we use inverse variance weighted (IVW) Mendelian randomization (MR) to obtain our main results rather than the pleiotropy-robust methods mentioned by the reviewer/editors (i.e., MR-Egger, weighted median and weighted mode) is that the former has greater statistical power than the latter[2]. Hence, instead of focussing on the statistical significance of the pleiotropy-robust analyses, we consider it is of more value to compare the consistency of the effect sizes and direction of the effect estimates across methods. Any evidence of such consistency increases our confidence in our main findings, since each method relies on different assumptions. As we cannot be sure about the presence and nature of horizontal pleiotropy, it is useful to compare results across methods even though they are not equally powered. It is true that our results for the genetically predicted effects of body mass index (BMI) on the risk of head and neck cancer (HNC) differ across methods. This is precisely what led us to question the validity of our main finding (suggesting a positive effect of BMI on HNC risk). We will clarify this in the discussion section of the revised manuscript as advised.

      We understand that the reviewer/editors are concerned that we do not have a robust model to explore the role of tobacco consumption in the link between BMI and HNC. However, we have a different perspective on the matter. If indeed, the main IVW finding for BMI and HNC is due to pleiotropy (since some of the pleiotropy-robust methods suggest conflicting results), then the IVW multivariable MR method is a way to explore the potential source of this bias[3]. We were particularly interested in exploring the role of smoking in the observed association because smoking and adiposity are known to influence each other [4-9] and share a genetic basis[10, 11].

      References:

      (1) Heinsberg LW, Weeks DE: Post hoc power is not informative. Genet Epidemiol 2022, 46(7):390-394.

      (2) Burgess S, Butterworth A, Thompson SG: Mendelian randomization analysis with multiple genetic variants using summarized data. Genet Epidemiol 2013, 37(7):658-665.

      (3) Burgess S, Davey Smith G, Davies NM, Dudbridge F, Gill D, Glymour MM, Hartwig FP, Kutalik Z, Holmes MV, Minelli C et al: Guidelines for performing Mendelian randomization investigations: update for summer 2023. Wellcome Open Res 2019, 4:186.

      (4) Morris RW, Taylor AE, Fluharty ME, Bjorngaard JH, Asvold BO, Elvestad Gabrielsen M, Campbell A, Marioni R, Kumari M, Korhonen T et al: Heavier smoking may lead to a relative increase in waist circumference: evidence for a causal relationship from a Mendelian randomisation meta-analysis. The CARTA consortium. BMJ Open 2015, 5(8):e008808.

      (5) Taylor AE, Morris RW, Fluharty ME, Bjorngaard JH, Asvold BO, Gabrielsen ME, Campbell A, Marioni R, Kumari M, Hallfors J et al: Stratification by smoking status reveals an association of CHRNA5-A3-B4 genotype with body mass index in never smokers. PLoS Genet 2014, 10(12):e1004799.

      (6) Taylor AE, Richmond RC, Palviainen T, Loukola A, Wootton RE, Kaprio J, Relton CL, Davey Smith G, Munafo MR: The effect of body mass index on smoking behaviour and nicotine metabolism: a Mendelian randomization study. Hum Mol Genet 2019, 28(8):1322-1330.

      (7) Asvold BO, Bjorngaard JH, Carslake D, Gabrielsen ME, Skorpen F, Smith GD, Romundstad PR: Causal associations of tobacco smoking with cardiovascular risk factors: a Mendelian randomization analysis of the HUNT Study in Norway. Int J Epidemiol 2014, 43(5):1458-1470.

      (8) Carreras-Torres R, Johansson M, Haycock PC, Relton CL, Davey Smith G, Brennan P, Martin RM: Role of obesity in smoking behaviour: Mendelian randomisation study in UK Biobank. BMJ 2018, 361:k1767.

      (9) Freathy RM, Kazeem GR, Morris RW, Johnson PC, Paternoster L, Ebrahim S, Hattersley AT, Hill A, Hingorani AD, Holst C et al: Genetic variation at CHRNA5-CHRNA3-CHRNB4 interacts with smoking status to influence body mass index. Int J Epidemiol 2011, 40(6):1617-1628.

      (10) Thorgeirsson TE, Gudbjartsson DF, Sulem P, Besenbacher S, Styrkarsdottir U, Thorleifsson G, Walters GB, Consortium TAG, Oxford GSKC, consortium E et al: A common biological basis of obesity and nicotine addiction. Transl Psychiatry 2013, 3(10):e308.

      (11) Wills AG, Hopfer C: Phenotypic and genetic relationship between BMI and cigarette smoking in a sample of UK adults. Addict Behav 2019, 89:98-103.

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      In this manuscript, Azlan et al. identified a novel maternal factor called Sakura that is required for proper oogenesis in Drosophila. They showed that Sakura is specifically expressed in the female germline cells. Consistent with its expression pattern, Sakura functioned autonomously in germline cells to ensure proper oogenesis. In Sakura KO flies, germline cells were lost during early oogenesis and often became tumorous before degenerating by apoptosis. In these tumorous germ cells, piRNA production was defective and many transposons were derepressed. Interestingly, Smad signaling, a critical signaling pathway for GSC maintenance, was abolished in sakura KO germline stem cells, resulting in ectopic expression of Bam in whole germline cells in the tumorous germline. A recent study reported that Bam acts together with the deubiquitinase Otu to stabilize Cyc A. In the absence of sakura, Cyc A was upregulated in tumorous germline cells in the germarium. Furthermore, the authors showed that Sakura co-immunoprecipitated Otu in ovarian extracts. A series of in vitro assays suggested that the Otu (1-339 aa) and Sakura (1-49 aa) are sufficient for their direct interaction. Finally, the authors demonstrated that the loss of otu phenocopies the loss of sakura, supporting their idea that Sakura plays a role in germ cell maintenance and differentiation through interaction with Otu during oogenesis.

      Strengths:

      To my knowledge, this is the first characterization of the role of CG14545 genes. Each experiment seems to be well-designed and adequately controlled.

      Weaknesses:

      However, the conclusions from each experiment are somewhat separate, and the functional relationships between Sakura's functions are not well established. In other words, although the loss of Sakura in the germline causes pleiotropic effects, the cause-and-effect relationships between the individual defects remain unclear.

      Reviewer #2 (Public review):

      In this study, the authors identified CG14545 (and named it Sakura), as a key gene essential for Drosophila oogenesis. Genetic analyses revealed that Sakura is vital for both oogenesis progression and ultimate female fertility, playing a central role in the renewal and differentiation of germ stem cells (GSC).

      The absence of Sakura disrupts the Dpp/BMP signaling pathway, resulting in abnormal bam gene expression, which impairs GSC differentiation and leads to GSC loss. Additionally, Sakura is critical for maintaining normal levels of piRNAs. Also, the authors convincingly demonstrate that Sakura physically interacts with Otu, identifying the specific domains necessary for this interaction, suggesting a cooperative role in germline regulation. Importantly, the loss of otu produces similar defects to those observed in Sakura mutants, highlighting their functional collaboration.

      The authors provide compelling evidence that Sakura is a critical regulator of germ cell fate, maintenance, and differentiation in Drosophila. This regulatory role is mediated through the modulation of pMad and Bam expression. However, the phenotypes observed in the germarium appear to stem from reduced pMad levels, which subsequently trigger premature and ectopic expression of Bam. This aberrant Bam expression could lead to increased CycA levels and altered transcriptional regulation, impacting piRNA expression. Given Sakura's role in pMad expression, it would be insightful to investigate whether overexpression of Mad or pMad could mitigate these phenotypic defects (UAS-Mad line is available at Bloomington Drosophila Stock Center).

      As suggested reviewer 1, we tested whether overexpression of Mad could rescue or mitigate the loss of sakura phenotypic defects, by using nos-Gal4-VP16 > UASp-Mad-GFP in the background of sakura<sup>null</sup>. As shown in Fig S11, we did not observe any mitigation of defects.

      Then, we also tested whether expressing a constitutive active form of Tkv, by using UAS-Dcr2, NGT-Gal4 > UASp-tkv.Q235D in the background of sakura<sup>RNAi</sup>. As shown in Fig S12, we did not observe any mitigation of defects by this approach either.

      A major concern is the overstated role of Sakura in regulating Orb. The data does not reveal mislocalized Orb; rather, a mislocalized oocyte and cytoskeletal breakdown, which may be secondary consequences of defects in oocyte polarity and structure rather than direct misregulation of Orb. The conclusion that Sakura is necessary for Orb localization is not supported by the data. Orb still localizes to the oocyte until about stage 6. In the later stage, it looks like the cytoskeleton is broken down and the oocyte is not positioned properly, however, there is still Orb localization in the ~8-stage egg chamber in the oocyte. This phenotype points towards a defect in the transport of Orb and possibly all other factors that need to localize to the oocyte due to cytoskeletal breakdown, not Orb regulation directly. While this result is very interesting it needs further evaluation on the underlying mechanism. For example, the decrease in E-cadherin levels leads to a similar phenotype and Bam is known to regulate E-cadherin expression. Is Bam expressed in these later knockdowns?

      We examined Bam and DE-Cadherin expression in later RNAi knockdowns driven by ToskGal4. As shown in Fig S9, Bam was not expressed in these later knockdowns compared with controls. DE-Cadherin staining suggested a disorganized structure in late-stage egg chambers.

      We agree that we overstated a role of Sakura in regulating Orb in the initial manuscript. We changed the text to avoid overstating.

      The manuscript would benefit from a more balanced interpretation of the data concerning Sakura's role in Orb regulation. Furthermore, a more expanded discussion on Sakura's potential role in pMad regulation is needed. For example, since Otu and Bam are involved in translational regulation, do the authors think that Mad is not translated and therefore it is the reason for less pMad? Currently the discussion presents just a summary of the results and not an extension of possible interpretation discussed in context of present literature.

      We changed the text to avoid overstating a role of Sakura in regulating Orb localization.

      Based on our newly added results showing that transgenic overexpression of Mad could not rescue or mitigate the phenotypic defects of sakura<sup>null</sup> mutant (Fig S11), we do not think the reason for less pMad is less translation of Mad.

      Reviewer #3 (Public review):

      In this very thorough study, the authors characterize the function of a novel Drosophila gene, which they name Sakura. They start with the observation that sakura expression is predicted to be highly enriched in the ovary and they generate an anti-sakura antibody, a line with a GFP-tagged sakura transgene, and a sakura null allele to investigate sakura localization and function directly. They confirm the prediction that it is primarily expressed in the ovary and, specifically, that it is expressed in germ cells, and find that about 2/3 of the mutants lack germ cells completely and the remaining have tumorous ovaries. Further investigation reveals that Sakura is required for piRNA-mediated repression of transposons in germ cells. They also find evidence that sakura is important for germ cell specification during development and germline stem cell maintenance during adulthood. However, despite the role of sakura in maintaining germline stem cells, they find that sakura mutant germ cells also fail to differentiate properly such that mutant germline stem cell clones have an increased number of "GSC-like" cells. They attribute this phenotype to a failure in the repression of Bam by dpp signaling. Lastly, they demonstrate that sakura physically interacts with otu and that sakura and otu mutants have similar germ cell phenotypes. Overall, this study helps to advance the field by providing a characterization of a novel gene that is required for oogenesis. The data are generally high-quality and the new lines and reagents they generated will be useful for the field. However, there are some weaknesses and I would recommend that they address the comments in the Recommendations for the authors section below.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      General Comments:

      (1) The gene nomenclature: As mentioned in the text, Sakura means cherry blossom and is one of the national flowers of Japan. I am not sure whether the phenotype of the CG14545 mutant is related to Sakura or not. I would like to suggest the authors reconsider the naming.

      The striking phenotype of sakura mutant­ is tumorous and germless ovarioles. The tumorous phenotype, exhibiting lots of round fusome in germarium visualized by anti-Hts staining, looks like cherry blossom blooming to us. Also, the germless phenotype reminds us falling of the cherry blossom, especially considering that the ratio of tumorous phenotype decreases and that of germless decreases over fly age. Furthermore, “Sakura” symbolizes birth and renewal in Japanese culture (the last author of this manuscript is Japanese). Our findings indicated that the gene sakura is involved in regulation of renewal and differentiation of GSCs (which leads to birth). These are the reasons for the naming, which we would like to keep.

      (2) In many of the microscopic photographs in the figures, especially for the merged confocal images, the resolution looks low, and the images appear blurred, making it difficult to judge the authors' claims. Also, the Alpha Fold structure in Figure 10A requires higher contrast images. The magnification of the images is often inadequate (e.g. Figures 3A, 3B, 5E, 7A, etc). The authors should take high-magnification images separately for the germarium and several different stages of the egg chambers and lay out the figures.

      We are very sorry for the low-resolution images. This was caused when the original PDF file with high-resolution images was compressed in order to meet the small file size limit in the eLife submission portal. In the revised submission, we used high-resolution images.

      Specific Comments

      (1) How Sakura can cooperate with Otu remains unanswered. Sakura does not regulate deubiquitinase activity in vitro. Both sakura and otu appear to be involved in the Dpp-Smad signaling pathway and in the spatial control of Bam expression in the germarium, whereas Otu has been reported to act in concert with Bam to deubiquitinate and stabilize Cyc A for proper cystoblast differentiation. Therefore, it is plausible that the stabilization of Cyc A in the Sakura mutant is an indirect consequence of Bam misexpression and independent of the Sakura-Otu interaction. The authors may need to provide much deeper insight into the mechanism by which Sakura plays roles in these seemingly separable steps to orchestrate germ cell maintenance and differentiation during early oogenesis.

      Yes, it is possible that the stabilization of CycA in the sakura mutant is an indirect consequence of Bam misexpression and independent of the Sakura-Otu interaction. To test the significance and role of the Sakura-Otu interaction, we have attempted to identify Sakura point mutants that lose interaction with Otu. If such point mutants were successfully obtained, we were planning to test if their transgene expression could rescue the phenotypes of sakura mutant as the wild-type transgene did. However, after designing and testing the interaction of over 30 point mutants with Otu, we could not obtain such mutant version of Sakura yet. We will continue making efforts, but it is beyond the scope of the current study. We hope to address this important point in future studies.

      (2) Figure 3A and Figure 4: The authors show that piRNA production is abolished in Sakura KO ovaries. It is known that piRNA amplification (the ping-pong cycle) occurs in the Vasa-positive perinuclear nuage in nurse cells. Is the nuage normally formed in the absence of Sakura? The authors provide high-magnification images in the germarium expressing Vas-GFP. How does Sakura, and possibly Out, contribute to piRNA production? Are the defects a direct or indirect consequence of the loss of Sakura?

      We provided higher magnification images of germarium expressing Vasa-EGFP in sakura mutant background (Fig 3A and 3B). The nuage formation does not seem to be dysregulated in sakura mutant. Currently, we do not know if the piRNA defects are direct or indirect consequence of the loss of Sakura. This question cannot be answered easily. We hope to address this in future studies.

      (3) Figure 7 and Figure 12: The authors showed that Dpp-Smad signaling was abolished in Sakura KO germline cells. The same defects were also observed in otu mutant ovaries (Figure 12B). How does the Sakura-Otu axis contribute to the Dpp-Smad pathway in the germline?

      As we mentioned in the response to comment (1), we attempted to test the significance and role of the Sakura-Otu interaction, including in the Dpp-Smad pathway in the germline, but we have not yet been able to obtain loss-of-interaction mutant(s) of Sakura. We hope to address this in future studies.

      (4) Figure 9 and Fig 10: The authors raised antibodies against both Sakura and Otu, but their specificities were not provided. For Western blot data, the authors should provide whole gel images as source data files. Also, the authors argue that the Otu band they observed corresponds to the 98-kDa isoform (lines 302-304). The molecular weight on the Western blot alone would be insufficient to support this argument.

      When we submitted the initial manuscript, we also submitted original, uncropped, and unmodified whole Western blot images for all gel images to the eLife journal, as requested. We did the same for this revised submission. I believe eLife makes all those files available for downloading to readers.

      In the newly added Fig S13B, we used very young 2-5 hours ovaries and 3-7 days ovaries. 2-5 days ovaries contain only mostly pre-differentiated germ cells. Older ovaries (3-7 days in our case here) contain all 14 stages of oogenesis and later stages predominate in whole ovary lysates.

      As reported in previous literature (Sass et al. 1995), we detected a higher abundance of the 104 kDa Otu isoform than the 98 kDa isoform in from 2-5 hours ovaries and predominantly the 98 kDa isoform in 3-7 days ovaries (Fig S13B). These results confirmed that the major Otu isoform we detected in Western blot, all of which uses old ovaries except for the 2-5 hours ovaries in Fig S13B, is the 98 kDa isoform.

      (5) Otu has been reported to regulate ovo and Sxl in the female germline. Is Sakura involved in their regulation?

      We examined sxl alternative splicing pattern in sakura mutant ovaries. As shown in Fig S6, we detected the male-specific isoform of sxl RNA and a reduced level of the female-specific sxl isoform in sakura mutant ovaries. Thus Sakura seems to be involved in sxl splicing in the female germline, while further studies will be needed to understand whether Sakura has a direct or indirect role here.

      (6) Lines 443-447: The GSC loss phenotype in piwi mutant ovaries is thought to occur in a somatic cell-autonomous manner: both piwi-mutant germline clones and germline-specific piwi knockdown do not show the GSC-loss phenotype. In contrast, the authors provide compelling evidence that Sakura functions in the germline. Therefore, the Piwi-mediated GSC maintenance pathway is likely to be independent of the Sakura-Otu axis.

      We changed the text accordingly.

      Reviewer #2 (Recommendations for the authors):

      Overall, this is a cleanly written manuscript, with some sentences/sections that are confusing the way they are constructed (i.e. Line 37-38, 334, section on Flp/FRT experiments).

      We rewrote those sections to avoid confusion.

      Comment for all merged image data: the quality of the merged images is very poor - the individual channels are better but should also be reprocessed for more resolved image data sets. Also, it would be helpful to have boundaries drawn in an individual panel to identify the regions of the germarium, as cartooned in Figure S1A (which should be brought into Figure 1) F-actin or Vsg staining would have helped throughout the manuscript to enhance the visualization of described phenotypes.

      We are very sorry for the low-resolution images. This was caused when the original PDF file with high-resolution images was compressed in order to meet the small file size limit in the eLife submission portal. In the revised submission, we used high-resolution images.

      We outlined the germarium in Fig 1E.

      We brought the former FigS1 into Fig 1A.

      We provided Phalloidin (F-Actin) staining images in Fig S7.

      All p-values seem off. I recommend running the data through the student t-test again.

      We used the student t-test to calculate p-values and confirmed that they are correct. We don’t understand why the reviewer thinks all p-values seem off.

      In the original manuscript, as we mentioned in each figure legends, we used asterisk (*) to indicate p-value <0.05, without distinguishing whether it’s <0.001, <0.01< or <0.05.

      Probably reviewer 2 is suggesting us to use ***, **, and *, to indicate p-value of <0.001, <0.01, and <0.05, respectively? If so, we now followed reviewer2’s suggestions.

      Figure 1

      (1) Within the text, C is mentioned before A.

      We updated the text and now we mentioned Fig 1A before Fig 1C.

      (2) B should be the supplemental figure.

      We moved the former Fig 1B to Supplemental Figure 1.

      (3) C - How were the different egg chamber stages selected in the WB? Naming them 'oocytes' is deceiving. Recommend labeling them as 'egg chambers', since an oocyte is claimed to be just the one-cell of that cyst.

      We changed the labeling to egg chambers.

      (4) Is the antibody not detecting Sakura in IF? There is no mention of this anywhere in the manuscript.

      While our Sakura antibody detects Sakura in IF, it seems to detect some other proteins as well. Since we have Sakura-EGFP fly strain (which fully rescues sakura<sup>null</sup> phenotypes) to examine Sakura expression and localization without such non-specific signal issues, we relied on Sakura-EGFP rather than anti-Sakura antibodies for IF.

      (5) Expand on the reliance of the sakura-EGFP fly line. Does this overexpression cause any phenotypes?

      sakura-EGFP does not cause any phenotypes in the background of sakura[+/+] and sakura[+/-].

      (6) Line 95 "as shown below" is not clear that it's referencing panel D.

      We now referenced Fig 1D.

      (7) Re: Figures 1 E and F. There is no mention of Hts or Vasa proteins in the text.<br /> "Sakura-EGFP was not expressed in somatic cells such as terminal filament, cap cells, escort cells, or follicle cells (Figure 1E). In the egg chamber, Sakura-EGFP was detected in the cytoplasm of nurse cells and was enriched in developing oocytes (Figure 1F)". Outline these areas or label these structures/sites in the images. The color of Merge labels is confusing as the blue is not easily seen.

      We mentioned Hts and Vasa in the text. We labeled the structures/sites in the images and updated the color labeling.

      Figure 2

      (1) Entire figure is not essential to be a main figure, but rather supplemental.

      We don’t agree with the reviewer. We think that the female fertility assay data, where sakura null mutant exhibits strikingly strong phenotype, which was completely rescued by our Sakura-EGFP transgene, is very important data and we would like to present them in a main figure.

      (2) 2A- one star (*) significance does not seem correct for the presented values between 0 and 100+.

      In the original manuscript, as we mentioned in each figure legends, we used asterisk (*) to indicate p-value <0.05, without distinguishing whether it’s <0.001, <0.01< or <0.05.

      Probably reviewer 2 is suggesting us to use ***, **, and *, to indicate p-value of <0.001, <0.01, and <0.05, respectively? If so, we now followed reviewer2’s suggestions.

      (3) 2C images are extremely low quality. Should be presented as bigger panels.

      We are very sorry for the low-resolution images. This was caused when the original PDF file with high-resolution images was compressed in order to meet the small file size limit in the eLife submission portal. In the revised submission, we used high-resolution images. We also presented as bigger panels.

      Figure 3

      (1) "We observed that some sakura<sup>null</sup> /null ovarioles were devoid of germ cells ("germless"), while others retained germ cells (Fig 3A)" What is described is, that it is hard to see. Must have a zoomed-in panel.

      We provided zoomed-in panels in Fig 3B

      (2) C - The control doesn't seem to match. Must zoom in.

      We provided matched control and also zoomed in.

      (3) For clarity, separate the tumorous and germless images.

      In the new image, only one tumorous and one germless ovarioles are shown with clear labeling and outline, for clarity.

      (4) Use arrows to help clearly indicate the changes that occur. As they are presented, they are difficult to see.

      We updated all the panels to enhance clarity.

      (5) Line 158 seems like a strong statement since it could be indirect.

      We softened the statement.

      Figure 4

      (1) Line 188-189 - Conclusion is an overstatement.

      We softened the statement.

      (2) Is the piRNA reduction due to a change in transcription? Or a direct effect by Sakura?

      We do not know the answers to these questions. We hope to address these in future studies.

      Figure 5

      (1) D - It might make more sense if this graph showed % instead of the numbers.

      We did not understand the reviewer’s point. We think using numbers, not %, makes more sense.

      (2) Line 213 - explain why RNAi 2 was chosen when RNAi 1 looks stronger.

      Fly stock of RNAi line 2 is much healthier than RNAi line 1 (without being driven Gal4) for some reasons. We had a concern that the RNAi line 1 might contain an unwanted genetic background. We chose to use the RNAi 2 line to avoid such an issue.

      (3) In Line 218 there's an extra parenthesis after the PGC acronym.

      We corrected the error.

      (4) TOsk-Gal4 fly is not in the Methods section.

      We mentioned TOsk-Gal4 in the Methods.

      Figure 6:

      (1) The FLP-FRT section must be rewritten.

      We rewrote the FLP-FRT section.

      (2) A - include statistics.

      We included statistics using the chi-square test.

      (3) B - is not recalled in the Results text.

      We referred Fig 6B in the text.

      (4) Line 232 references Figure 3, but not a specific panel.

      We referred Fig 3A, 3C, 3D, and 3E, in the text.

      Figure 7/8 - can go to Supplemental.

      We moved Fig 8 to supplemental. However, we think Fig 7 data is important and therefore we would like to present them as a main figure.

      (1) There should be CycA expression in the control during the first 4 divisions.

      Yes, there is CycA expression observed in the control during the first 4 divisions, while it’s much weaker than in sakura<sup>null</sup> clone.

      (2) Helpful to add the dotted lines to delineate (A) as well.

      We added a dotted outline for germarium in Fig 7A.

      (3) Line 263 CycA is miswritten as CyA.

      We corrected the typo.

      Figure 9

      (1) Otu antibody control?

      We validated Otu antibody in newly added Fig 10C and Fig S13A.

      (2) Which Sakura-EGFP line was used? sakura het. or null background? This isn't mentioned in the text, nor legend.

      We used Sakura-EGFP in the background of sakura[+/+]. We added this information in the methods and figure legend.

      (3) C - Why the switch to S2 cells? Not able to use the Otu antibody in the IP of ovaries?

      We can use the Otu antibody in the IP of ovaries. However, in anti-Sakura Western after anti-Otu IP, antibody light chain bands of the Otu antibodies overlap with the Sakura band. Therefore, we switched to S2 cells to avoid this issue by using an epitope tag.

      Figure 10

      (1) A- The resolution of images of the ribbon protein structure is poor.

      We are very sorry for the low-resolution images. This was caused when the original PDF file with high-resolution images was compressed in order to meet the small file size limit in the eLife submission portal. In the revised submission, we used high-resolution images.

      (2) A table summarizing the interactions between domains would help bring clarity to the data presented.

      We added a table summarizing the fragment interaction results.

      (3) Some images would be nice here to show that the truncations no longer colocalize.

      We did not understand the reviewer’s points. In our study, even for the full-length proteins.

      We have not shown any colocalization of Sakura and Otu in S2 cells or in ovaries, except that they both are enriched in developing oocytes in egg chambers.

      Figure 12

      (1) A - control and RNAi lines do not match.

      We provided matched images.

      (2) In general, since for Sakura, only its binding to Otu was identified and since they phenocopy each other, doesn't most of the characterization of Sakura just look at Otu phenotypes? Does Sakura knockdown affect Otu localization or expression level (and vice versa)?

      We tested this by Western (Fig S15) and IF (Fig 12). Sakura knockdown did not decrease Otu protein level, and Otu knockdown did not decrease Sakura protein level (Fig S15). In sakura<sup>null</sup> clone, Otu level was not notably affected (Fig 12). In sakura<sup>null</sup> clone, Otu lost its localization to the posterior position within egg chambers.

      Figure S6

      (1) It is Luciferase, not Lucifarase.

      We corrected the typo.

      Reviewer #3 (Recommendations for the authors):

      (1) It is interesting that germless and tumorous phenotypes coexist in the same population of flies. Additional consideration of these essentially opposite phenotypes would significantly strengthen the study. For example, do they co-exist within the same fly and are the tumorous ovarioles present in newly eclosed flies or do they develop with age? The data in Figure 8 show that bam knockdown partially suppresses the germless phenotype. What effect does it have on the tumorous phenotype? Is transposon expression involved in either phenotype? Do Sakura mutant germline stem cell clones overgrow relative to wild-type cells in the same ovariole? Does sakura RNAi driven by NGT-Gal4 only cause germless ovaries or does it also cause tumorous phenotypes? What happens if the knockdown of Sakura is restricted to adulthood with a Gal80ts? It may not be necessary to answer all of these questions, but more insight into how these two phenotypes can be caused by loss of sakura would be helpful.

      We performed new experiments to answer these questions.

      do they co-exist within the same fly and are the tumorous ovarioles present in newly eclosed flies or do they develop with age?

      Tumorous and germless ovarioles coexist in the same fly (in the same ovary). Tumorous ovarioles are present in very young (0-1 day old) flies, including newly eclosed (Fig S5). The ratio of germless ovarioles increases and that of tumorous ovarioles decreases with age (Fig S5).

      The data in Figure 8 show that bam knockdown partially suppresses the germless phenotype. What effect does it have on the tumorous phenotype?

      bam knockdown effect on tumorous phenotype is shown in Fig S10. bam knockdown increased the ratio of tumorous ovarioles and the number of GSC-like cells.

      Is transposon expression involved in either phenotype?

      Since our transposon-piRNA reporter uses germline-specific nos promoter, it is expressed only in germ line cells, so we cannot examine in germless ovarioles.

      Do Sakura mutant germline stem cell clones overgrow relative to wild-type cells in the same ovariole?

      Yes, Sakura mutant GSC clones overgrow. Please compare Fig 6C and Fig S8.

      Does sakura RNAi driven by NGT-Gal4 only cause germless ovaries or does it also cause tumorous phenotypes?

      Fig S10 and Fig S12 show the ovariole phenotypes of sakura RNAi driven by NGT-Gal4. It causes both germless and tumorous phenotypes.

      What happens if the knockdown of Sakura is restricted to adulthood with a Gal80ts?

      Our mosaic clone was induced at the adult stage, so we already have data of adulthood-specific loss of function. Gal80ts does not work well with nos-Gal4.

      (2) The idea that the excessive bam expression in tumorous ovaries is due to a failure of bam repression by dpp signaling is not well-supported by the data. Dpp signaling is activated in a very narrow region immediately adjacent to the niche but the images in Figure 7A show bam expression in cells that are very far away from the niche. Thus, it seems more likely to be due to a failure to turn bam expression off at the 16-cell stage than to a failure to keep it off in the niche region. To determine whether bam repression in the niche region is impaired, it would be important to examine cells adjacent to the niche directly at a higher magnification than is shown in Figure 7A.

      We provided higher magnification images of cells adjacent to the niche in new Fig 7A.

      We found that cells adjacent to the niche also express Bam-GFP.

      That said, we agree with the reviewer. A failure to turn bam expression off at the 16-cell stage may be an additional or even a main cause of bam misexpression in sakura mutant. We added this in the Discussion.

      (3) In addition, several minor comments should be addressed:

      a. Does anti-Sakura work for immunofluorescence?

      While our Sakura antibody detects Sakura in IF, it seems to detect some other proteins as well. Since we have Sakura-EGFP fly strain to examine Sakura expression and localization without such non-specific signal issues, we relied on Sakura-EGFP rather than anti-Sakura antibodies.

      b. Please provide insets to show the phenotypes indicated by the different color stars in Figure 3C more clearly.

      We provided new, higher-magnification images to show the phenotypes more clearly.

      c. Please indicate the frequency of the expression patterns shown in Figure 4D (do all ovarioles in each genotype show those patterns or is there variable penetrance?).

      We indicated the frequency.

      d. An image showing TOskGal4 driving a fluorophore should be provided so that readers can see which cells express Gal4 with this driver combination.

      It has been already done in the paper ElMaghraby et al, GENETICS, 2022, 220(1), iyab179, so we did not repeat the same experiment.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Reviewer #1

      Evidence, reproducibility and clarity

      In their manuscript de las Mercedes Carro et al investigated the role of Ago proteins during spermatogenesis by producing a triple knockout of Ago 1, 3 and 4. They first describe the pattern of expression of each protein and of Ago2 during the differentiation of male germ cells, then they describe the spermatogenesis phenotype of triple knockout males, study gene deregulation by scRNA seq and identify novel interacting proteins by co-IP mass spectrometry, in particular BRG1/SMARCA4, a chromatin remodeling factor and ATF2 a transcription factor. The main message is that Ago3 and 4 are involved in the regulation of XY gene silencing during meiosis, and also in the control of autosomal gene expression during meiosis. Overall the manuscript is well written, the topic, very interesting and the experiments, well-executed. However, there are some parts of the methodology and data interpretation that are unclear (see below).

      Major comments

      1= Please clarify how the triple KO was obtained, and if it is constitutive or specific to the male germline. In the result section a Cre (which cre?) is mentioned but it is not mentioned in the M&M. On Figure S1, a MICER VECTOR is shown instead of a deletion, but nothing is explained in the text nor legend. Could the authors provide more details in the results section as well as in the M&M ? This is essential to fully interpret the results obtained for this KO line, and to compare its phenotype to other lines (such as lines 184-9 Comparison of triple KO phenotype with that of Ago4 KO). Also, if it is a constitutive KO, the authors should mention if they observed other phenotypes in triple KO mice since AGO proteins are not only expressed in the male germline.

      Response: We apologize for omitting this vital information. We have now incorporated a more detailed description of how the Ago413 mutant was created in the results and M&M sections (line 120 and 686 respectively).

      As mentioned in the manuscript, Ago4, Ago1 and Ago3 are widely expressed in mammalian somatic tissues. Mutations or deletions of these genes does not disrupt development; however, there is limited research on the impact of these mutations in mammalian models in vivo. In humans, mutations in Ago1 and Ago3 genes are associated with neurological disorders, autism and intellectual disability (Tokita, M.J.,et al. 2015- doi: 10.1038/ejhg.2014.202., Sakaguchi et al. 2019- doi: 10.1016/j.ejmg.2018.09.004, Schalk et al 2021- doi: 10.1136/jmedgenet-2021-107751). In mouse, global deletion of Ago1 and Ago3 simultaneously was shown to increase mice susceptibility to influenza virus through impaired inflammation responses (Van Stry et al 2012- doi.org/10.1128/jvi.05303-11). Studies performed in female Ago413 mutants (the same mutant line used herein) have shown that knockout mice present postnatal growth retardation with elevated circulating leukocytes (Guidi et al 2023- doi: 10.1016/j.celrep.2023.113515). Other studies of double conditional knockout of Ago1 and Ago3 in the skin associated the loss of these Argonautes with decreased weight of the offspring and severe skin morphogenesis defects (Wang et al 2012- doi: 10.1101/gad.182758.111). In our study, we did not observe major somatic or overt behavioral phenotypes, and we did not observe statistical differences in body weights of null males compared to WT as shown in figure below.

      2= The paragraph corresponding to G2/M analysis is unclear to me. Why was this analysis performed? What does the heatmap show in Figure S4? What is G2/M score? (Fig 2D). Lines 219-220, do the authors mean that Pachytene cells are in a cell phase equivalent to G2/M? All this paragraph and associated figures require more explanation to clarify the method and interpretation.

      __Response: __We have modified the methods to include more information about how the cell cycle scoring used in Figures 2D and S4 were calculated and will add more information regarding the interpretation of these figures.

      3= I have concerns regarding Fig2G: to be convincing the analysis needs to be performed on several replicates, and, it is essential to compare tubules of the same stage - which does not seem to be the case. This does not appear to be the case. Besides, co (immunofluorescent) staining with markers of different cell types should be shown to demonstrate the earlier expression of some markers and their colocalization with markers of the earlier stages.

      __Response: __We agree with the Reviewer. New images with staged tubules will be added to the analysis of Figure 2G.

      4= one important question that I think the authors should discuss regarding their scRNAseq: clusters are defined using well characterized markers. But Ago triple KO appears to alter the timing of expression of genes... could this deregulation affects the interperetation of scRNAseq clusters and results?

      __Response: __We thank the reviewer for this suggestion and agree that including this information is important. We expect that, at most, this dysregulation impacts the edges of these clusters slightly. Given that marker genes that have been used to define cell types in these data are consistently expressed between the knockout and wildtype mice (see Figure S4A), we do not think that the cells in these clusters have different identities, just dysregulated expression programs. We have added the relevant sentence to the discussion, and will include additional supplemental figure panels to document this point more comprehensively.

      5= XY gene deregulation is mentioned throughout the result section but only X chromosome genes seem to have been investigated.... Even the gene content of the Y is highly repetitive, it would be very interesting to show the level of expression of Y single copy and Y multicopy genes in a figure 3 panel.

      __Response: __We agree with the reviewer that including analysis of Y-linked genes is important. We will add a supplemental figure which includes the Y:Autosome ratio and differential expression analysis.

      6= Can the authors elaborate on the observation that X gene upregulation is visible in the KO before MSCI; that is in lept/zygotene clusters (and in spermatogonia, if the difference visible in 3A is significant?)

      Response: We do see that X gene expression is upregulated before pachynema. Previous scRNA-seq studies that have looked at MCSI have seen that silencing of genes on the X and Y chromosomes starts before the cell clusters that are defined as pachynema, though silencing is not fully completed until pachynema. We have clarified this point in the manuscript.

      7 = miRNA analysis: could the authors indicate if X encoded miRNA were identified and found deregulated? Because Ago4 has been shown to lead to a downregulation of miRNA, among which many X encoded. It is therefore puzzling to see that the triple KO does not recapitulate this observation. Were the analyses performed differently in the present study and in Ago4 KO study?

      __Response: __The analysis identifying downregulation of miRNA in the original Ago4 mutant analysis was conducted relative to total small RNA expression. Amongst those altered miRNA families in the Ago4 mutants, we demonstrated both upregulation and downregulation of miRNA. We agree that confirming a similar global downregulation of miRNA counts compared to other small RNAs is important. Therefore, in a revised manuscript, we will add this information to the miRNA analysis section, especially highlighting the X chromosome-associated miRNAs, as well as whether the ratios between other small RNA classes change.

      8 = The last results paragraph would also benefit from some additional information. It is not clear why the authors focused on enhancers and did not investigate promoters (or maybe they were but it's unclear). Which regions (size and location from TSS) were investigated for motif enrichment analyses? To what correspond the "transcriptional regulatory regions previously identified using dREG" mentioned in the M&M? I understand it's based on a previous article, but more info in the present manuscript would be useful.

      Response: We thank the reviewer for this suggestion. The regions that were used for motif enrichment will be included as a supplementary information in the fully revised manuscript. We have also clarified in the methods that these transcriptional regulatory regions were downloaded from GEO and obtained from previous ChRO-seq data (from GEO) analysis. These data are run through the dREG pipeline that identifies regions predicted to contain transcription start sites, which include promoters and enhancers.

      Minor comments

      1) In the introduction: The sentence "Ago1 is not expressed in the germline from the spermatogonia stage onwards allowing us to use this model to study the roles of Ago4 and Ago3 in spermatogenesis." is misleading because Ago1 is expressed at least in spermatogonia; It would be more precise to write "after spermatogonia stage" and rephrase the sentence. Otherwise it is surprising to see AGO1 protein in testis lysate and it is not in line with the scRNA seq shown in figure 2.

      __Response: __We agree with the Reviewers suggestion and have edited the sentence on line 100. This sentence now reads "Ago1 is not expressed in the germline after the spermatogonia stage allowing us to use this model to study the roles of Ago4 and Ago3 in spermatogenesis".

      2) Could the authors precise if AGO proteins are expressed in other tissues? In somatic testicular cells?

      __Response: __Expression patterns of mammalian AGOs have been described in somatic and testicular tissues for the mouse by Gonzales-Gonzales et al (2008) by qPCR. They found that Ago2 is expressed in all the somatic tissues analyzed (brain, spleen, heart, muscle and lung) as well as the testis, with the highest expression in brain and lowest in heart. Ago1 is highly expressed in spleen compared to all the tissues analyzed, while Ago3 and Ago4 showed highest expression in testis and brain. Within somatic tissues of the testis, the four argonautes are expressed in Sertoli cells, however, Ago1,3 and 4 expression is very low compared to Ago2, with the latter showing a 10-fold higher transcript level. We have included a sentence with this information in the introduction in line 89.

      3) Pattern of expression: How do the authors explain that AGO3 disappears at the diplotene stage and reappears in spermatids?

      __Response: __ Single cell RNAseq data in the germline shows reduced transcript for Ago3 from the Pachytene stage onwards, suggesting minimal if any new transcription in round spermatids. We hypothesize that the AGO3 protein present in the round spermatid stage is cytoplasmic, presumably coming from the pool of AGO3 in the chromatoid body, a cytoplasmic structure with functional association with the nucleus in round spermatids (Kotaja et al, 2003 doi: 10.1073/pnas.05093331).

      4) It would be useful to show the timing of expression of AGO 1 to 4 throughout spermatogenesis in the first paragraph of the article. Maybe the authors could present data from fig2B earlier?

      Response: We understand the Reviewers concern, however, given that Ago expression throughout spermatogenesis was obtained from scRNA seq, we consider that this data should be presented after introducing the Ago413 knockout and the scRNA seq experiment. As Ago1-4 expression was also described in an earlier manuscript by Gonzales-Gonzales et al in the mouse male germline, and our data aligns with this report, we included a sentence about these previous findings in the earlier results section.

      5) Line 190: please modify the sentence "reveal no differences in cellular architecture of the seminiferous tubules when compared to wild-type males" to " reveal no gross differences..." since even without quantification of the different cell types it is visible that KO seminiferous tubules are different from WT tubules.

      __Response: __We agree with the reviewer, and we modified line 190 (now 173) as suggested. Grossly, seminiferous tubules from Ago413 null males contain the same cell types as in wild type tubules, including spermatozoa. However, our studies show that the number and quality of germ cells is compromised in knockouts, as shown by sperm counts and TUNEL staining.

      6) TUNEL analysis: please stage the tubules to determine the stage(s) at which apoptosis is the most predominant.

      __Response: __We have complied with the reviewer suggestion. Figure 1G now shows staged seminiferous tubules, and we have replaced the wild type image for one where the staged tubules match the knockout image.

      7) Figure S4B does not show an increase of cells at Pachytene stage but at Lepto/zygotene stage (as well as an increase of spermatogonia). Please comment this discrepancy with results shown in Fig2.

      __Response: __Figures 2 and S4 show distribution of cells in different substages of spermatogenesis and prophase I measured with very different methods: a cytological approach using chromosome spreads cells vs a transcriptomic approach that involves clustering of cells. We attribute the differences in cell type distribution to differences in the sensitivity of the methods to identify each cell type and therefore identify differences between the number of cells for each group. Moreover, our scRNA-seq data groups the leptotene and zygotene stages together, while the cytological approach allows for separation of these two sub-stages. Importantly, both results show that Ago413 spermatocytes are progressing slower from pachynema into diplonema and/or are dying after pachynema, as stated in line 194 in our manuscript.

      8) Fig5H and 5I are not mentioned in the result section. Also, it would be useful to label them with "all chromosomes" and "XY" to differentiate them easily

      __Response: __We apologize for the omission and have now cited Figures 5H and 5I in the manuscript (line 453). We have added the suggested labels.

      9) Line 530 "data provide further evidence for a functional association between AGO-dependent small RNAs and heterochromatin formation, maintenance and/or silencing." Please rephrase, the present article does not really show that AGO nuclear role depends on small RNAs.

      __Response____: __We agree with the reviewer that these data do not directly show a dependence on small RNAs. As our identified localization of AGO proteins to the pericentric heterochromatin coincides with localization of DICER shown previously by Yadav and collaborators (2020, doi: 10.1093/nar/gkaa460), we do believe that our data further implicates small RNAs in the silencing of heterochromatin. Yadav et al shows that DICER localizes to pericentromeric heterochromatin and processes major satellite transcripts into small RNAs in mouse spermatocytes, and cKO germ cells have reduced localization of SUV39H2 and H3K9me3 to the pericentromeric heterochromatin. Given the colocalization of both small RNA producing machinery and AGOs at pericentromeric heterochromatin, the AGOs may bind these small RNAs, and the statement in line 530 refers to how our results provide evidence for the involvement of other RNAi machinery in the silencing of pericentromeric heterochromatin investigated by Yadav et al which likely includes small RNAs.

      To clarify this point, we have modified the text accordingly.

      10) Line 1256: replace "cite here " by appropriate reference

      __Response: __The reference was added to line 1256.

      11) Please use SMARCA4 instead of BRG1 name as it is its official name.

      __Response: __We have replaced BRG1 with SMARCA4 in the text and figures.

      Figures:

      Figure 1: Are the pictures shown for Ago3-tagged and floxed from the same stages ? The leptotene stage in 1A looks like a zygotene, while some pachytene/diplotene stage pictures do not look alike.

      __Response: __New representative images have been added to figure 1 to match the same substages across the figure.

      Figure 1D, please label the Y scale properly (testis weight related to body weight)

      __Response: __We have fixed this.

      FigS1: Please comment the presence of non-specific bands in the figure legend

      __Response: __We have added a sentence in Figure S1 Legend.

      Fig 2E and F, please indicate on the figure (in addition to its legend), what are the X and Y axes respectively to facilitate its reading.

      __Response: __X and Y axes are now labelled in Figure 2E and F.

      2F: please use an easier abbreviation for Spermatocyte than Sp (which could spermatogonia, sperm etc..) such as Scyte I ? (same comment for Fig 3C)

      Response: The abbreviation for spermatocyte was changed from Sp to Scyte I in Figures 2 and 3.

      Overall, for all figures showing GSEA analyses, could the authors explain what a High positive NES and a High negative NES mean in the results section?

      Response: Thank you for this suggestion. We have added this information where the GSEA score of the cell markers is initially introduced.

      Significance

      Ago proteins are known for their roles in post transcriptional gene regulation via small RNA mediated cleavage of mRNA, which takes places in the cytoplasm. Some Ago proteins have been shown to be also located in the nucleus suggesting other non-canonical roles. It is the case of Ago4 which has been shown to localize to the transcriptionally silenced sex chromosomes (called sex body) of the spermatocyte nucleus, where it contributes to regulate their silencing (Modzelewski et al 2012). Interestingly, Ago4 knockout leads to Ago3 upregulation, including on the sex body indicating that Ago3 and Ago4 are involved in the same nuclear process. In their manuscript, de las Mercedes Carro et al., investigate the consequences of loss of both Ago3 and Ago4 in the male germline by the production of a triple knockout of Ago1, 3 and 4 in the mouse. With this model, the authors describe the role of Ago3 and Ago4 during spermatogenesis and show that they are involved in sex chromosome gene repression in spermatocytes and in round spermatids, as well as in the control of autosomal meiotic gene expression. Triple KO males have impaired meiosis and spermiogenesis, with fewer and abnormal spermatozoa resulting in reduced fertility. Since Ago1 male germline expression is restricted to pre-meiotic germ cells, it is not expected to contribute to the meiotic and postmeiotic phenotypes observed in the triple KO. The strengths of the study are i) the thorough analyses of mRNA expression at the single cell level, and in purified spermatocytes and spermatids (bulk RNAseq), ii) the identification of novel nuclear partners of AGO3/4 relevant for their described nuclear role: ATF2, which they show to also co-localize with the sex body, and BRG1/SMARCA4, a SWI/SNF chromatin remodeler. The main limitation of the study is the lack of information in the method regarding the production of the triple KO, as well as some aspects of the transcriptome and motif analyses. It is also surprising to see that the triple KO does not recapitulate the miRNA deregulation observed in Ago4 KO. The characterization of a non-canonical role of AGO3/4 in male germ cells will certainly influence researchers of the field, and also interest a broader audience studying Argonaute proteins and gene regulation at transcriptional and posttranscriptional levels.

      Reviewer #2

      Evidence, reproducibility and clarity

      In the manuscript titled "Argonaute proteins regulate the timing of the spermatogenic transcriptional program" by Carro et al., the authors present their findings on how Argonaute proteins regulate spermatogenic development. They utilize a mouse model featuring a deletion of the gene cluster on chromosome 4 that contains Ago1, Ago3, and Ago4 to investigate the cumulative roles of AGO3 and AGO4 in spermatogenic cells. The authors characterize the distribution of AGO proteins and their effects on key meiotic milestones such as synapsis, recombination, meiotic transcriptional regulation, and meiotic sex chromosome inactivation (MSCI). They analyze stage-specific transcriptomes in spermatogenic cells using single-cell and bulk RNA sequencing and determine the interactome of AGO3 and AGO4 through mass spectrometry to examine how AGO proteins may regulate gene expression in these cells during meiotic and post-meiotic development. The authors conclude that both AGO3 and AGO4 are essential for regulating the overall gene expression program in spermatogenic cells and specifically modulate MSCI to repress sex-linked genes in pachytene spermatocytes, which may be partially mediated by the proper distribution of DNA damage repair factors. Additionally, AGO3 is suggested to interact with the chromatin remodeler SWI/SNF factor BRG1, facilitating its removal from the sex-chromatin to enable the repression of sex-linked genes during MSCI.

      Major Comments: 1. The study utilized a triple knockout mouse model to determine the effect of AGO3 on spermatogenesis, following up on their previous report about the role of AGO4 in spermatogenesis, which resulted from an upregulation of AGO3 in Ago4-/- spermatocytes. However, the results are more difficult to interpret and ascertain the role of AGO3 in these cells, given the absence of any observable phenotype from Ago3 interruption. AGO4 regulates sex body formation, meiotic sex chromosome inactivation (MSCI), and miRNA production in spermatocytes, all of which were noted in the absence of both AGO3 and AGO4, with only an increased incidence of cells containing abnormal RNAPII at the sex chromosomes. It will be necessary to characterize how AGO3 regulates spermatogenic development, including meiotic progression and the regulation of the meiotic transcriptome, and compare these findings with the current observations to determine if the proposed mechanism involving AGO3, BRG1, and possibly AP2 is relevant in this context.

      __Response: __While we agree with Reviewer that a single Ago3 knockout will help understand distinct roles of AGO3 and AGO4 in spermatogenesis, the time and resources required to generate a new mouse model are substantial. The analysis included in this current manuscript has already taken over seven years, and with the lengthy production of a new single mutant mouse, validation of the new mouse, and then final analysis, we would be looking at another 3-5 years of analysis. In the current funding climate, and with strong concerns over ensuring reduction in utilization of laboratory mice, we consider this request to be far in excess of what is required to move this important story forward.

      The Ago413-/- mouse model has allowed us to associate a nuclear role of Argonaute proteins with a strong reproductive phenotype in the mouse germline. Given the redundancy between Ago3 and Ago4, it is likely that a single Ago3 knockout would have a mild phenotype just like the Ago4 KO. All this said, we agree with the reviewer that analysis of an Ago3 knockout mouse is a valuable next step, just not within this chapter of the story.

      1. Does Ago413-/- mice recapitulate the early meiotic entry phenotype observed in Ago4-/- mice? If not, could it be possible that AGO3 promotes meiotic entry, given its strong mRNA expression in spermatogonia according to the scRNAseq data (Fig. 2B)

      Response: Our scRNA-seq data shows strong expression of Ago3 in spermatogonia, as mentioned by the Reviewer. Analysis of cell cycle marker expression also shows that the transcriptomic profile of spermatogonia is altered, with higher levels of transcripts corresponding to the later G2/M stages (Figure 2D). Moreover, Ago413 knockouts present an increase in the number of spermatogonial stem cells (Supplementary Figure S4B). However, this cluster represents a pool of quiescent and mitotically active cells entering meiosis, therefore interpretation of these data might be challenging. While specific experiments could be conducted to answer this question, this is outside of the scope of our manuscript. The manuscript as it stands is already rather large, and a full analysis of meiotic entry dynamics would dilute the core message relating to chromatin regulation in the sex body.

      1. The authors suggested that the removal of BRG1 by AGO3 is necessary during sex body formation and the eventual establishment of MSCI. However, the BAF complex subunit ARID1A has been shown to facilitate MSCI by regulating promoter accessibility. It will be interesting to determine how BRG1 distribution changes across the genome in the absence of AGO proteins and how that correlates with alterations in sex-linked gene expression.

      __Response: __We agree that changes in BRG1 distribution across the genome would be very interesting to identify. However, in this work we show that BRG1/SMARCA4 protein changes its localization in the sex body very rapidly between early to late pachynema. These two substages are only discernable by immunofluorescence using synaptonemal complex markers, as there are currently no available techniques to enrich for these subfractions. Therefore, study of genome occupancy of BRG1 in these specific substages by techniques such as CUT&Tag are not currently possible. However, we are currently working on new methods to distinguish these cell populations and hope eventually to use these purification strategies to perform the studies suggested by this reviewer. Alternatively, the hope is that single cell CUT&Tag methods will become more reliable, and will enable us to address these questions. Both of these options are not currently available to us. The studies by Menon et al (2024-doi:10.7554/eLife.88024.5) provide strong evidence to support that ARID1A is needed to reduce promoter accessibility of XY silenced genes in prophase I through modulation of H3.3 distribution. However, this mechanism and our identification of the removal of BRG1 between early and late pachytema are not inconsistent with one another, as either SMARCA4 or SMARCA2 can associate with ARID1A as part of the cBAF complex, and ARID1A is also not in all forms of the BAF complex which BRG1 are in. The difference between our results and those seen in Menon et al likely indicate that there are multiple forms of the BAF complex which are differentially regulated during MSCI and play different roles in silencing transcription. Further studies of specific BAF subunits are needed to elucidate how different flavors of the BAF complex act at specific genomic locations and meiotic time points.

      1. The observations presented in this manuscript (Fig. 1D, 2C, 3D, and 4) suggest a haploinsufficiency of the deleted locus in spermatogenic development. How does this compare with the ablation of either Ago3 or Ago4? Please explain.

      Response: Our previous studies in single Ago4 knockouts did not present a heterozygous phenotype (Modzelewski et al 2012, doi: 10.1016/j.devcel.2012.07.003, data not shown). Triple Ago413 knockouts show a much stronger fertility phenotype than single Ago4 knockout. Testis weight of Ago413 homozygous null present a 30% reduction while heterozygous mice show a 15% reduction (Figure 1D), comparable to the 13% reduction previously observed in Ago4-/- males. Sperm counts of Ago413 null and heterozygous males are reduced by 60% and 39% compared to wild type (Figure 1E), respectively, whereas Ago4 null mice have a milder phenotype, with only a 22% reduction in sperm counts. At the MSCI level, both homozygous and heterozygous Ago413 mutant spermatocytes show a similar increase in pachytene spermatocytes with increased RNA pol II ingression into the sex body with respect to wild-type of 35% and 30%, respectively. Ago4 single knockouts show an almost 18% increase in Pol II ingression when compared to wild type. These comparisons are now included in our manuscript in lines 170, 172 and 288. A milder phenotype of the Ago4 knockout and haploinsufficiency in triple Ago413 knockouts but not in Ago4 single knockouts is likely a consequence of the overlapping functions of Ago3 and Ago4 in mammals (and/or overexpression of Ago3 in Ago4 knockouts). In the context of their role in RISC, Wang et al (doi: 10.1101/gad.182758.111) studied the effects of single and double conditional knockouts for Ago1 and Ago2 in miRNA-mediated silencing. They discovered that the interaction between miRNAs and AGOs is highly correlated with the abundance of each AGO protein, and only double knockouts presented an observable phenotype.

      Minor Comments: Based on the interactome analysis, it was argued that AGO3 and AGO4 may function separately. Please discuss how AGO3 might compensate for AGO4 (Line 109).

      Response: We hypothesize that the combined function of AGO3 and AGO4 is needed for proper sex chromosome inactivation during meiosis. We base this hypothesis on the facts that (i) both proteins localize to the sex body in pachytene spermatocytes, (ii) loss of Ago4 leads to upregulation of Ago3, and (iii) the MSCI phenotype of Ago413 knockout mice is much stronger than the single Ago4 knockout (see above). However, AGO3 and AGO4 might not induce silencing through the same mechanism or pathway. In this work, we observed that their temporal expression in prophase I is different; while AGO3 protein seems to disappear by the diplotene stage, AGO4 is present in the sex body of these cells. Moreover, the proteomic analysis revealed a very low number of common interactors, an observation which could support the idea of AGO3 and AGO4 acting by different (albeit perhaps related) mechanisms to achieve MSCI. It is also possible that common interactors were not identified in our proteomic analysis due to the low abundance of AGO3 and AGO4 in the germ cells, limiting the resolution of the proteomics analysis (note that in order to visualize AGO proteins in WB experiments, at least 60 μg of enriched germ cell lysate must be loaded per lane). Moreover, given the difficulty in obtaining enough isolated pachytene and diplotene spermatocytes to perform immunoprecipitation experiments, we performed IP experiments in whole germ cell lysates, which limits the interpretation of our analysis. If AGO3 and AGO4 protein interactors overlap, then AGO3 would directly substitute for AGO4 leading to silencing in single Ago4 knockouts. However, if AGO3 and AGO4 work together through different, complementary mechanisms, then Ago4 mutant mice likely compensates loss of Ago4 by upregulation of Ago3along with specific interactors of the given pathway. We have added a sentence addressing this matter in line 411 of the results section and lines 506 and 513 of the discussion in the revised manuscript.

      In Line 221, it is unclear what is meant by 'cell cycle transcripts'. Does this refer to meiotic transcripts? It is also important to discuss the relevance of the G2/M cell cycle marker genes at later stages of meiotic prophase.

      Response: Thank you for this suggestion. We have changed the relevant text to remove redundancies and include more information. We agree that considering the importance of these genes across meiotic prophase is needed, as cells which are in the dividing stage will already have produced the proteins necessary for division. These cells likely correspond to the diplotene/M cluster cells that have a lower G2/M score, potentially causing the bimodal distribution seen in Figure 2D. We have added a sentence addressing this to the manuscript.

      While identified as a common interactor of both AGO3 and AGO4 in lines 440-445, HNRNPD is not listed among AGO4 interactors in Table S6. Please correct or explain this discrepancy.

      Response: HNRPD was originally identified as an AGO4 interactor using a less strict criteria than the one used in our manuscript: we required consistent enrichment in at least two rounds of IP MS experiments. This reference to HNRNPD was a mistake, given that HNRPD was only enriched in one of our three replicates. Thus, we apologize and have removed the sentence in lines 440-445.

      It is unclear whether wild-type cell lysate or lysate containing FLAG-tagged AGO3 was used for BRG1 immunoprecipitation, and which antibody was used to detect AGO3 in the BRG1 IP sample. A co-IP experiment demonstrating interaction between BRG1 and wild-type AGO3 would be ideal in this context. Furthermore, co-localization by IF would be beneficial to determine the subcellular localization and the cell stages the interaction may be occurring. Additionally, co-IP and Western blot methodologies should be included in the methods section.

      __Response: __MYC-FLAG tagged AGO3 protein lysates were used for BRG1 Co-Immunoprecipitation, along with an anti MYC antibody to detect AGO3. This is now detailed in the Methods section of our revised manuscript (line 1133).

      Regarding BRG1 and AGO3 colocalization by IF, we can confidently show that both AGO3 and BRG1 localize to the sex chromosomes in early pachynema by comparing BRG1/SYCP3 and FLAG-AGO3/SYCP3 stained spreads. We were not able to show colocalization simultaneously on the same cells, given the lack of appropriate antibodies. Our anti FLAG antibody is raised in mouse, while anti BRG1 is raised in rabbit, therefore a non-rabbit, non-mouse anti SYCP3 would be needed to identify prophase I substages, and our lab does not possess such a validated antibody. However, we now have access to a multiplexing kit that allows to use same-species antibodies for immunofluorescence and we can perform these experiments for a revised manuscript.

      __Response: __The methods section now includes description of co-IP methodologies (line 1132). Western Blot methodologies are explained in lane 718, under the "Immunoblotting" title.

      In line 599, it is unclear what is meant by 'persistence of sex chromosome de-repression'. Please correct or clarify this.

      Response: This sentence has been changed and reads: "The persistence of sex chromosome gene expression".

      If possible, please add an illustration to summarize the findings together.

      Response: We thank the reviewer for this suggestion, and have now added this in Figure 6

      Significance

      Overall, this study enhances the understanding of gene expression regulation by AGO proteins during spermatogenesis. Several approaches, including functional, histological, and molecular characterization of the triple knockout phenotype, were instrumental in elucidating the role of AGO proteins in MSCI and meiotic as well as postmeiotic gene regulation. The main limitation of the study is that it is challenging to appreciate the role of AGO3 in addition to the previously published role of AGO4 without the inclusion of necessary control groups. Furthermore, the mechanism of action for AGO proteins in meiotic gene regulation was left relatively unexplored. This study presents new findings that will be significant for the research community interested in gene regulation, chromatin biology, and reproductive biology with the above suggestions considered.

      __Reviewer #3 (Evidence, reproducibility and clarity (Required)): __

      The authors characterize a CRISPR-Cas9 mouse mutant that targets 3 genes that encode AGO family proteins, 2 of which are expressed during spermatogenesis (AGO3 and AGO4) and one that is said is not expressed, AGO1. This mouse mutant showed that AGO3 and AGO4 both contribute to spermatogenesis success as the "Ago413" mutation gave rise to an additive reduction in testis weight, due to spermatocyte apoptosis, and reduction in sperm count. Furthermore, they use insertion mouse mutants for Ago3 and Ago2 that express tagged versions of their corresponding proteins, which they use in combination with pan-AGO antibodies and Ago mutants to show differential expression and localization properties of AGO2, AGO3, and AGO4 (and the absence of AGO1) during spermatogenesis with a particular focus on meiotic prophase. They perform single-cell RNAseq and intricate analyses to demonstrate a change in distribution of meiotic stages in Ago413 mutants, and the overall cell cycle in spermatogonia and spermatocytes is altered. This analysis shows that the mutation leads to an inability to downregulate prior spermatogonia/spermatocyte stage transcripts in a timely manner. On the other hand, later-stage spermatocytes are abnormally expressing spermiogenesis genes. Similar to the Ago4 mutant previously characterized MSCI is disrupted. The authors also show that AGO3 has different interaction partners compared to AGO4 and focus their final assessment on a novel interaction partner of AGO3, BRG1. They show that this factor, which is involved in chromatin remodeling, is aberrantly localized to the sex body during meiotic prophase and diplonema. As BRG1 is involved in open chromatin, it is proposed that AGO3 restricts BRG1 (and related proteins) from the XY chromosome to ensure MSCI. Overall, this paper is very well constructed with mechanistic insights that make this a very impactful contribution to the research community. Major Comments:

      1. The abstract contains "Ago413-/- mouse" without any explanation of what that is. The abstract needs to be a stand-alone document that does not require any referencing for context.

      Response: We have included a sentence describing Ago413 in line 27

      Figure 2C. - The significance bars are confusing as they appear to overlap strangely.

      Response: We have modified this figure and now present the significance bars are on top of the data points.

      On line 235, the authors state that "we first identified the top non-overlapping upregulated genes for Ago413+/+ germ cells in each cluster. Why did the authors not also select down-regulated genes in each cluster to perform a similar analysis?

      __Response: __Thank you for this question. As our goal was to identify genes that are markers of the transcriptional program in each cell type, we used only uniquely upregulated genes for each cluster. Genes that are downregulated for a cluster may be indicative of the transcription in several other cell types, which is not easily interpretable. For a revised manuscript, we will perform this analysis to determine if there is any specific alterations in these downregulated genes.

      Their Ago413 mutant characterization does a good job of assessing meiotic prophase and spermatozoa. However, their assessment of the stages in between these is lacking (meiotic divisions and spermiogenesis).

      Response: We understand the reviewer's concern, however, it is not usual to study stages between the first meiotic division and spermiogenesis because meiosis II is so rapid and thus we lack tools to dissect it. In general, any defect that impacts meiosis I (and particularly prophase I) leads to cell death during prophase I or at metaphase I due to strictly adhered checkpoints that eradicate defective cells. Thus, the increased TUNEL staining in prophase I indicates to us that defective cells are cleared before exit from meiosis I, and those cells progressing to the spermatid stage are "normal" for meiosis II progression. For these cells that did complete meiosis I and progressed normally through meiosis II, we analyzed their spermiogenic outcome extensively (see section entitled "Post-meiotic spermatids from Ago413-/- males exhibit defective spermiogenesis and poor spermatozoa function"). This section included extensive sperm morphology, sperm motility and sperm fertility through in vitro fertilization assays. That said, we have added a sentence on line 268 to explain the transit through meiosis II.

      The discovery of the interaction between BRG1 and AGO3 is exciting. They should assess BRG1 localization in later sub-stages, including late diplonema and diakinesis.

      __Response: __BRG1(SMARCA4) was analyzed throughout prophase I, as shown in image 5G, including quantification of fluorescence intensity included the analysis of diplonema (5H-I). However, diakinesis was not included here since there was no observable signal of BRG1 in these cells. We have explained this in lines 459.

      ATF2 should have been assessed in more detail, as was done for BRG1 in Figure 5.

      __Response: __We agree with the Reviewer, however, staining of chromosome spreads with the anti ATF2 antibody was not possible in our hands after several attempts and changes in staining conditions. However, as staining of sections was successful, we showed localization of ATF2 on spermatocytes by co staining sections with SYCP3 and ATF2.

      Reviewer #3 (Significance (Required)): Overall, this paper is very well constructed with mechanistic insights, as described in my reviewer comments, that make this a very impactful contribution to the research community.

    1. For example n∑i=1xiyi=x1y1+x2y2+…+xnyn,(10.8)(10.8)∑i=1nxiyi=x1y1+x2y2+…+xnyn,\begin{equation} \sum^n_{i=1}x_iy_i = x_1y_1 + x_2y_2 + \ldots + x_ny_n, \tag{10.8} \end{equation} which, following PEMDAS, we recognize multiplication of xixix_i and yiyiy_i should come before the summation.

      This isn't a sentence. Is it supposed to be?

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      The authors have used full-length single-cell sequencing on a sorted population of human fetal retina to delineate expression patterns associated with the progression of progenitors to rod and cone photoreceptors. They find that rod and cone precursors contain a mix of rod/cone determinants, with a bias in both amounts and isoform balance likely deciding the ultimate cell fate. Markers of early rod/cone hybrids are clarified, and a gradient of lncRNAs is uncovered in maturing cones. Comparison of early rods and cones exposes an enriched MYCN regulon, as well as expression of SYK, which may contribute to tumor initiation in RB1 deficient cone precursors.

      Strengths:

      (1) The insight into how cone and rod transcripts are mixed together at first is important and clarifies a long-standing notion in the field.

      (2) The discovery of distinct active vs inactive mRNA isoforms for rod and cone determinants is crucial to understanding how cells make the decision to form one or the other cell type. This is only really possible with full-length scRNAseq analysis.

      (3) New markers of subpopulations are also uncovered, such as CHRNA1 in rod/cone hybrids that seem to give rise to either rods or cones.

      (4) Regulon analyses provide insight into key transcription factor programs linked to rod or cone fates.

      (5) The gradient of lncRNAs in maturing cones is novel, and while the functional significance is unclear, it opens up a new line of questioning around photoreceptor maturation.

      (6) The finding that SYK mRNA is naturally expressed in cone precursors is novel, as previously it was assumed that SYK expression required epigenetic rewiring in tumors.

      We thank the reviewer for describing the study’s strengths, reflecting the major conclusions of the initially submitted manuscript.  However, based on new analyses – including the requested analyses of other scRNA-seq datasets, our revision clarifies that:

      -  related to point (1), cone and rod transcripts do not appear to be mixed together at first (i.e., in immediately post-mitotic immature cone and rod precursors) but appear to be coexpressed in subsequent cone and rod precursor stages; and 

      - related to point (3), CHRNA1 appears to mark immature cone precursors that are distinct from the maturing cone and rod precursors that co-express cone- and rod-related RNAs (despite the similar UMAP positions of the two populations in our dataset). 

      Weaknesses:

      (1) The writing is very difficult to follow. The nomenclature is confusing and there are contradictory statements that need to be clarified.

      (2) The drug data is not enough to conclude that SYK inhibition is sufficient to prevent the division of RB1 null cone precursors. Drugs are never completely specific so validation is critical to make the conclusion drawn in the paper.

      We thank the reviewer for noting these important issues. Accordingly, in the revised manuscript:

      (1) We improve the writing and clarify the nomenclature and contradictory statements, particularly those noted in the Reviewer’s Recommendations for Authors. 

      (2) We scale back claims related to the role of SYK in the cone precursor response to RB1 loss, with wording changes in the Abstract, Results, and Discussion, which now recognize that the inhibitor studies only support the possibility that cone-intrinsic SYK expression contributes to retinoblastoma initiation, as detailed in our responses to Reviewer’s Recommendations for Authors. We agree and now mention that genetic perturbation of SYK is required to prove its role.  

      Reviewer #2 (Public review):

      Summary:

      The authors used deep full-length single-cell sequencing to study human photoreceptor development, with a particular emphasis on the characteristics of photoreceptors that may contribute to retinoblastoma.

      Strengths:

      This single-cell study captures gene regulation in photoreceptors across different developmental stages, defining post-mitotic cone and rod populations by highlighting their unique gene expression profiles through analyses such as RNA velocity and SCENIC. By leveraging fulllength sequencing data, the study identifies differentially expressed isoforms of NRL and THRB in L/M cone and rod precursors, illustrating the dynamic gene regulation involved in photoreceptor fate commitment. Additionally, the authors performed high-resolution clustering to explore markers defining developing photoreceptors across the fovea and peripheral retina, particularly characterizing SYK's role in the proliferative response of cones in the RB loss background. The study provides an in-depth analysis of developing human photoreceptors, with the authors conducting thorough analyses using full-length single-cell RNA sequencing. The strength of the study lies in its design, which integrates single-cell full-length RNA-seq, longread RNA-seq, and follow-up histological and functional experiments to provide compelling evidence supporting their conclusions. The model of cell type-dependent splicing for NRL and THRB is particularly intriguing. Moreover, the potential involvement of the SYK and MYC pathways with RB in cone progenitor cells aligns with previous literature, offering additional insights into RB development.

      We thank the reviewer for summarizing the main findings and noting the compelling support for the conclusions, the intriguing cell type-dependent splicing of rod and cone lineage factors, and the insights into retinoblastoma development.  

      Weaknesses:

      The manuscript feels somewhat unfocused, with a lack of a strong connection between the analysis of developing photoreceptors, which constitutes the bulk of the manuscript, and the discussion on retinoblastoma. Additionally, given the recent publication of several single-cell studies on the developing human retina, it is important for the authors to cross-validate their findings and adjust their statements where appropriate.

      We agree that the manuscript covers a range of topics resulting from the full-length scRNAseq analyses and concur that some studies of developing photoreceptors were not well connected to retinoblastoma. However, we also note that the connection to retinoblastoma is emphasized in several places in the Introduction and throughout the manuscript and was a significant motivation for pursuing the analyses. We suggest that it was valuable to highlight how deep, fulllength scRNA-seq of developing retina provides insights into retinoblastoma, including i) the similar biased expression of NRL transcript isoforms in cone precursors and RB tumors, ii) the cone precursors’ co-expression of rod- and cone-related genes such as NR2E3 and GNAT2, which may explain similar co-expression in RB cells, and iii) the expression of  SYK in early cones and RB cells.  While the earlier version had mainly highlighted point (iii), the revised Discussion further refers to points (i) and (ii) as described further in the response to the Reviewer’s Recommendations for Authors. 

      We address the Reviewer’s request to cross-validate our findings with those of other single-cell studies of developing human retina by relating the different photoreceptor-related cell populations identified in our study to those characterized by Zuo et al (PMID 39117640), which was specifically highlighted by the reviewer and is especially useful for such cross-validation given the extraordinarily large ~ 220,000 cell dataset covering a wide range of retinal ages (pcw 8–23) and spatiotemporally stratified by macular or peripheral retina location. Relevant analyses of the Zuo et al dataset are shown in Supplementary Figures S3G-H, S10B, S11A-F, and S13A,B. 

      Reviewer #3 (Public review):

      Summary:

      The authors use high-depth, full-length scRNA-Seq analysis of fetal human retina to identify novel regulators of photoreceptor specification and retinoblastoma progression.

      Strengths:

      The use of high-depth, full-length scRNA-Seq to identify functionally important alternatively spliced variants of transcription factors controlling photoreceptor subtype specification, and identification of SYK as a potential mediator of RB1-dependent cell cycle reentry in immature cone photoreceptors.

      Human developing fetal retinal tissue samples were collected between 13-19 gestational weeks and this provides a substantially higher depth of sequencing coverage, thereby identifying both rare transcripts and alternative splice forms, and thereby representing an important advance over previous droplet-based scRNA-Seq studies of human retinal development.

      Weaknesses:

      The weaknesses identified are relatively minor. This is a technically strong and thorough study, that is broadly useful to investigators studying retinal development and retinoblastoma.

      We thank the reviewer for describing the strengths of the study. Our revision addresses the concerns raised separately in the Reviewer’s Recommendations for Authors, as detailed in the responses below.  

      Recommendations for the authors:

      Reviewing Editor Comments:

      The reviewers have completed their reviews. Generally, they note that your work is important and that the evidence is generally convincing. The reviewers are in general agreement that the paper adds to the field. The findings of rod/cone fate determination at a very early stage are intriguing. Generally, the paper would benefit from clarifications in the writing and figures. Experimentally, the paper would benefit from validation of the drug data, for example using RNAi or another assay. Alternatively, the authors could note the caveats of the drug experiments and describe how they could be improved. In terms of analysis, the paper would be improved by additional comparisons of the authors' data to previously published datasets.

      We thank the reviewing editor for this summary. As described in the individual reviewer responses, we clarify the writing and figures and provide comparisons to previously published datasets (in particular, the large snRNA-seq dataset of Zuo et al., 2024 (PMID 39117640).  With regard to the drug (i.e., SYK inhibitor) studies, we opted to provide caveats and describe the need for genetic approaches to validate the role of SYK, owing to the infeasibility of completing genetic perturbation experiments in the appropriate timeframe.  We are grateful for the opportunity to present our findings with appropriate caveats. 

      Reviewer #1 (Recommendations for the authors):

      Shayler cell sort human progenitor/rod/cone populations then full-length single cell RNAseq to expose features that distinguish paths towards rods or cones. They initially distinguish progenitors (RPCs), immature photoreceptor precursors (iPRPs), long/medium wavelength (LM) cones, late-LM cones, short wavelength (S) cones, early rods (ER) and late rods (LR), which exhibit distinct transcription factor regulons (Figures 1, 2). These data expose expected and novel enriched genes, and support the notion that S cones are a default state lacking expression of rod (NRL) or cone (THRB) determinants but retaining expression of generic photoreceptor drivers (CRX/OTX2/NEUROD1 regulons). They identify changes in regulon activity, such as increasing NRL activity from iPRP to ER to LR, but decreasing from iPRP to cones, or increasing RAX/ISL2/THRB regulon activity from iPRP to LM cones, but decreasing from iPRP to S cones or rods.

      They report co-expression of rod/cone determinants in LM and ER clusters, and the ratios are in the expected directions (NRLTHRB or RXRG in ER). A novel insight from the FL seq is that there are differing variants generated in each cell population. Full-length NRL (FL-NRL) predominates in the rod path, whereas truncated NRL (Tr-NRL) does so in the cone path, then similar (but opposite) findings are presented for THRB (Fig 3, 4), whereas isoforms are not a feature of RXRG expression, just the higher expression in cones.

      The authors then further subcluster and perform RNA velocity to uncover decision points in the tree (Figure 5). They identify two photoreceptor precursor streams, the Transitional Rods (TRs) that provide one source for rod maturation and (reusing the name from the initial clustering) iPRPs that form cones, but also provide a second route to rods. TR cells closest to RPCs (immediately post-mitotic) have higher levels of the rod determinant NR2E3 and NRL, whereas the higher resolution iPRPs near RPCs lack NR2E3 and have higher levels of ONECUT1, THRB, and GNAT2, a cone bias. These distinct rod-biased TR and cone-biased high-resolution iPRPs were not evident in published scRNAseq with 3′ end-counting (i.e. not FL seq). Regulon analysis confirmed higher NRL activity in TR cells, with higher THRB activity in highresolution iPRP cells.

      Many of the more mature high-resolution iPRPs show combinations of rod (GNAT1, NR2E3) and cone (GNAT2, THRB) paths as well as both NRL and THRB regulons, but with a bias towards cone-ness (Figure 6). Combined FISH/immunofluorescence in fetal retina uncovers cone-biased RXRG-protein-high/NR2E3-protein-absent cone-fated cells that nevertheless expressed NR2E3 mRNA. Thus early cone-biased iPRP cells express rod gene mRNA, implying a rod-cone hybrid in early photoreceptor development. The authors refer to these as "bridge region iPRP cells".

      In Figure 7, they identify CHRNA1 as the most specific marker of these bridge cells (overlapping with ATOH7 and DLL3, previously linked to cone-biased precursors), and FISH shows it is expressed in rod-biased NRL protein-positive and cone-biased RXRG proteinpositive cones at fetal week 12.

      Figure 8 outlines the graded expression of various lncRNAs during cone maturation, a novel pattern.

      Finally (Figure 9), the authors identify differential genes expressed in early rods (ER cluster from Figure 1) vs early cones (LM cluster, excluding the most mature opsin+ cells), revealing high levels of MYCN targets in cones. They also find SYK expression in cones. SYK was previously linked to retinoblastoma, so intrinsic expression may predispose cone precursors to transformation upon RB loss. They finish by showing that a SYK inhibitor blocks the proliferation of dividing RB1 knockdown cone precursors in the human fetal retina.

      Overall, the authors have uncovered interesting patterns of biased expression in cone/rod developmental paths, especially relating to the isoform differences for NRL and THRB which add a new layer to our understanding of this fate choice. The analyses also imply that very soon after RPCs exit the cell cycle, they generate post-mitotic precursors biased towards a rod or cone fate, that carry varying proportions of mixed rod/cone determinants and other rod/cone marker genes. They also introduce new markers that may tag key populations of cells that precede the final rod/cone choice (e.g. CHRNA1), catalogue a new lncRNA gradient in cone maturation, and provide insight into potential genes that may contribute to retinoblastoma initiation, like SYK, due to intrinsic expression in cone precursors. However, as detailed below, the text needs to be improved considerably, and overinterpretations need to be moderated, removed, or tested more rigorously with extra data.

      Major Comments

      The manuscript is very difficult to follow. The nomenclature is at times torturous, and the description of hybrid rod/cone hybrid cells is confusing in many aspects.

      (1) A single term, iPRP, is used to refer to an initial low-resolution cluster, and then to a subset of that cluster later in the paper.

      We agree that using immature photoreceptor precursor (iPRP) for both high-resolution and lowresolution clusters was confusing. We kept this name for the low-resolution cluster (which includes both immature cone and immature rod precursors), renamed the high-resolution iPRP cluster immature cone precursors (iCPs). and renamed their transitional rod (TR) counterparts immature rod precursors (iRPs). These designations are based on 

      - the biased expression of THRB, ONECUT1, and the THRB regulon in iCPs (Fig. 5D,E);

      - the biased expression of NRL, NR2E3, and NRL regulon iRPs (Fig. 5D,E);

      - the partially distinct iCP and iRP UMAP positions (Figure 5C); and 

      - the evidence of similar immature cone versus rod precursor populations in the Zuo et al 3’ snRNA-seq dataset, as noted below and described in two new paragraphs starting at the bottom of p. 12.

      (2) To complicate matters further, the reader needs to understand the subset within the iPRP referred to as bridge cells, and we are told at one point that the earliest iPRPs lack NR2E3, then that they later co-express NR2E3, and while the authors may be referring to protein and RNA, it serves to further confuse an already difficult to follow distinction. I had to read and re-read the iPRP data many times, but it never really became totally clear.

      We agree that the description of the high-resolution iPRP (now “iCP”) subsets was unclear, although our further analyses of a large 3’ snRNA-seq dataset in Figure S11 support the impression given in the original manuscript that the earliest iCPs lack NR2E3 and then later coexpress NR2E3 while the earliest iRPs lack THRB and then later express THRB. As described in new text in the Two post-mitotic immature photoreceptor precursor populations section (starting on line 7 of p. 13): 

      When considering only the main cone and rod precursor UMAP regions, early (pcw 8 – 13) cone precursors expressed THRB and lacked NR2E3 (Figure S11D,E, blue arrows), while early (pcw 10 – 15) rod precursors expressed NR2E3 and lacked THRB (Figure S11D,E, red arrows), similar to RPC-localized iCPs and iRPs in our study (Figure 5D).

      Next, as summarized in new text in the Early cone and rod precursors with rod- and conerelated RNA co-expression section (new paragraph at top of p. 16): 

      Thus, a 3’ snRNA-seq analysis confirmed the initial production of immature photoreceptor precursors with either L/M cone-precursor-specific THRB or rod-precursor-specific NR2E3 expression, followed by lower-level co-expression of their counterparts, NR2E3 in cone precursors and THRB in rod precursors. However, in the Zuo et al. analyses, the co-expression was first observed in well-separated UMAP regions, as opposed to a region that bridges the early cone and early rod populations in our UMAP plots. These findings are consistent with the notion that cone- and rod-related RNA co-expression begins in already fate-determined cone and rod precursors, and that such precursors aberrantly intermixed in our UMAP bridge region due to their insufficient representation in our dataset.  

      Importantly, and as noted in our ‘Public response’ to Reviewer 1, “CHRNA1 appears to mark immature cone precursors that are distinct from the maturing cone and rod precursors that coexpress cone- and rod-related RNAs (despite the similar UMAP positions of the two populations in our dataset).” In support of this notion, the immature cone precursors expressing CHRNA1  and other  populations did not overlap in UMAP space in the Zuo et al dataset. We hope the new text cited above along with other changes will significantly clarify the observations.

      (3) The term "cone/rod precursor" shows up late in the paper (page 12), but it was clear (was it not?) much earlier in this manuscript that cone and rod genes are co-expressed because of the coexpressed NRL and THRB isoforms in Figures 3/4.

      We thank the reviewer for noting that the differential NRL and THRB isoform expression already implies that cone and rod genes are co-expressed. However, as we now state, the co-expression of RNAs encoding an additional cone marker (GNAT2) and rod markers (GNAT1, NR2E3) was 

      “suggestive of a proposed hybrid cone/rod precursor state more extensive than implied by the coexpression of different THRB and NRL isoforms” (first paragraph of “Early cone and rod …” section on p. 14; new text underlined). 

      (4) The (incorrect) impression given later in the manuscript is that the rod/cone transcript mixture applies to just a subset of the iPRP cells, or maybe just the bridge cells (writing is not clear), but actually, neither of those is correct as the more abundant and more mature LM and ER populations analyzed earlier coexpress NRL and THRB mRNAs (Figures 2, 3). Overall, the authors need to vastly improve the writing, simplify/clarify the nomenclature, and better label figures to match the text and help the reader follow more easily and clearly. As it stands, it is, at best, obtuse, and at worst, totally confusing.

      We thank the reviewer for bringing the extent of the confusing terminology and wording to our attention. We revised the terminology (as in our response to point 1) and extensively revised the text.  We also performed similar analyses of the Zuo et al. data (as described in more detail in our response to Reviewer 2), which clarifies the distinct status of cells with the “rod/cone transcript mixture” and cells co-expressing early cone and rod precursor markers.  

      To more clearly describe data related to cells with rod- and cone-related RNA co-expression, we divided the former Figure 6 into two figures, with Figure 6 now showing the cone- and rodrelated RNA co-expression inferred from scRNA-seq and Figure 7 showing GNAT2 and NR2E3 co-expression in FISH analyses of human retina plus a new schematic in the new panel 7E.

      To separate the conceptually distinct analyses of cone and rod related RNA co-expression and the expression of early photoreceptor precursor markers (which were both found in the so-called bridge region – yet now recognized to be different subpopulations), we separated the analyses of the early photoreceptor precursor markers to form a new section, “Developmental expression of photoreceptor precursor markers and fate determinants,” starting on p. 16. 

      Additionally, we further review the findings and their implications in four revised Discussion paragraphs starting at the bottom of p. 23).

      (5) The data showing that overexpressing Tr-NRL in murine NIH3T3 fibroblasts blocks FL-NRL function is presented at the end of page 7 and in Figure 3G. Subsequent analysis two paragraphs and two figures later (end page 8, Figure 5C + supp figs) reveal that Tr-NRL protein is not detectable in retinoblastoma cells which derive from cone precursors cells and express Tr-NRL mRNA, and the protein is also not detected upon lentiviral expression of Tr-NRL in human fetal retinal explants, suggesting it is unstable or not translated. It would be preferable to have the 3T3 data and retinoblastoma/explant data juxtaposed. E.g. they could present the latter, then show the 3T3 that even if it were expressed (e.g. briefly) it would interfere with FL-NRL. The current order and spacing are somewhat confusing.

      We thank the reviewer for this suggestion and moved the description of the luciferase assays to follow the retinoblastoma and explant data and switched the order of Figure panels 3G and 3H.  

      (6) On page 15, regarding early rod vs early cone gene expression, the authors state: "although MYCN mRNA was not detected....", yet on the volcano plot in Figure S14A MYCN is one of the marked genes that is higher in cones than rods, meaning it was detected, and a couple of sentences later: "Concordantly, the LM cluster had increased MYCN RNA". The text is thus confusing.

      With respect, we note that the original text read, “although MYC RNA was not detected,” which related to a statement in the previous sentence that the gene ontology analysis identified “MYC targets.” However, given that this distinction is subtle and may be difficult for readers to recognize, we revised the text (now on p. 19) to more clearly describe expression of MYCN (but not MYC) as follows:

      “The upregulation of MYC target genes was of interest given that many MYC target genes are also targets of MYCN, that MYCN protein is highly expressed in maturing (ARR3+) cone precursors but not in NRL+ rods (Figure 10A), and that MYCN is critical to the cone precursor proliferative response to pRB loss8–10.  Indeed, whereas MYC RNA was not detected, the LM cone cluster had increased MYCN RNA …”

      (7) The authors state that the SYK drug is "highly specific". They provide no evidence, but no drug is 100% specific, and it is possible that off-target hits are important for the drug phenotype. This data should be removed or validated by co-targeting the SYK gene along with RB1.

      We agree that our data only show the potential for SYK to contribute to the cone proliferative response; however, we believe the inhibitor study retains value in that a negative result (no effect of the SYK inhibitor) would disprove its potential involvement. To reflect this, we changed wording related to this experiment as follows:

      In the Abstract, we changed:

      (1) “SYK, which contributed to the early cone precursors’ proliferative response to RB1 loss” To: “SYK, which was implicated in the early cone precursors’ proliferative response to RB1 loss.”  

      (2) “These findings reveal … and a role for early cone-precursor-intrinsic SYK expression.” To:  “These findings reveal … and suggest a role for early cone-precursor-intrinsic SYK expression.”

      In the last paragraph of the Results, we changed:

      (1) “To determine if SYK contributes…” To:  “To determine if SYK might contribute…”

      (2) “the highly specific SYK inhibitor” To:  “the selective SYK inhibitor”  

      (3)  “indicating that cone precursor intrinsic SYK activity is critical to the proliferative response” To: “consistent with the notion that cone precursor intrinsic SYK activity contributes to the proliferative response.”

      In the Results, we added a final sentence: 

      “However, given potential SYK inhibitor off-target effects, validation of the role of SYK in retinoblastoma initiation will require genetic ablation studies.”

      In the Discussion (2nd-to-last paragraph), we changed: 

      “SYK inhibition impaired pRB-depleted cone precursor cell cycle entry, implying that native SYK expression rather than de novo induction contributes to the cone precursors’ initial proliferation.” To: “…the pRB-depleted cone precursors’ sensitivity to a SYK inhibitor suggests that native SYK expression rather than de novo induction contributes to the cone precursors’ initial proliferation, although genetic ablation of SYK is needed to confirm this notion.” In the Discussion last sentence, we changed:

      “enabled the identification of developmental stage-specific cone precursor features that underlie retinoblastoma predisposition.” To: “enabled the identification of developmental stage-specific cone precursor features that are associated with the cone precursors’ predisposition to form retinoblastoma tumors.”

      Minor/Typos

      Figure 7 legend, H should be D.

      We corrected the figure legend (now related to Figure 8).

      Reviewer #2 (Recommendations for the authors):

      (1) The author should take advantage of recently published human fetal retina data, such as PMID:39117640, which includes a larger dataset of cells that could help validate the findings. Consequently, statements like "To our knowledge, this is the first indication of two immediately post-mitotic photoreceptor precursor populations with cone versus rod-biased gene expression" may need to be revised.

      We thank the reviewer for noting the evidence of distinct immediately post-mitotic rod and cone populations published by others after we submitted our manuscript. In response, we omitted the sentence mentioned and extensively cross-checked our results including:

      - comparison of our early versus late cone and rod maturation states to the cone and rod precursor versus cone and rod states identified by Zuo et al (new paragraph on the top half of p. 6 and new figure panels S3G,H);

      - detection of distinct immediately post-mitotic versus later cone and rod precursor populations (two new paragraphs on pp. 12-13 and new Figures S10B and S11A-E); 

      - identification of cone and rod precursor populations that co-express cone and rod marker genes (two new paragraphs starting at the bottom of p. 15 and new Figures S11D-F);

      - comparison of expression patterns of immature cone precursor (iCP) marker genes in our and the Zuo et al dataset (new paragraph on top half of p. 17 and new Figure S13).

      We also compare the cell states discerned in our study and the Zuo et al. study in a new Discussion paragraph (bottom of p. 23) and new Figure S17.

      (2) The data generated comes from dissociated cells, which inherently lack spatial context. Additionally, it is unclear whether the dataset represents a pool of retinas from multiple developmental stages, and if so, whether the developmental stage is known for each cell profiled. If this information is available, the authors should examine the distribution of developmental stages on the UMAP and trajectory analysis as part of the quality control process. 

      We thank the reviewer for highlighting the importance of spatial context and developmental stage. 

      Related to whether the dataset represents a pool of retinae from multiple developmental stages, the different cell numbers examined at each time point are indicated in Figure S1A. To draw the readers’ attention to this detail, Figure S1A is now cited in the first sentence of the Results. 

      Related to the age-related cell distributions in UMAP plots, the distribution of cells from each retina and age was (and is) shown in Fig. S1F. In addition, we now highlight the age distributions by segregating the FW13, FW15-17, and FW17-18-19 UMAP positions in the new Figure 1C. We describe the rod temporal changes in a new sentence at the top of  p. 5:

      “Few rods were detected at FW13, whereas both early and late rods were detected from FW15-19 (Figure 1C), corroborating prior reports [15,20].”  

      We describe the cone temporal changes and note the likely greater discrimination of cell state changes that would be afforded by separately analyzing macula versus peripheral retina at each age in a new sentence at the bottom of p. 5:

      “L/M cone precursors from different age retinae occupied different UMAP regions, suggesting age-related differences in L/M cone precursor maturation (Figure 1C).”

      Moreover, they should assess whether different developmental stages impact gene expression and isoform ratios. It is well established that cone and rod progenitors typically emerge at different developmental times and in distinct regions of the retina, with minimal physical overlap. Grouping progenitor cells based solely on their UMAP positioning may lead to an oversimplified interpretation of the data.

      (2a) We agree that different developmental stages may impact gene expression and isoform ratios, and evaluated stages primarily based on established Louvain clustering rather than UMAP position. However, we also used UMAP position to segregate so-called RPC-localized and nonRPC-localized iCPs and iRPs, as well as to characterize the bridge region iCP sub-populations. In the revision, we examine whether cell groups defined by UMAP positions helped to identify transcriptomically distinct populations and further examine the spatiotemporal gene expression patterns of the same genes in the Zuo et al. 3’ snRNA-seq dataset. 

      (2b) Related to analyses of immediately post-mitotic iRPs and iCPs, the new Figure S10A expanded the violin plots first shown in Figure 5D to compare gene expression in RPC-localized versus non-RPC-localized iCPs and iRPs and subsequent cone and rod precursor clusters (also presented in response to Reviewer 3). The new Figure S10C, shows a similar analysis of UMAP region-specific regulon activities. These figures support the idea that there are only subtle UMAP region-related differences in the expression of the selected gene and regulons. 

      To further evaluate early cone and rod precursors, we compared expression patterns in our cluster- and UMAP-defined cell groups to those of the spatiotemporally defined cell groups in the Zuo et al. 3’ snRNA-seq study. The results revealed similar expression timing of the genes examined, although the cluster assignments of a subset of cells were brought into question, especially the assigned rod precursors at pcw 10 and 13, as shown in new Figures S10B (grey columns) and S11, and as described in two new paragraphs starting near the bottom of p.12. 

      (2c) Related to analyses of iCPs in the so-called bridge region, our analyses of the Zuo et al dataset helped distinguish early cone and rod precursor populations (expressing early markers such as ATOH7 and CHRNA1) from the later stages exhibiting rod- and cone-related gene coexpression, which had intermixed in the UMAP bridge region in our dataset. Further parsing of early cone precursor marker spatiotemporal expression revealed intriguing differences as now described in the second half of a new paragraph at the top of p. 17, as follows:

      “Also, different iCP markers had different spatiotemporal expression: CHRNA1 and ATOH7 were most prominent in peripheral retina with ATOH7 strongest at pcw 10 and CHRNA1 strongest at pcw 13; CTC-378H22.2 was prominently expressed from pcw 10-13 in both the macula and the periphery; and DLL3 and ONECUT1 showed the earliest, strongest, and broadest expression (Figure S13B). The distinct patterns suggest spatiotemporally distinct roles for these factors in cone precursor differentiation.”

      (3) I would commend the authors for performing a validation experiment via RNA in situ to validate some of the findings. However, drawing conclusions from analyzing a small number of cells can still be dangerous. Furthermore, it is not entirely clear how the subclustering is done. Some cells change cell type identities in the high-resolution plot. For example, some iPRP cells from the low-resolution plots in Figure 1 are assigned as TR in high-resolution plots in Figure 5.

      The authors should provide justification on the identifies of RPC localized iPRP and TR.

      Comparison of their data with other publicly available data should strengthen their annotation

      We agree that drawing conclusions from scRNA-seq or in situ hybridization analysis of a small number of cells can be dangerous and have followed the reviewer’s suggestion to compare our data with other publicly available data, focusing on the 3’ snRNA-seq of Zuo et al. given its large size and extensive annotation. Our analysis of  the Zuo et al. dataset helped clarify cell identities by segregating cone and rod precursors with similar gene expression properties in distinct UMAP regions. However, we noted that the clustering of early cone and rod precursors likely gave numerous mis-assigned cells (as noted in response 2b above and shown in the new Figure S11). It would appear that insights may be derived from the combination of relatively shallow sequencing of a high number of cells and deep sequencing of substantially fewer cells. 

      Related to how subclustering was done, the Methods state, “A nearest-neighbors graph was constructed from the PCA embedding and clusters were identified using a Louvain algorithm at low and high resolutions (0.4 and 1.6)[70],” citing the Blondel et al reference for the Louvain clustering algorithm used in the Seurat package.  To clarify this, the results text was revised such that it now indicates the levels used to cluster at low resolution (0.4, p. 4, 2nd paragraph) and at high resolution (1.6, top of p. 11) .

      Related to the assignment of some iPRP cells from the low-resolution plots in Figure 1 to the TR cluster (now called the ‘iRP’ ‘cluster) in the high-resolution plots in Figure 5, we suggest that this is consistent with Louvain clustering, which does not follow a single dendrogram hierarchy. 

      The justification for referring to these groups as RPC-localized iCPs and iRPs relates to their biased gene and regulon expression in Fig. 5D and 5E, as stated on p. 12: 

      “In the RPC-localized region, iCPs had higher ONECUT1, THRB, and GNAT2, whereas iRPs trended towards higher NRL and NR2E3 (p= 0.19, p=0.054, respectively).”

      (4) Late-stage LM5 cluster Figure 9 is not defined anywhere in previous figures, in which LM clusters only range from 1 to 4. The inconsistency in cluster identification should be addressed.

      We revised the text related to this as follows: 

      “Indeed, our scRNA-seq analyses revealed that SYK RNA expression increased from the iCP stage through cluster LM4, in contrast to its minimal expression in rods (Figure 10E).  Moreover, SYK expression was abolished in the five-cell group with properties of late maturing cones (characterized in Figure 1E), here displayed separately from the other LM4 cells and designated LM5 (Figure 10E).”  (p. 19-20)

      (5) Syk inhibitor has been shown to be involved in RB cell survival in previous studies. The manuscript seems to abruptly make the connection between the single-cell data to RB in the last figure. The title and abstract should not distract from the bulk of the manuscript focusing on the rod and cone development, or the manuscript should make more connection to retinoblastoma.

      We appreciate the reviewer’s concern that the title may seem to over-emphasize the connection to retinoblastoma based solely on the SYK inhibitor studies. However, we suggest the title also emphasizes the identification and characterization of early human photoreceptor states, per se, and that there are a number of important connections beyond the SYK studies that could warrant the mention of cell-state-specific retinoblastoma-related features in the title.

      Most importantly, a prior concern with the cone cell-of-origin theory was that retinoblastoma cells express RNAs thought to mark retinal cell types other than cones, especially rods. The evidence presented here, that cone precursors also express the rod-related genes helps resolve this issue. The issue is noted numerous times in the manuscript, as follows:  

      In the Introduction, we write:

      “However, retinoblastoma cells also express rod lineage factor NRL RNAs, which – along with other evidence – suggested a heretofore unexplained connection between rod gene expression and retinoblastoma development[12,13]. Improved discrimination of early photoreceptor states is needed to determine if co-expression of rod- and cone-related genes is adopted during tumorigenesis or reflects the co-expression of such genes in the retinoblastoma cell of origin.” (bottom, p. 2) And: 

      “In this study, we sought to further define the transcriptomic underpinnings of human  photoreceptor development and their relationship to retinoblastoma tumorigenesis.” (last paragraph, p. 3)

      The Discussion also alluded to this issue and in the revised Discussion, we aimed to make the connection clearer.  We previously ended the 3rd-to-last paragraph with,  

      “iPRP [now iCP] and early LM cone precursors’ expression of NR2E3 and NRL RNAs suggest that their presence in retinoblastomas[12,13] reflects their normal expression in the L/M cone precursor cells of origin.” 

      We now separate and elaborate on this point in a new paragraph as follows: 

      “Our characterization of cone and rod-related RNA co-expression may help resolve questions about the retinoblastoma cell of origin. Past studies suggested that retinoblastoma cells co-express RNAs associated with rods, cones, or other retinal cells due to a loss of lineage fidelity[12]. However, the early L/M cone precursors’ expression of NR2E3 and NRL RNAs suggest that their presence in retinoblastomas[12,13] reflects their normal expression in the L/M cone precursor cells of origin. This idea is further supported by the retinoblastoma cells’ preferential expression of cone-enriched NRL transcript isoforms (Figure S5B).” (middle of p. 24) Based on the above, we elected to retain the title.  

      Minor comments:

      (1) It is difficult to see the orange and magenta colors in the Fig 3E RNA-FISH image. The colors should be changed, or the contrast threshold needs to be adjusted to make the puncta stand out more.

      We re-assigned colors, with red for FL-NRL puncta and green for Tr-NRL puncta. 

      (2) Figure 5C on page 8 should be corrected to Supplementary Figure 5C.

      We thank the reviewer for noting this error and changed the figure citation.

      Reviewer #3 (Recommendations for the authors):

      (1) Minor concerns

      a. Abbreviation of some words needs to be included, example: FW. 

      We now provide abbreviation definitions for FW and others throughout the manuscript.  

      b. Cat # does not matches with the 'key resource table' for many reagents/kits. Some examples are: CD133-PE mentioned on Page # 22 on # 71, SMART-Seq V4 Ultra Low Input RNA Kit and SMARTer Ultra Low RNA Kit for the Fluidigm C1 Sytem on Page # 22 on # 77, Nextera XT DNA Library preparation kit on Page # 23 on # 77.

      We thank the reviewer for noting these discrepancies. We have now checked all catalog numbers and made corrections as needed.

      c. Cat # and brand name of few reagents & kits is missing and not mentioned either in methods or in key resource table or both. Eg: FBS, Insulin, Glutamine, Penicillin, Streptomycin, HBSS, Quant-iT PicoGreen dsDNA assay, Nextera XT DNA LibraryPreparation Kit, 5' PCR Primer II A with CloneAmp HiFi PCR Premix. 

      Catalog numbers and brand names are now provided for the tissue culture and related reagents within the methods text and for kits in the Key Resources Table. Additional descriptions of the primers used for re-amplification and RACE were added to the Methods (p. 28-29).

      d. Spell and grammar check is needed throughout the manuscript is needed. Example. In Page # 46 RXRγlo is misspelled as RXRlo.

      Spelling and grammar checks were reviewed.

      (2) Methods & Key Resource table.

      a. In Page # 21, IRB# needs to be stated.      

      The IRB protocols have been added, now at top of p. 26.

      b. In Page # 21, Did the authors dissociate retinae in ice-cold phosphate-buffered saline or papain?   

      The relevant sentence was corrected to “dissected while submerged in ice-cold phosphatebuffered saline (PBS) and dissociated as described10.” ( p. 26)

      c. In Page # 21, How did the authors count or enumerate the cell count? Provide the details.

      We now state, “… a 10 µl volume was combined with 10 µl trypan blue and counted using a hemocytometer” (top of p. 27)

      d. Why did the authors choose to specifically use only 8 cells for cDNA preparation in Page # 22? State the reason and provide the details.

      The reasons for using 8 cells (to prevent evaporation and to manually transfer one slide-worth of droplets to one strip of PCR tubes) and additional single cell collection details are now provided as follows (new text underlined): 

      “Single cells were sorted on a BD FACSAria I at 4°C using 100 µm nozzle in single-cell mode into each of eight 1.2 µl lysis buffer droplets on parafilm-covered glass slides, with droplets positioned over pre-defined marks … .  Upon collection of eight cells per slide, droplets were transferred to individual low-retention PCR tubes (eight tubes per strip) (Bioplastics K69901, B57801) pre-cooled on ice to minimize evaporation. The process was repeated with a fresh piece of parafilm for up to 12 rounds to collect 96 cells). (p. 27, new text underlined)

      e. Key resource table does not include several resources used in this study. Example - NR2E3 antibody.

      We added the NR2E3 antibody and checked for other omissions.

      (3) Results & Figures & Figure Legends

      a. Regulon-defined RPC and photoreceptor precursor states

      i. On page # 4, 1 paragraph - Clarify the sentence 'Exclusion of all cells with <100,000 cells read and 18 cells.........Emsembl transcripts inferred'. Did the authors use 18 cells or 18FW retinae? 

      The sentence was changed to:

      “After sequencing, we excluded all cells with <100,000 read counts and 18 cells expressing one or more markers of retinal ganglion, amacrine, and/or horizontal cells (POU4F1, POU4F2, POU4F3, TFAP2A, TFAP2B, ISL1) and concurrently lacking photoreceptor lineage marker OTX2. This yielded 794 single cells with averages of 3,750,417 uniquely aligned reads, 8,278 genes detected, and 20,343 Ensembl transcripts inferred (Figure S1A-C).” (p. 4, new words underlined)

      To clarify that 18 retinae were used, the first sentence of the Results was revised as follows:

      “To interrogate transcriptomic changes during human photoreceptor development, dissociated RPCs and photoreceptor precursors were FACS-enriched from 18 retinae, ages FW13-19 …” (p. 4).

      Why did the authors 'exclude cells lacking photoreceptor lineage marker OTX2' from analysis especially when the purpose here was to choose photoreceptor precursor states & further results in the next paragraph clearly state that 5 clusters were comprised of cells with OTX2 and CRX expression. This is confusing.

      We apologize for the imprecise diction. We divided the evidently confusing sentence into two sentences to more clearly indicate that we removed cells that did not express OTX2, as in the first response to the previous question.

      ii. In Page # 5, the authors reported the number of cell populations (363 large and 5 distal) identified in the THRB+ L/M-cone cluster. What were the # of cell populations identified in the remaining 5 clusters of the UMAP space?

      We added the cell numbers in each group to Fig. 1B. We corrected the large LM group to 366 cells (p. 5) and note 371 LM cells , which includes the five distal cells, in Figure 1B.

      b. Differential expression of NRL and THRB isoforms in rod and cone precursors

      i. In Figure 3B, the authors compare and show the presence of 5 different NRL isoforms for all the 6 clusters that were defined in 3A. However, in the results, the ENST# of just 2 highly assigned transcript isoforms is given. What are the annotated names of the three other isoforms which are shown in 3B? Please explain in the Results.

      As requested, we now annotate the remaining isoforms as encoding full-length or truncated NRL in Fig. 3B and show isoform structures in new Supplementary Figure S4B.  We also refer to each transcript isoform in the Results (p. 7, last paragraph) and similarly evaluate all isoforms in RB31 cells (Fig. S5B).

      ii. What does the Mean FPM in the y-axis of Fig 3C refer to?

      Mean FPM represents mean read counts (fragments per million, FPM) for each position across Ensembl NRL exons for each cluster, as now stated in the 6th line of the Fig. 3 legend.

      iii. A clear explanation of the results for Figures 3E-3F is missing.

      We revised the text to more clearly describe the experiment as follows:

      “The cone cells’ higher proportional expression of Tr-NRL first exon sequences was validated by RNA fluorescence in situ hybridization (FISH) of FW16 fetal retina in which NRL immunofluorescence was used to identify rod precursors, RXRg immunofluorescence was used to identify cone precursors, and FISH probes specific to truncated Tr-NRL exon 1T or FL-NRL exons 1 and 2 were used to assess Tr-NRL and FL-NRL expression (Figure 3E,F).” (p. 8, new text underlined).

      c. Two post-mitotic photoreceptor precursor populations

      i. Although deep-sequencing and SCENIC analysis clarified the identities of four RPC-localized clusters as MG, RPC, and iPRP indicative of cone-bias and TR indicative of rod-bias. It would be interesting to see the discriminating determinant between the TR and ER by SCENIC and deep-sequencing gene expression violin/box plots.

      We agree it is of interest to see the discriminating determinant between the TR [now termed iRP] and ER clusters by SCENIC and deep-sequencing gene expression violin/box plots. We now provide this information for selected genes and regulons of interest in the new Supplementary Figures S10A and S10C, along with a similar comparison between the prior high-resolution iPRP (now termed iCP) cluster and the first high-resolution LM cluster, LM1, as described for gene expression on p. 12:

      “Notably, THRB and GNAT2 expression did not significantly change while ONECUT1 declined in the subsequent non-RPC-localized iCP and LM1 stages, whereas NR2E3 and NRL dramatically increased on transitioning to the ER state (Figure S10A).”

      And as described for regulon activities on pp. 13-14:

      “Finally, activities of the cone-specific THRB and ISL2 regulons, the rod-specific NRL regulon, and the pan-photoreceptor LHX3, OTX2, CRX, and NEUROD1 regulons increased to varying extents on transitioning from the immature iCP or iRP states to the early-maturing LM1 or ER states (Figure 10C).”

      We also show expression of the same genes for spatiotemporally grouped cells from the Zuo et al. dataset in the new Figure S10B, which displays a similar pattern (apart from the possibly mixed pcw 10 and pcw13 designated rod precursors).

      d. Early cone precursors with cone- and rod-related RNA expression

      i. On page #12, the last paragraph where the authors explain the multiplex RNA FISH results of RXRγ and NR2E3 by citing Figure S8E. However, in Fig S8E, the authors used NRL to identify the rods. Please clarify which one of the rod markers was used to perform RNA FISH?

      Figure S8E (where NRL was used as a rod marker) was cited to remind readers that RXRg has low expression in rods and high expression in cones, rather than to describe the results of this multiplex FISH section. To avoid confusion on this point, Figure S8E is now cited using “(as earlier shown in Figure S8E).” With this issue clarified, we expect the markers used in the FISH + IF analysis will be clear from the revised explanation, 

      “… we examined GNAT2 and NR2E3 RNA co-expression in RXRg+ cone precursors in the outermost NBL and in RXRg+ rod precursors in the middle NBL … .” (p. 14-15).

      To provide further clarity, we provide a diagram of the FISH probes, protein markers, and expression patterns in the new Figure 7E.

      ii. The Y-axis of Fig 6G-6H needs to be labelled.

      The axes have been re-labeled from “Nb of cells” to “Number of RXRg+ outermost NBL cells in each region” (original Fig. 6G, now Fig. 7C) and “Number of RXRg+ middle NBL cells in each region” (original Fig. 6H, now Fig. 7D).

      iii. The legends of Figures 6G and 6H are unclear. In the Figure 6G legend, the authors indicate 'all cells are NR2E3 protein-'. Does that imply the yellow and green bars alone? Similarly, clarify the Figure 6H legend, what does the dark and light magenta refer to? What does the light magenta color referring to NR2E3+/ NR2E3- and the dark magenta color referring to NR2E3+/ NR2E3+ indicate? 

      We regret the insufficient clarity. We revised the Fig. 6G (now Fig. 7C) key, which now reads

      “All outermost NBL cells are NR2E3 protein-negative.”  We added to the figure legend for panel 7C,D “(n.b., italics are used for RNAs, non-italics for proteins).”  The new scheme in Figure 7E shows the RNAs in italics proteins in non-italics. We hope these changes will clarify when RNA or protein are represented in each histogram category.

      Overall, the results (on page # 13) reflecting Figures 6E-6H & Figure S11 are confusing and difficult to understand. Clear descriptions and explanations are needed.

      We revised this results section described in the paragraph now spanning p. 14:

      -  We now refer to the bar colors in Figures 7C and 7D that support each statement. 

      -  We provide an illustration of the findings in Figure 7E.

      iv. Previously published literature has shown that cells of the inner NBL are RXRγ+ ganglion cells. So, how were these RXRγ+ ganglion cells in the inner NBL discriminated during multiplex RNA FISH (in Fig 6E-6H and in Fig S11)?

      We thank the reviewer for requesting this clarification. We agree that “inner NBL” is the incorrect term for the region in which we examined RXRg+ photoreceptor precursors, as this could include RXRγ+ nascent RGCs. We now clarify that 

      “we examined GNAT2 and NR2E3 RNA co-expression in RXRg+ cone precursors in the outermost NBL and in RXRg+ rod precursors in the middle NBL … .”  (p. 14-15) We further state, 

      “Limiting our analysis to the outer and middle NBL allowed us to disregard RXRγ+ retinal ganglion cells in the retinal ganglion cell layer or inner NBL (top of p. 15)”

      Figure 7E is provided to further aid the reader in understanding the positions examined, and the legend states “RXRg+ retinal ganglion cells in the inner NBL and ganglion cell layer not shown. 

      v. In Figure 6E, what marker does each color cell correspond to?

      In this figure (now panel 7A), we declined to provide the color key since the image is not sufficiently enlarged to visualize the IF and FISH signals. The figure is provided solely to document the regions analyzed and readers are now referred to “see Figure S12 for IF + FISH images” (2nd line, p. 15), where the marker colors are indicated.

      vi. In Figure S11 & 6E, Protein and RNA transcript color of NR2E3, GNAT2 are hard to distinguish. Usage of other colors is recommended.  

      We appreciate the reviewer’s concern related to the colors (in the now redesignated Figure S12 and 7A); however, we feel this issue is largely mitigated by our use of arrows to point to the cells needed to illustrate the proposed concepts in Figure S12B. All quantitation was performed by examining each color channel separately to ensure correct attribution, which is now mentioned in the Methods (2nd-to-last line of Quantitation of FISH section, p. 35).

      vii. 

      With due respect, we suggest that labeling each box (now in Figure 8B) makes the figure rather busy and difficult to infer the main point, which is that boxed regions were examined at various distanced from the center (denoted by the “C” and “0 mm”) with distances periodically indicated. We suggest the addition of such markers would not improve and might worsen the figure for most readers.    

      e. An early L/M cone trajectory marked by successive lncRNA expression

      i. In Figure 8C - color-coded labelling of LM1-4 clusters is recommended.

      We note Fig. 8C (now 9C) is intended to use color to display the pseudotemporal positions of each cell. We recognize that an additional plot with the pseudotime line imposed on LM subcluster colors could provide some insights, yet we are unaware of available software for this and are unable to develop such software at present. To enable readers to obtain a visual impression of the pseudotime vs subcluster positions, we now refer the reader to Figure 5A in the revised figure legend, as follows:  (“The pseudotime trajectory may be related to LM1-LM4 subcluster distributions in Figure 5A.”).

      ii. In Figure 8G - what does the horizontal color-coded bar below the lncRNAs name refer to? These bars are similar in all four graphs of the 8G figure.

      As stated in the Fig. 8G (now 9G) legend, “Colored bars mark lncRNA expression regions as described in the text.”  We revised the text to more clearly identify the color code. (p. 18-19)   

      f. Cone intrinsic SYK contributions to the proliferative response to pRB loss

      i. In Fig 9F - The expression of ARR3+ cells (indicated by the green arrow in FW18) is poorly or rarely seen in the peripheral retina.

      We thank the reviewer for finding this oversight. In panel 9F (now 10F), we removed the green arrows from the cells in the periphery, which are ARR3- due to the immaturity of cones in this region. 

      ii. In Figure 9F - Did the authors stain the FW16 retina with ARR3?

      Unfortunately, we did not stain the FW16 retina for ARR3 in this instance.

      iii. Inclusion of DAPI staining for Fig 9F is recommended to justify the ONL & INL in the images.

      We regret that we are unable to merge the DAPI in this instance due to the way in which the original staining was imaged.  A more detailed analysis corroborating and extending the current results is in progress. 

      iv. Immunostaining images for Figure 9G are missing & are required to be included. What does shSCR in Fig 9G refer to?

      We now provide representative immunostaining images below the panel (now 10G). The legend was updated: “Bottom: Example of Ki67, YFP, and RXRg co-immunostaining with DAPI+ nuclei (yellow outlines). Arrows: Ki67+, YFP+, RXRg+ nuclei.”  The revised legend now notes that shSCR refers to the scrambled control shRNA.

      v. For Figure 9H - Is the presence and loss of SYK activity consistent with all the subpopulations (S & LM) of early maturing and matured cones?

      We appreciate the reviewer’s question and interest (relating to the redesignated Figure 10H); however, we have not yet completed a comprehensive evaluation of SYK expression in all the subpopulations (S & LM) of early maturing and matured cones and will reserve such data for a subsequent study. We suggest that this information is not critical to the study’s major conclusions.

      vi. Figure 9A is not explained in the results. Why were MYCN proteins assessed along with ARR3 and NRL? What does this imply?

      We thank the reviewer for noting that this figure (now Figure 10A) was not clearly described. 

      As per the response to Reviewer 1, point 6 , the text now states,  

      “The upregulation of MYC target genes was of interest given that many MYC target genes are also MYCN targets, that MYCN protein is highly expressed in maturing (ARR3+) cone precursors but not in NRL+ rods (Figure 10A), and that MYCN is critical to the cone precursor proliferative response to pRB loss [8–10].” (middle, p. 19, new text underlined).

      Hence, the figure demonstrates the cone cell specificity of high MYCN protein.  This is further noted in the Fig. 10a legend: “A. Immunofluorescent staining shows high MYCN in ARR3+ cones but not in NRL+ rods in FW18 retina.”

    1. For this, N-terminal GST-tag or C-terminal GFP-tag TRPV1 was transiently transfected into human embryonic kidney (HEK) 293 cells.

      This is a very intriguing idea linking TRPV1-mediated calpain activation to downregulation of TRPV1! While your engineered HEK and CHO cell systems work well, can you perform this assay in more biologically relevant cells, such as DRGs, or cells more closely related to neurons, like keratinocytes, and examine endogenous proteins?

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      The manuscript by Hussain and collaborators aims at deciphering the microtubule-dependent ribbon formation in zebrafish hair cells. By using confocal imaging, pharmacology tools, and zebrafish mutants, the group of Katie Kindt convincingly demonstrated that ribbon, the organelle that concentrates glutamate-filled vesicles at the hair cell synapse, originates from the fusion of precursors that move along the microtubule network. This study goes hand in hand with a complementary paper (Voorn et al.) showing similar results in mouse hair cells.

      Strengths:

      This study clearly tracked the dynamics of the microtubules, and those of the microtubule-associated ribbons and demonstrated fusion ribbon events. In addition, the authors have identified the critical role of kinesin Kif1aa in the fusion events. The results are compelling and the images and movies are magnificent.

      Weaknesses:

      The lack of functional data regarding the role of Kif1aa. Although it is difficult to probe and interpret the behavior of zebrafish after nocodazole treatment, I wonder whether deletion of kif1aa in hair cells may result in a functional deficit that could be easily tested in zebrafish?

      We have examined functional deficits in kif1aa mutants in another paper that was recently accepted: David et al. 2024. https://pubmed.ncbi.nlm.nih.gov/39373584/

      In David et al., we found that in addition to a subtle role in ribbon fusion during development, Kif1aa plays a major role in enriching glutamate-filled synaptic vesicles at the presynaptic active zone of mature hair cells. In kif1aa mutants, synaptic vesicles are no longer enriched at the hair cell base, and there is a reduction in the number of synaptic vesicles associated with presynaptic ribbons. Further, we demonstrated that kif1aa mutants also have functional defects including reductions in spontaneous vesicle release (from hair cells) and evoked postsynaptic calcium responses. Behaviorally, kif1aa mutants exhibit impaired rheotaxis, indicating defects in the lateral-line system and an inability to accurately detect water flow. Because our current paper focuses on microtubule-associated ribbon movement and dynamics early in hair-cell development, we have only discussed the effects of Kif1aa directly related to ribbon dynamics during this time window. In our revision, we have referenced this recent work. Currently it is challenging to disentangle how the subtle defects in ribbon formation in kif1aa mutants contribute to the defects we observe in ribbon-synapse function.

      Added to results:

      “Recent work in our lab using this mutant has shown that Kif1aa is responsible for enriching glutamate-filled vesicles at the base of hair cells. In addition this work demonstrated that loss of Kif1aa results in functional defects in mature hair cells including a reduction in evoked post-synaptic calcium responses (David et al., 2024). We hypothesized that Kif1aa may also be playing an earlier role in ribbon formation.”

      Impact:

      The synaptogenesis in the auditory sensory cell remains still elusive. Here, this study indicates that the formation of the synaptic organelle is a dynamic process involving the fusion of presynaptic elements. This study will undoubtedly boost a new line of research aimed at identifying the specific molecular determinants that target ribbon precursors to the synapse and govern the fusion process.

      Reviewer #2 (Public Review):

      Summary:

      In this manuscript, the authors set out to resolve a long-standing mystery in the field of sensory biology - how large, presynaptic bodies called "ribbon synapses" migrate to the basolateral end of hair cells. The ribbon synapse is found in sensory hair cells and photoreceptors, and is a critical structural feature of a readily-releasable pool of glutamate that excites postsynaptic afferent neurons. For decades, we have known these structures exist, but the mechanisms that control how ribbon synapses coalesce at the bottom of hair cells are not well understood. The authors addressed this question by leveraging the highly-tractable zebrafish lateral line neuromast, which exhibits a small number of visible hair cells, easily observed in time-lapse imaging. The approach combined genetics, pharmacological manipulations, high-resolution imaging, and careful quantifications. The manuscript commences with a developmental time course of ribbon synapse development, characterizing both immature and mature ribbon bodies (defined by position in the hair cell, apical vs. basal). Next, the authors show convincing (and frankly mesmerizing) imaging data of plus end-directed microtubule trafficking toward the basal end of the hair cells, and data highlighting the directed motion of ribbon bodies. The authors then use a series of pharmacological and genetic manipulations showing the role of microtubule stability and one particular kinesin (Kif1aa) in the transport and fusion of ribbon bodies, which is presumably a prerequisite for hair cell synaptic transmission. The data suggest that microtubules and their stability are necessary for normal numbers of mature ribbons and that Kif1aa is likely required for fusion events associated with ribbon maturation. Overall, the data provide a new and interesting story on ribbon synapse dynamics.

      Strengths:

      (1) The manuscript offers a comprehensive Introduction and Discussion sections that will inform generalists and specialists.

      (2) The use of Airyscan imaging in living samples to view and measure microtubule and ribbon dynamics in vivo represents a strength. With rigorous quantification and thoughtful analyses, the authors generate datasets often only obtained in cultured cells or more diminutive animal models (e.g., C. elegans).

      (3) The number of biological replicates and the statistical analyses are strong. The combination of pharmacology and genetic manipulations also represents strong rigor.

      (4) One of the most important strengths is that the manuscript and data spur on other questions - namely, do (or how do) ribbon bodies attach to Kinesin proteins? Also, and as noted in the Discussion, do hair cell activity and subsequent intracellular calcium rises facilitate ribbon transport/fusion?

      These are important strengths and as stated we are currently investigating what other kinesins and adaptors and adaptor’s transport ribbons. We have ongoing work examining how hair-cell activity impacts ribbon fusion and transport!

      Weaknesses:

      (1) Neither the data or the Discussion address a direct or indirect link between Kinesins and ribbon bodies. Showing Kif1aa protein in proximity to the ribbon bodies would add strength.

      This is a great point. Previous immunohistochemistry work in mice demonstrated that ribbons and Kif1a colocalize in mouse hair cells (Michanski et al, 2019). Unfortunately, the antibody used in study work did not work in zebrafish. To further investigate this interaction, we also attempted to create a transgenic line expressing a fluorescently tagged Kif1aa to directly visualize its association with ribbons in vivo. At present, we were unable to detect transient expression of Kif1aa-GFP or establish a transgenic line using this approach. While we will continue to work towards understanding whether Kif1aa and ribbons colocalize in live hair cells, currently this goal is beyond the scope of this paper. In our revision we discuss this caveat.

      Added to discussion:

      “In addition, it will be useful to visualize these kinesins by fluorescently tagging them in live hair cells to observe whether they associate with ribbons.”

      (2) Neither the data or Discussion address the functional consequences of loss of Kif1aa or ribbon transport. Presumably, both manipulations would reduce afferent excitation.

      Excellent point. Please see the response above to Reviewer #1 public response weaknesses.

      (3) It is unknown whether the drug treatments or genetic manipulations are specific to hair cells, so we can't know for certain whether any phenotypic defects are secondary.

      This is correct and a caveat of our Kif1aa and drug experiments. In our recently published work, we confirmed that Kif1aa is expressed in hair cells and neurons, while kif1ab is present just is neurons. Therefore, it is likely that the ribbon formation defects in kif1aa mutants are restricted to hair cells. We added this expression information to our results:

      “ScRNA-seq in zebrafish has demonstrated widespread co-expression of kif1ab and kif1aa mRNA in the nervous system. Additionally, both scRNA-seq and fluorescent in situ hybridization have revealed that pLL hair cells exclusively express kif1aa mRNA (David et al., 2024; Lush et al., 2019; Sur et al., 2023).”

      Non-hair cell effects are a real concern in our pharmacology experiments. To mitigate this in our pharmacological experiments, we have performed drug treatments at 3 different timescales: long-term (overnight), short-term (4 hr) and fast (30 min) treatments. The fast experiments were done after 30 min nocodazole drug treatment, and after this treatment we observed reduced directional motion and fusions. This fast drug treatment should not incur any long-term changes or developmental defects as hair-cell development occurs over 12-16 hrs. However, we acknowledge that drug treatments could have secondary phenotypic effects or effects that are not hair-cell specific. In our revision, we discuss these issues.

      Added to discussion:

      “Another important consideration is the potential off-target effects of nocodazole. Even at non-cytotoxic doses, nocodazole toxicity may impact ribbons and synapses independently of its effects on microtubules. While this is less of a concern in the short- and medium-term experiments (30-70 min and 4 hr), long-term treatments (16 hrs) could introduce confounding effects. Additionally, nocodazole treatment is not hair cell-specific and could disrupt microtubule organization within afferent terminals as well. Thus, the reduction in ribbon-synapse formation following prolonged nocodazole treatment may result from microtubule disruption in hair cells, afferent terminals, or a combination of the two.”

      Reviewer #3 (Public Review):

      Summary:

      The manuscript uses live imaging to study the role of microtubules in the movement of ribeye aggregates in neuromast hair cells in zebrafish. The main findings are that

      (1) Ribeye aggregates, assumed to be ribbon precursors, move in a directed motion toward the active zone;

      (2) Disruption of microtubules and kif1aa increases the number of ribeye aggregates and decreases the number of mature synapses.

      The evidence for point 2 is compelling, while the evidence for point 1 is less convincing. In particular, the directed motion conclusion is dependent upon fitting of mean squared displacement that can be prone to error and variance to do stochasticity, which is not accounted for in the analysis. Only a small subset of the aggregates meet this criteria and one wonders whether the focus on this subset misses the bigger picture of what is happening with the majority of spots.

      Strengths:

      (1) The effects of Kif1aa removal and nocodozole on ribbon precursor number and size are convincing and novel.

      (2) The live imaging of Ribeye aggregate dynamics provides interesting insight into ribbon formation. The movies showing the fusion of ribeye spots are convincing and the demonstrated effects of nocodozole and kif1aa removal on the frequency of these events is novel.

      (3) The effect of nocodozole and kif1aa removal on precursor fusion is novel and interesting.

      (4) The quality of the data is extremely high and the results are interesting.

      Weaknesses:

      (1) To image ribeye aggregates, the investigators overexpressed Ribeye-a TAGRFP under the control of a MyoVI promoter. While it is understandable why they chose to do the experiments this way, expression is not under the same transcriptional regulation as the native protein, and some caution is warranted in drawing some conclusions. For example, the reduction in the number of puncta with maturity may partially reflect the regulation of the MyoVI promoter with hair cell maturity. Similarly, it is unknown whether overexpression has the potential to saturate binding sites (for example motors), which could influence mobility.

      We agree that overexpression of transgenes under using a non-endogenous promoter in transgenic lines is an important consideration. Ideally, we would do these experiments with endogenously expressed fluorescent proteins under a native promoter. However, this was not technically possible for us. The decrease in precursors is likely not due to regulation by the myo6a promoter. Although the myo6a promoter comes on early in hair cell development, the promoter only gets stronger as the hair cells mature. This would lead to a continued increase rather than a decrease in puncta numbers with development.

      Protein tags such as tagRFP always have the caveat of impacting protein function. This is in partly why we complemented our live imaging with analyses in fixed tissue without transgenes (kif1aa mutants and nocodazole/taxol treatments).

      In our revision, we did perform an immunolabel on myo6b:riba-tagRFP transgenic fish and found that Riba-tagRFP expression did not impact ribbon synapse numbers or ribbon size. This analysis argues that the transgene is expressed at a level that does not impact ribbon synapses. This data is summarized in Figure 1-S1.

      Added to the results:

      “Although this latter transgene expresses Riba-TagRFP under a non-endogenous promoter, neither the tag nor the promoter ultimately impacts cell numbers, synapse counts, or ribbon size (Figure 1-S1A-E).”

      Added to methods:

      Tg(myo6b:ctbp2a-TagRFP)<sup>idc11Tg</sup> reliably labels mature ribbons, similar to a pan-CTBP immunolabel at 5 dpf (Figure 1-S1B). This transgenic line does not alter the number of hair cells or complete synapses per hair cell (Figure 1-S1A-D). In addition, myo6b:ctbp2a-TagRFP does not alter the size of ribbons (Figure 1-S1E).”

      (2) The examples of punctae colocalizing with microtubules look clear (Figures 1 F-G), but the presentation is anecdotal. It would be better and more informative, if quantified.

      We did attempt a co-localization analysis between microtubules and ribbons but did not move forward with it due to several issues:

      (1) Hair cells have an extremely crowded environment, especially since the nucleus occupies the majority of the cell. All proteins are pushed together in the small space surrounding the nucleus and ultimately, we found that co-localization analyses were not meaningful because the distances were too small.

      (2) We also attempted to segment microtubules in these images and quantify how many ribbons were associated with microtubules, but 3D microtubule segmentation was not accurate in hair cells due to highly varying filament intensities, filament dynamics and the presence of diffuse cytoplasmic tubulin signal.

      Because of these challenges we concluded the best evidence of ribbon-microtubule association is through visualization of ribbons and their association with microtubules over time (in our timelapses). We see that ribbons localize to microtubules in all our timelapses, including the examples shown (Movies S2-S10). The only instance of ribbon dissociation it when ribbons switch from one filament to another. We did not observe free-floating ribbons in our study.

      (3) It appears that any directed transport may be rare. Simply having an alpha >1 is not sufficient to declare movement to be directed (motor-driven transport typically has an alpha approaching 2). Due to the randomness of a random walk and errors in fits in imperfect data will yield some spread in movement driven by Brownian motion. Many of the tracks in Figure 3H look as though they might be reasonably fit by a straight line (i.e. alpha = 1).

      (4) The "directed motion" shown here does not really resemble motor-driven transport observed in other systems (axonal transport, for example) even in the subset that has been picked out as examples here. While the role of microtubules and kif1aa in synapse maturation is strong, it seems likely that this role may be something non-canonical (which would be interesting).

      Yes, it is true, that directed transport of ribbon precursors is relatively rare. Only a small subset of the ribbon precursors moves directionally (α > 1, 20 %) or have a displacement distance > 1 µm (36 %) during the time windows we are imaging. The majority of the ribbons are stationary. To emphasize this result we have added bar graphs to Figure 3I,K to illustrate this result and state the numbers behind this result more clearly.

      “Upon quantification, 20.2 % of ribbon tracks show α > 1, indicative of directional motion, but the majority of ribbon tracks (79.8 %) show α < 1, indicating confinement on microtubules (Figure 3I, n = 10 neuromasts, 40 hair cells, and 203 tracks).

      To provide a more comprehensive analysis of precursor movement, we also examined displacement distance (Figure 3J). Here, as an additional measure of directed motion, we calculated the percent of tracks with a cumulative displacement > 1 µm. We found 35.6 % of tracks had a displacement > 1 µm (Figure 3K; n = 10 neuromasts, 40 hair cells, and 203 tracks).”

      We cannot say for certain what is happening with the stationary ribbons, but our hypothesis is that these ribbons eventually exhibit directed motion sufficient to reach the active zone. This idea is supported by the fact that we see ribbons that are stationary begin movement, and ribbons that are moving come to a stop during the acquisition of our timelapses (Movies S4 and S5). It is possible that ribbons that are stationary may not have enough motors attached, or there may be a ‘seeding’ phase where Ribeye aggregates are condensing on the ribbon.

      We also reexamined our MSD a values as the a values we observed in hair cells were lower than those seen canonical motor-driven transport (where a approaches 2). One reason for this difference may arise from the dynamic microtubule network in developing hair cells, which could affect directional ribbon movement. In our revision we plotted the distribution of a values which confirmed that in control hair cells, the majority of the a values we see are typically less than 2 (Figure 7-S1A). Interestingly we also compared the distribution a values between control and taxol-treated hair cells, where the microtubule network is more stable, and found that the distribution shifted towards higher a values (Figure 7-S1A). We also plotted only ‘directional’ tracks (with a > 1) and observed significantly higher a values in taxol-treated hair cells (Figure 7-S1B). This is an interesting result which indicates that although the proportion of directional tracks (with a > 1) is not significantly different between control and taxol-treated hair cells (which could be limited by the number of motor/adapter proteins), the ribbons that move directionally do so with greater velocities when the microtubules are more stable. This supports our idea that the stability of the microtubule network could be why ribbon movement does not resemble canonical motor transport. This analysis is presented as a new figure (Figure 7-S1A-B) and is referred to in the text in the results and the discussion.

      Results:

      “Interestingly, when we examined the distribution of α values, we observed that taxol treatment shifted the overall distribution towards higher α a values (Figure 7-S1A). In addition, when we plotted only tracks with directional motion (α > 1), we found significantly higher α values in hair cells treated with taxol compared to controls (Figure 7-S1B). This indicates that in taxol-treated hair cells, where the microtubule network is stabilized, ribbons with directional motion have higher velocities.”

      Discussion:

      “Our findings indicate that ribbons and precursors show directed motion indicative of motor-mediated transport (Figure 3 and 7). While a subset of ribbons moves directionally with α values > 1, canonical motor-driven transport in other systems, such as axonal transport, can achieve even higher α values approaching 2 (Bellotti et al., 2021; Corradi et al., 2020). We suggest that relatively lower α values arise from the highly dynamic nature of microtubules in hair cells. In axons, microtubules form stable, linear tracks that allow kinesins to transport cargo with high velocity. In contrast, the microtubule network in hair cells is highly dynamic, particularly near the cell base. Within a single time frame (50-100 s), we observe continuous movement and branching of these networks. This dynamic behavior adds complexity to ribbon motion, leading to frequent stalling, filament switching, and reversals in direction. As a result, ribbon transport appears less directional than the movement of traditional motor cargoes along stable axonal filaments, resulting in lower α values compared to canonical motor-mediated transport. Notably, treatment with taxol, which stabilizes microtubules, increased α values to levels closer to those observed in canonical motor-driven transport (Figure 7-S1). This finding supports the idea that the relatively lower α values in hair cells are a consequence of a more dynamic microtubule network. Overall, this dynamic network gives rise to a slower, non-canonical mode of transport.”

      (5) The effect of acute treatment with nocodozole on microtubules in movie 7 and Figure 6 is not obvious to me and it is clear that whatever effect it has on microtubules is incomplete.

      When using nocodazole, we worked to optimize the concentration of the drug to minimize cytotoxicity, while still being effective. While the more stable filaments at the cell apex remain largely intact after nocodazole treatment, there are almost no filaments at the hair cell base, which is different from the wild-type hair cells. In addition, nocodazole-treated hair cells have more cytoplasmic YFP-tubulin signal compared to wild type. We have clarified this in our results. To better illustrate the effect of nocodazole and taxol we have also added additional side-view images of hair cells expressing YFP-tubulin (Figure 4-S1F-G), that highlight cytoplasmic YFP-tubulin and long, stabilized microtubules after 3-4 hr treatment with nocodazole and taxol respectively. In these images we also point out microtubules at the apical region of hair cells that are very stable and do not completely destabilize with nocodazole treatment at concentrations that are tolerable to hair cells.

      “We verified the effectiveness of our in vivo pharmacological treatments using either 500 nM nocodazole or 25 µM taxol by imaging microtubule dynamics in pLL hair cells (myo6b:YFP-tubulin). After a 30-min pharmacological treatment, we used Airyscan confocal microscopy to acquire timelapses of YFP-tubulin (3 µm z-stacks, every 50-100 s for 30-70 min, Movie S8). Compared to controls, 500 nM nocodazole destabilized microtubules (presence of depolymerized YFP-tubulin in the cytosol, see arrows in Figure 4-S1F-G) and 25 µM taxol dramatically stabilized microtubules (indicated by long, rigid microtubules, see arrowheads in Figure 4-S1F,H) in pLL hair cells. We did still observe a subset of apical microtubules after nocodazole treatment, indicating that this population is particularly stable (see asterisks in Figure 4-S1F-H).”

      To further address concerns about verifying the efficacy of nocodazole and taxol treatment on microtubules, we added a quantification of our immunostaining data comparing the mean acetylated-a-tubulin intensities between control, nocodazole and taxol-treated hair cells. Our results show that nocodazole treatment reduces the mean acetylated-a-tubulin intensity in hair cells. This is included as a new figure (Figure 4-S1D-E) and this result is referred to in the text. To better illustrate the effect of nocodazole and taxol we have also added additional side-view images of hair cells after overnight treatment with nocodazole and taxol (Figure 4-S1A-C).

      “After a 16-hr treatment with 250 nM nocodazole we observed a decrease in acetylated-a-tubulin label (qualitative examples: Figure 4A,C, Figure 4-S1A-B). Quantification revealed significantly less mean acetylated-a-tubulin label in hair cells after nocodazole treatment (Figure 4-S1D). Less acetylated-a-tubulin label indicates that our nocodazole treatment successfully destabilized microtubules.”

      “Qualitatively more acetylated-a-tubulin label was observed after treatment, indicating that our taxol treatment successfully stabilized microtubules (qualitative examples: Figure 4-S1A,C). Quantification revealed an overall increase in mean acetylated-a-tubulin label in hair cells after taxol treatment, but this increase did not reach significance (Figure 4-S1E).”

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      (1) The manuscript is fairly dense. For instance, some information is repeated (page 3 ribbon synapses form along a condensed timeline in zebrafish hair cells: 12-18 hrs, and on .page 5. These hair cells form 3-4 ribbon synapses in just 12-18 hrs). Perhaps, the authors could condense some of the ideas? The introduction could be shortened.

      We have eliminated this repeated text in our revision. We have shortened the introduction 1275 to 1038 words (with references)

      (2) The mechanosensory structure on page 5 is not defined for readers outside the field.

      Great point, we have added addition information to define this structure in the results:

      “We staged hair cells based on the development of the apical, mechanosensory hair bundle. The hair bundle is composed of actin-based stereocilia and a tubulin-based kinocilium. We used the height of the kinocilium (see schematic in Figure 1B), the tallest part of the hair bundle, to estimate the developmental stage of hair cells as described previously…”

      (3) Figure 1E is quite interesting but I'd rather show Figure S1 B/C as they provide statistics. In addition, the authors define 4 stages : early, intermediate, late, and mature for counting but provide only 3 panels for representative examples by mixing late/mature.

      We were torn about which ribbon quantification graph to show. Ultimately, we decided to keep the summary data in Figure 1E. This is primarily because the supplementary Figure will be adjacent to the main Figure in the Elife format, and the statistics will be easy to find and view.

      Figure 1 now provides a representative image for both late and mature hair cells.

      (4.) The ribbon that jumps from one microtubule to another one is eye-catching. Can the authors provide any statistics on this (e.g. percentage)?

      Good point. In our revision, we have added quantification for these events. We observe 2.8 switching events per neuromast during our fast timelapses. This information is now in the text and is also shown in a graph in Figure 3-S1D.

      “Third, we often observed that precursors switched association between neighboring microtubules (2.8 switching events per neuromast, n= 10 neuromasts; Figure 3-S1C-D, Movie S7).”

      (5) With regard to acetyl-a-tub immunocytochemistry, I would suggest obtaining a profile of the fluorescence intensity on a horizontal plane (at the apical part and at the base).

      (6) Same issue with microtubule destruction by nocodazole. Can the authors provide fluorescence intensity measurements to convince readers of microtubule disruption for long and short-term application.

      Regarding quantification of microtubule disruption using nocodazole and taxol. We did attempt to create profiles of the acetylated tubulin or YFP-tubulin label along horizontal planes at the apex and base, but the amount variability among cells and the angle of the cell in the images made this type of display and quantification challenging. In our revision we as stated above in our response to Reviewer #1’s public comment, we have added representative side-view images to show the disruptions to microtubules more clearly after short and long-term drug experiments (Figure 4-S1A-C, F-H). In addition, we quantified the reduction in acetylated tubulin label after overnight treatment with nocodazole and found the signal was significantly reduced (Figure 3-S1D-E). Unfortunately, we were unable to do a similar quantification due to the variability in YFP-tubulin intensity due to variations in mounting. The following text has been added to the results:

      “Quantification revealed significantly less mean acetylated-a-tubulin label in hair cells after nocodazole treatment (Figure 4-S1D).”

      “Quantification revealed an overall increase in mean acetylated-a-tubulin label in hair cells after taxol treatment, but this increase did not reach significance (Figure 4-S1A,C,E).”

      (7) It is a bit difficult to understand that the long-term (overnight) microtubule destabilization leads to a reduction in the number of synapses (Figure 4F) whereas short-term (30 min) microtubule destabilization leads to the opposite phenotype with an increased number of ribbons (Figure 6G). Are these ribbons still synaptic in short-term experiments? What is the size of the ribbons in the short-term experiments? Alternatively, could the reduction in synapse number upon long-term application of nocodazole be a side-effect of the toxicity within the hair cell?

      Agreed-this is a bit confusing. In our revision, we have changed our analyses, so the comparisons are more similar between the short- and long-term experiments–we examined the number of ribbons and precursor per cells (apical and basal) in both experiments (Changed the panel in Figure 4G, Figure 4-S2G and Figure 5G). In our live experiments we cannot be sure that ribbons are synaptic as we do not have a postsynaptic co-label. Also, we are unable to reliably quantify ribbon and precursor size in our live images due to variability in mounting. We have changed the text to clarify as follows:

      Results:

      “In each developing cell, we quantified the total number of Riba-TagRFP puncta (apical and basal) before and after each treatment. In our control samples we observed on average no change in the number of Riba-TagRFP puncta per cell (Figure 6G). Interestingly, we observed that nocodazole treatment led to a significant increase in the total number of Riba-TagRFP puncta after 3-4 hrs (Figure 6G). This result is similar to our overnight nocodazole experiments in fixed samples, where we also observed an increase in the number of ribbons and precursors per hair cell. In contrast to our 3-4 hr nocodazole treatment, similar to controls, taxol treatment did not alter the total number of Riba-TagRFP puncta over 3-4 hrs (Figure 6G). Overall, our overnight and 3-4 hr pharmacology experiments demonstrate that microtubule destabilization has a more significant impact on ribbon numbers compared to microtubule stabilization.”

      Discussion:

      “Ribbons and microtubules may interact during development to promote fusion, to form larger ribbons. Disrupting microtubules could interfere with this process, preventing ribbon maturation. Consistent with this, short-term (3-4 hr) and long-term (overnight) nocodazole increased ribbon and precursor numbers (Figure 6AG; Figure 4G), suggesting reduced fusion. Long-term treatment (overnight) resulted in a shift toward smaller ribbons (Figure 4H-I), and ultimately fewer complete synapses (Figure 4F).”

      Nocodazole toxicity: in response to Reviewer # 2’s public comment we have added the following text in our discussion:

      Discussion:

      “Another important consideration is the potential off-target effects of nocodazole. Even at non-cytotoxic doses, nocodazole toxicity may impact ribbons and synapses independently of its effects on microtubules. While this is less of a concern in the short- and medium-term experiments (30 min to 4 hr), long-term treatments (16 hrs) could introduce confounding effects. Additionally, nocodazole treatment is not hair cell-specific and could disrupt microtubule organization within afferent terminals as well. Thus, the reduction in ribbon-synapse formation following prolonged nocodazole treatment may result from microtubule disruption in hair cells, afferent terminals, or a combination of the two.”

      (8) Does ribbon motion depend on size or location?

      It is challenging to reliability quantify the actual area of precursors in our live samples, as there is variability in mounting and precursors are quite small. But we did examine the location of ribbon precursors (using tracks > 1 µm as these tracks can easily be linked to cell location in Imaris) with motion in the cell. We found evidence of ribbons with tracks > 1 µm throughout the cell, both above and below the nucleus. This is now plotted in Figure 3M. We have also added the following test to the results:

      “In addition, we examined the location of precursors within the cell that exhibited displacements > 1 µm. We found that 38.9 % of these tracks were located above the nucleus, while 61.1 % were located below the nucleus (Figure 3M).”

      Although this is not an area or size measurement, this result suggests that both smaller precursors that are more apical, and larger precursors/ribbons that are more basal all show motion.

      (9) The fusion event needs to be analyzed in further detail: when one ribbon precursor fuses with another one, is there an increase in size or intensity (this should follow the law of mass conservation)? This is important to support the abstract sentence "ribbon precursors can fuse together on microtubules to form larger ribbons".

      As mentioned above it is challenging accurately estimate the absolute size or intensity of ribbon precursors in our live preparation. But we did examine whether there is a relative increase in area after ribbon fuse. We have plotted the change in area (within the same samples) for the two fusion events in shown in Figure 8-S1A-B. In these examples, the area of the puncta after fusion is larger than either of the two precursors that fuse. Although the areas are not additive, these plots do provide some evidence that fusion does act to form larger ribbons. To accompany these plots, we have added the following text to the results:

      “Although we could not accurately measure the areas of precursors before and after fusion, we observed that the relative area resulting from the fusion of two smaller precursors was greater than that of either precursor alone. This increase in area suggests that precursor fusion may serve as a mechanism for generating larger ribbons (see examples: Figure 8-S1A-B).”

      Because we were unable to provide more accurate evidence of precursor fusion resulting in larger ribbons, we have removed this statement from our abstract and lessened our claims elsewhere in the manuscript.

      (10) The title in Figure 8 is a bit confusing. If fusion events reflect ribbon precursors fusion, it is obvious it depends on ribbon precursors. I'd like to replace this title with something like "microtubules and kif1aa are required for fusion events"

      We have changed the figure title as suggested, good idea.

      Reviewer #2 (Recommendations For The Authors):

      (1) Figure 1C. The purple/magenta colors are hard to distinguish.

      We have made the magenta color much lighter in the Figure 1C to make it easier to distinguish purple and magenta.

      (2) There are places where some words are unnecessarily hyphenated. Examples: live-imaging and hair-cell in the abstract, time-course in the results.

      In our revision, we have done our best to remove unnecessary hyphens, including the ones pointed out here.

      (3) Figure 4H and elsewhere - what is "area of Ribeye puncta?" Related, I think, in the Discussion the authors refer to "ribbon volume" on line 484. But they never measured ribbon volume so this needs to be clarified.

      We have done best to clarify what is meant by area of Ribeye puncta in the results and the methods:

      Results:

      “We also observed that the average of individual Ribeyeb puncta (from 2D max-projected images) was significantly reduced compared to controls (Figure 4H). Further, the relative frequency of individual Ribeyeb puncta with smaller areas was higher in nocodazole treated hair cells compared to controls (Figure 4I).”

      Methods:

      “To quantify the area of each ribbon and precursor, images were processed in a FIJI ‘IJMacro_AIRYSCAN_simple3dSeg_ribbons only.ijm’ as previously described (Wong et al., 2019). Here each Airyscan z-stack was max-projected. A threshold was applied to each image, followed by segmentation to delineate individual Ribeyeb/CTBP puncta. The watershed function was used to separate adjacent puncta. A list of 2D objects of individual ROIs (minimum size filter of 0.002 μm2) was created to measure the 2D areas of each Ribeyeb/CTBP puncta.”

      We did refer to ribbon volume once in the discussion, but volume is not reflected in our analyses, so we have removed this mention of volume.

      (4) More validation data showing gene/protein removal for the crispants would be helpful.

      Great suggestion. As this is a relatively new method, we have created a figure that outlines how we genotype each individual crispant animal analyzed in our study Figure 6-S1. In the methods we have also added the following information:

      “fPCR fragments were run on a genetic analyzer (Applied Biosystems, 3500XL) using LIZ500 (Applied Biosystems, 4322682) as a dye standard. Analysis of this fPCR revealed an average peak height of 4740 a.u. in wild type, and an average peak height of 126 a.u. in kif1aa F0 crispants (Figure 6-S1). Any kif1aa F0 crispant without robust genomic cutting or a peak height > 500 a.u. was not included in our analyses.”

      Reviewer #3 (Recommendations For The Authors):

      Lines 208-209--should refer to the movie in the text.

      Movie S1 is now referenced here.

      It would be helpful if the authors could analyze and quantify the effect of nocodozole and taxol on microtubules (movie 7).

      See responses above to Reviewer #1’s similar request.

      Figure 7 caption says "500 mM" nocodozole.

      Thank you, we have changed the caption to 500 nM.

      One problem with the MSD analysis is that it is dependent upon fits of individual tracks that lead to inaccuracies in assigning diffusive, restricted, and directed motion. The authors might be able to get around these problems by looking at the ensemble averages of all the tracks and seeing how they change with the various treatments. Even if the effect is on a subset of ribeye spots, it would be reassuring to see significant effects that did not rely upon fitting.

      We are hesitant to average the MSD tracks as not all tracks have the same number of time steps (ribbon moving in and out of the z-stack during the timelapse). This makes it challenging for us to look at the ensembles of all averages accurately, especially for the duration of the timelapse. This is the main reason why added another analysis, displacements > 1µm as another readout of directional motion, a measure that does not rely upon fitting.

      The abstract states that directed movement is toward the synapse. The only real evidence for this is a statement in the results: "Of the tracks that showed directional motion, while the majority move to the cell base, we found that 21.2 % of ribbon tracks moved apically." A clearer demonstration of this would be to do the analysis of Figure 2G for the ribeye aggregates.

      If was not possible to do the same analysis to ribbon tracks that we did for the EB3-GFP analysis in Figure 2. In Figure 2 we did a 2D tracking analysis and measured the relative angles in 2D. In contrast, the ribbon tracking was done in 3D in Imaris not possible to get angles in the same way. Further the MSD analysis was outside of Imaris, making it extremely difficult to link ribbon trajectories to the 3D cellular landscape in Imaris. Instead, we examined the direction of the 3D vectors in Imaris with tracks > 1µm and determined the direction of the motion (apical, basal or undetermined). For clarity, this data is now included as a bar graph in Figure 3L. In our results, we have clarified the results of this analysis:

      “To provide a more comprehensive analysis of precursor movement, we also examined displacement distance (Figure 3J). Here, as an additional measure of directed motion, we calculated the percent of tracks with a cumulative displacement > 1 µm. We found 35.6 % of tracks had a displacement > 1 µm (Figure 3K; n = 10 neuromasts, 40 hair cells and 203 tracks). Of the tracks with displacement > 1 µm, the majority of ribbon tracks (45.8 %) moved to the cell base, but we also found a subset of ribbon tracks (20.8 %) that moved apically (33.4 % moved in an undetermined direction) (Figure 3L).”

      Some more detail about the F0 crispants should be provided. In particular, what degree of cutting was observed and what was the criteria for robust cutting?

      See our response to Reviewer 2 and the newly created Figure 6-S1.

  7. May 2025
    1. Reviewer #3 (Public review):

      Summary

      This work investigated the immune response in the murine retina after focal laser lesions. These lesions are made with close to 2 orders of magnitude lower laser power than the more prevalent choroidal neovascularization model of laser ablation. Histology and OCT together show that the laser insult is localized to the photoreceptors and spares the inner retina, the vasculature and the pigment epithelium. As early as 1-day after injury, a loss of cell bodies in the outer nuclear layer is observed. This is accompanied by strong microglial proliferation to the site of injury in the outer retina where microglia do not typically reside. The injury did not seem to result in the extravasation of neutrophils from the capillary network, constituting one of the main findings of the paper. The demonstrated paradigm of studying the immune response and potentially retinal remodeling in the future in vivo is valuable and would appeal to a broad audience in visual neuroscience.

      Strengths

      Adaptive optics imaging of murine retina is cutting edge and enables non-destructive visualization of fluorescently labeled cells in the milieu of retinal injury. As may be obvious, this in vivo approach is a benefit for studying fast and dynamic immune processes on a local time scale - minutes and hours, and also for the longer days-to-months follow-up of retinal remodeling as demonstrated in the article. In certain cases, the in vivo findings are corroborated with histology.

      The analysis is sound and accompanied by stunning video and static imagery. A few different sets of mouse models are used: a) two different mouse lines, each with a fluorescent tag for neutrophils and microglia, b) two different models of inflammation - endotoxin-induced uveitis (EAU) and laser ablation are used to study differences in the immune interaction.

      One of the major advances in this article is the development of the laser ablation model for 'mild' retinal damage as an alternative to the more severe neovascularization models. This model would potentially allow for controlling the size, depth and severity of the laser injury opening interesting avenues for future study.

      The time-course, 2D and 3D spatial activation pattern of microglial activation are striking and provide an unprecedented view of the retinal response to mild injury.

      Editor's note: The authors have addressed all the previous concerns raised by the reviewers.

    2. Author response:

      The following is the authors’ response to the previous reviews

      Public Reviews:

      Reviewer #2 (Public review):

      Summary:

      This study uses in vivo multimodal high-resolution imaging to track how microglia and neutrophils respond to light-induced retinal injury from soon after injury to 2 months post-injury. The in vivo imaging finding was subsequently verified by ex vivo study. The results suggest that despite the highly active microglia at the injury site, neutrophils were not recruited in response to acute light-induced retinal injury.

      Strengths:

      An extremely thorough examination of the cellular-level immune activity at the injury site. In vivo imaging observations being verified using ex vivo techniques is a strong plus.

      Thank you!

      Weaknesses:

      This paper is extremely long, and in the perspective of this reviewer, needs to be better organized. Update: Modifications have been made throughout, which has made the manuscript easier to follow.

      Thank you!

      Study weakness: though the finding prompts more questions and future studies, the findings discussed in this paper is potentially important for us to understand how the immune cells respond differently to different severity level of injury. The study also demonstrated an imaging technology which may help us better understand cellular activity in living tissue during earlier time points.

      We agree that AOSLO has much to offer and this represents some of the earliest reports of its kind.  

      Comments on revisions:

      I appreciate the thorough clarification and re-organization by the authors, and the messages in the manuscript are now more apparent. I recommend also briefly discussing limitations/future improvements in the discussion or conclusion.

      We have added a section to the discussion entitled “Limitations and future improvements”, please see lines 665 – 677.

      Reviewer #3 (Public review):

      Summary

      This work investigated the immune response in the murine retina after focal laser lesions. These lesions are made with close to 2 orders of magnitude lower laser power than the more prevalent choroidal neovascularization model of laser ablation. Histology and OCT together show that the laser insult is localized to the photoreceptors and spares the inner retina, the vasculature and the pigment epithelium. As early as 1-day after injury, a loss of cell bodies in the outer nuclear layer is observed. This is accompanied by strong microglial proliferation to the site of injury in the outer retina where microglia do not typically reside. The injury did not seem to result in the extravasation of neutrophils from the capillary network, constituting one of the main findings of the paper. The demonstrated paradigm of studying the immune response and potentially retinal remodeling in the future in vivo is valuable and would appeal to a broad audience in visual neuroscience.

      Strengths

      Adaptive optics imaging of murine retina is cutting edge and enables non-destructive visualization of fluorescently labeled cells in the milieu of retinal injury. As may be obvious, this in vivo approach is a benefit for studying fast and dynamic immune processes on a local time scale - minutes and hours, and also for the longer days-to-months follow-up of retinal remodeling as demonstrated in the article. In certain cases, the in vivo findings are corroborated with histology.

      Thank you!

      The analysis is sound and accompanied by stunning video and static imagery. A few different sets of mouse models are used, a) two different mouse lines, each with a fluorescent tag for neutrophils and microglia, b) two different models of inflammation - endotoxin-induced uveitis (EAU) and laser ablation are used to study differences in the immune interaction.

      Thank you!

      One of the major advances in this article is the development of the laser ablation model for 'mild' retinal damage as an alternative to the more severe neovascularization models. This model would potentially allow for controlling the size, depth and severity of the laser injury opening interesting avenues for future study.

      Thank you!

      The time-course, 2D and 3D spatial activation pattern of microglial activation are striking and provide an unprecedented view of the retinal response to mild injury.

      We agree that this more complete spatial and temporal evaluation made possible by in vivo imaging is novel.

      Weaknesses

      Generalization of the (lack of) neutrophil response to photoreceptor loss - there is ample evidence in literature that neutrophils are heavily recruited in response to severe retinal damage that includes photoreceptor loss. Why the same was not observed here in this article remains an open question. One could hypothesize that neutrophil recruitment might indeed occur under conditions that are more in line with the more extreme damage models, for example, with a stronger and global ablation (substantially more photoreceptor loss over a larger area). This parameter space is unwieldy and sufficiently large to address the question conclusively in the current article, i.e. how much photoreceptor loss leads to neutrophil recruitment? By the same token, the strong and general conclusion in the title - Photoreceptor loss does not recruit neutrophils - cannot be made until an exhaustive exploration be made of the same parameter space. A scaling back may help here, to reflect the specific, mild form of laser damage explored here, for instance - Mild photoreceptor loss does not recruit neutrophils despite...

      We are striving for clarity and accuracy in our title without adding too many qualifiers.  At present, we feel that the title as submitted is consistent and aligned with the central finding of our manuscript.  The nuance that the reviewer points to is elaborated in the body of the manuscript and we hope the general readership appreciates the same level of detail as appreciated by reviewer #3.

      EIU model - The EIU model was used as a positive control for neutrophil extravasation. Prior work with flow cytometry has shown a substantial increase in neutrophil counts in the EIU model. Yet, in all, the entire article shows exactly 2 examples in vivo and 3 ex vivo (Figure 7) of extravasated neutrophils from the EIU model (n = 2 mice). The general conclusion made about neutrophil recruitment (or lack thereof) is built partly upon this positive control experiment. But these limited examples, especially in the case where literature reports a preponderance of extravasated neutrophils, raise a question on the paradigm(s) used to evaluate this effect in the mild laser damage model.

      This is a helpful suggestion. We agree that readers should see more evidence of the positive control. Therefore we have now included two more supplementary files that show that there is a strong neutrophil response to EIU.  In Figure 7 – supplementary figure 1, we show many Ly-6G-positive neutrophils in the retina seen with histology at the 24 hour time point. In Figure 7 – video 3, we show massive Catchup-positive neutrophil presence in vivo at 24hrs as well.  This aligns with our positive control and also the literature.

      Overall, the strengths outweigh the weaknesses, provided the conclusions/interpretations are reconsidered.

      With the added clarification about the magnitude of the neutrophil response in EIU, we feel that the conclusions presented in the manuscript as-is are valid and appropriate.

      Recommendations for the authors:

      Reviewer #3 (Recommendations for the authors):

      The authors are applauded for embracing the reviewers' feedback and making substantial revisions. Some minor comments below:

      The weakness noted in the public review encourages the authors to reconsider the interpretations drawn based on the results. One would have expected to see far more examples of extravasated neutrophils from the EIU model. That this was not seen weakens the neutrophil recruitment claim substantially. Even without this claim, the methods, laser damage model, time-course and spatial activation pattern of microglial activation are all striking and unprecedented. So, as stated in the public review, the strengths do indeed outweigh the weaknesses once the neutrophil claim is softened.

      We address this in the response above. A strong neutrophil response was observed to EIU. This was confirmed with both histology and in vivo imaging.

      This was alluded to by Reviewer 1 in the prior review - at times, there is an overemphasis on imaging technology that distracts from the scientific questions. The imaging is undoubtedly cutting-edge but also documented in prior work by the authors. Any efforts to reduce or balance the emphasis would help with the general flow.

      Given that these discoveries are made possible partly through new technology, we prefer to keep the details of the innovation in the current manuscript. Given the exceptionally large readership of eLife, we feel some description of the AOSLO imaging is warranted in the manuscript.

    1. Author response:

      The following is the authors’ response to the original reviews

      Reviewer 1 (Public review):

      Summary:

      Gene transfer agent (GTA) from Bartonella is a fascinating chimeric GTA that evolved from the domestication of two phages. Not much is known about how the expression of the BaGTA is regulated. In this manuscript, Korotaev et al noted the structural similarity between BrrG (a protein encoded by the ror locus of BaGTA) to a well-known transcriptional anti-termination factor, 21Q, from phage P21. This sparked the investigation into the possibility that BaGTA cluster is also regulated by anti-termination. Using a suite of cell biology, genetics, and genome-wide techniques (ChIP-seq), Korotaev et al convincingly showed that this is most likely the case. The findings offer the first insight into the regulation of GTA cluster (and GTA-mediated gene transfer) particularly in this pathogen Bartonella. Note that anti-termination is a well-known/studied mechanism of transcriptional control. Anti-termination is a very common mechanism for gene expression control of prophages, phages, bacterial gene clusters, and other GTAs, so in this sense, the impact of the findings in this study here is limited to Bartonella.

      Strengths:

      Convincing results that overall support the main claim of the manuscript.

      Weaknesses:

      A few important controls are missing.

      We sincerely appreciate reviewer #1's positive assessment of our manuscript. In response to the concern regarding control samples/experiments, we have addressed this issue in our revision, by providing data of the replicates of our experiments. We acknowledge that antitermination is a well-established mechanism of expression control in bacteria, including bacterial gene clusters, phages, prophages, and at least one other GTA. As reviewer #2 also noted, our study presents a unique example of phage co-domestication, where antitermination integrates both phage remnants at the regulatory level. We have emphasized this original aspect more clearly in the revised manuscript.

      Reviewer 1 (Recommendations for the authors):

      (1) Provide Rsmd and DALI scores to show how similar the AlphaFold-predicted structures of BrrG are to other anti-termination factors. This should be done for Fig1B and also for Suppl. Fig 1 to support the claim that BrrG, GafA, GafZ, Q21 share structural features.

      In the revised manuscript we provide Rsmd and DALI scores in the supplementary Fig. 1A (Suppl. Fig. 1A). In Suppl. Fig. 1B we further include a heatmap of similiarity values.

      (2) Throughout the manuscript, flow cytometry data of gfp expression was used and shown as single replicate. Korotaev et al wrote in the legends that error bars are shown (that is not true for e.g. Figs. 3, 4, and 5). It is difficult for reviewers/readers to gauge how reliable are their experiments.

      In the revised manuscript we show all replicates for the flow cytometry histograms.

      For Fig. 2C, all replicates are provided in Suppl. Fig. 3.

      For Fig. 3B, all replicates are provided in Suppl. Fig. 4.

      For Fig. 4B, all replicates are provided in Suppl. Fig. 5.

      For Fig. 5B, all replicates are provided in Suppl. Fig. 6.

      (3) I am unsure how ChIP-seq in Fig. 2A was performed (with anti-FLAG or anti-HA antibodies? I cannot tell from the Materials & Methods). More importantly, I did not see the control for this ChIP-seq experiment. If a FLAG-tagged BrrG was used for ChIP-seq, then a WT non-tagged version should be used as a negative control (not sequencing INPUT DNA), this is especially important for anti-terminator that can co-travel with RNA polymerase. Please also report the number of replicates for ChIP-seq experiments.

      Fig. 2A presents the coverage plot from the ChIP-Seq of ∆brrG +pPtet:3xFLAG-brrG (N’ in green). As anticipated by the referee, we had used ∆brrG +pTet:brrG (untagged) as control (grey). Each strain was tested in a single replicate. The C-terminal tag produced results similar to the untagged version, suggesting it is non-functional. All tested tags are shown in Supplementary Figure 2.

      (4) Korotaev et al mentioned that BrrG binds to DNA (as well as to RNA polymerase). With the availability of existing ChIP-seq data, the authors should be able to locate the DNA-binding element of BrrG, this additional information will be useful to the community.

      We identified a putative binding site of BrrG using our ChIP-Seq data. The putative binding site is indicated in Fig. 2D of the revised manuscript.

      (5) Mutational experiments to break the potential hairpin structure are required to strengthen the claim that this putative hairpin is the potential transcriptional terminator.

      We did not claim the identified hairpin is a confirmed terminator, but proposed it as a candidate. We agree with the referee that the suggested experiment would be necessary to definitively establish its function. However, our main objective was to show that BrrG acts as a processive terminator, which we demonstrated by replacing the putative terminator with a well-characterized synthetic one that BrrG successfully bypassed. Therefore, we chose not to perform the proposed experiment and have accordingly softened our conclusions regarding the hairpin’s potential terminator function.

      Reviewer 2 (Public review):

      Summary:

      In this study, the authors identified and characterized a regulatory mechanism based on transcriptional anti-termination that connects the two gene clusters, capsid and run-off replication (ROR) locus, of the bipartite Bartonella gene transfer agent (GTA). Among genes essential for GTA functionality identified in a previous transposon sequencing project, they found a potential antiterminatior of phage origin within the ROR locus. They employed fluorescence reporter and gene transfer assays of overexpression and knockout strains in combination with ChiPSeq and promoter-fusions to convincingly show that this protein indeed acts as an antiterminator counteracting attenuation of the capsid gene cluster expression.

      Impact on the field:

      The results provide valuable insights into the evolution of the chimeric BaGTA, a unique example of phage co-domestication by bacteria. A similar system found in the other broadly studied Rhodobacterales/Caulobacterales GTA family suggests that antitermination could be a general mechanism for GTA control.

      Strengths:

      Results of the selected and carefully designed experiments support the main conclusions.

      Weaknesses:

      It remains open why overexpression of the antiterminator does not increase the gene transfer frequency.

      We are grateful for reviewer #2's thoughtful and encouraging feedback on our manuscript. The reviewer raises an important question about why overexpression of the antiterminator does not increase gene transfer frequency. While we acknowledge this point, we consider it beyond the scope of the current study. Our findings clearly demonstrate that the antiterminator induces capsid component expression in a large proportion of cells. However, the fact that this expression plateaus at high levels rather than exhibiting a transient peak, as seen in the wild type, suggests that antiterminators do not regulate GTA particle release via lysis. We are actively investigating this further through additional experiments, which we plan to publish separately from this study.

      Reviewer 2 (Recommendations for the authors):

      (1) The authors wrote "GTAs are not self-transmitting because the DNA packaging capacity of a GTA particle is too small to package the entire gene cluster encoding it" (page 3). I thought that at least the Bartonella capsid gene cluster should be self-transmissible within the 14 kb packaged DNA (https://doi.org/10.1371/journal.pgen.1003393, https://doi.org/10.1371/journal.pgen.1000546). This was also concluded by Lang et al (https://doi.org/10.1146/annurev-virology-101416-041624). In this case the presented results would have important implications. As the gene cluster and the anti-terminator required for its expression are separated on the chromosome, it would not be possible to transfer an active GTA gene cluster, although the DNA coding for the genes required for making the packaging agent itself, theoretically fits into a BaGTA particle. Could the authors comment on that? I think it would be helpful to add the sizes of the different gene clusters and the distance between them in Fig. 2A. The ROR amplified region spans 500kb, is the capsid gene cluster within this region?

      We thank the reviewer for bringing up this interesting point. The ror gene cluster, which encodes the antiterminator BrrG, is approximately 9.2 kb in size and could feasibly be packaged in its entirety into a GTA particle. In contrast, the bgt cluster (capsid cluster) is approximately 20 kb in size —exceeding the packaging limit of GTA particles—and is separated from the bgt cluster by approximately 35 kb. Consequently, if the ror cluster is transferred via a GTA particle into a recipient host that does not encode the bgt gene cluster, the ror cluster would not be expressed.

      We added the sizes of the gene clusters to Fig. 1A.

      (2) Another side-note regarding the introduction: On page three the authors write: "GTAs encode bacteriophage-like particles and in contrast to phages transfer random pieces of host bacterial DNA". While packaging is not specific, certain biases in the packaging frequency are observed in both studied GTA families. For Bartonella this is ROR. In the two GTA-producing strains D. shibae and C. crescentus origin and terminus of replication are not packaged and certain regions are overrepresented (https://doi.org/10.1093/gbe/evy005, https://doi.org/10.1371/journal.pbio.3001790). Furthermore, D. shibae plasmids are not packaged but chromids are. I think the term "random" does not properly describe these observations. I would suggest using "not specific" instead.

      We thank the reviewer for this suggestion and adjusted the wording on p. 3 accordingly.

      (3) Page 5: Remove "To address this". It is not needed as you already state "To test this hypothesis" in the previous sentence.

      We adjusted the working on p.5 accordingly.

      (4) I think the manuscript would greatly benefit from a summary figure to visualize the Q-like antiterminator-dependent regulatory circuit for GTA control and its four components described on pages 15 and 16.

      We thank the reviewer for this valuable suggestion. We included a summary figure (Fig. 6) in the discussion section of the revised manuscript.

      (5) Page 17: It might be worth noting that GafA is highly conserved along GTAs in Rhodobacterales (https://doi.org/10.3389/fmicb.2021.662907) and so is probably regulatory integration into the ctrA network (https://doi.org/10.3389/fmicb.2019.00803). It's an old mechanism. It would be also interesting to know if it is a common feature of the two archetypical GTAs that the regulator is not part of the cluster itself.

      We agree with the reviewer’s comments and have revised the wording to state that GafA is highly conserved.

    1. CH and CN

      This seems mostly due to the methylcellulose, correct? I'm wondering if there is a way to determine the actual number of anchor points in the liposome? Perhaps some staining against the His tag? It might be interesting to see where deformations lie in relation to clusters of anchor points.

    2. F-actin is 1.4 μM

      Do you also have the Kd of untagged actinin for F-actin? It could be nice to know if the tag has any impact on binding. I'm also curious if the membrane tethered actinin has a different affinity for actin filaments compared to free-floating actinin.

    1. WWF-Pacific / Tom Vierus

      This image lacks a descriptive alt tag. According to the WCAG guidelines and our course, this makes the content inaccessible to users relying on screen readers, a violation of the Perceivable principle.

    1. Leisure's opportunity cost skyrockets. When an hour of work generates what once took days, rest becomes luxury taxed by your own conscience. Every pause carries an invisible price tag that flickers in your peripheral vision.Productivity breeds new demand. Like efficient engines creating new energy uses, AI can create entirely new work categories and expectations.Competition intensifies. The game theory is unforgiving: when everyone can produce 10x more, the baseline resets, leaving us all running faster just to stay in place.

      Consequences

    1. Reviewer #3 (Public review):

      Summary:

      In this study, Kito et al follow up on previous work that identified Drosophila GCL as a mitotic substrate recognition subunit of a CUL3-RING ubiquitin ligase (CRL3) complex.

      Here they characterize mutants of the human ortholog of GCL, GMCL1, that disrupt the interaction with CUL3 (GMCL1E142K) and that lack the substrate interaction domain (GMCL1 BBO). Immunoprecipitation followed by mass spectrometry identified 9 proteins that interacted with wild-type FLAG-GMCL1 and GMCL1 EK but not GMCL1 BBO. These proteins included 53BP1, which plays a well-characterized role in double-strand break repair but also functions in a USP28-p53-53BP1 "mitotic stopwatch" complex that arrests the cell cycle after a substantially prolonged mitosis. Consistent with the IP-MS results, FLAG-GMCL1 immunoprecipitated 53BP1. Depletion of GMCL1 during mitotic arrest increased protein levels of 53BP1, and this could be rescued by wild-type GMCL1 but not the E142K mutant or a R433A mutant that failed to immunoprecipitate 53BP1.

      Using a publicly available dataset, the authors identified a relatively small subset of cell lines with high levels of GMCL1 mRNA that were resistant to the taxanes paclitaxel, cabazitaxel, and docetaxel. This type of analysis is confounded by the fact that paclitaxel and other microtubule poisons accumulate to substantially different levels in various cell lines (DOI: 10.1073/pnas.90.20.9552 , DOI: 10.1091/mbc.10.4.947 ), so careful follow-up experiments are required to validate results. The correlation between increased GMCL1 mRNA and taxane resistance was not observed in lung cancer cell lines. The authors propose this was because nearly half of lung cancers harbor p53 mutations, and lung cancer cell lines with wild-type but not mutant p53 showed the correlation between increased GMCL1 mRNA and taxane resistance. However, the other cancer cell types in which they report increased GMCL1 expression correlates with taxane sensitivity also have high rates of p53 mutation. Furthermore, p53 status does not predict taxane response in patients (DOI: 10.1002/1097-0142(20000815)89:4<769::aid-cncr8>3.0.co;2-6 , DOI: 10.1002/(SICI)1097-0142(19960915)78:6<1203::AID-CNCR6>3.0.CO;2-A , PMID: 10955790).

      The authors then depleted GMCL1 and reported that it increased apoptosis in two cell lines with wild-type p53 (MCF7 and U2OS) due to activation of the mitotic stopwatch. This is surprising because the mitotic stopwatch paper they cite (DOI: 10.1126/science.add9528 ) reported that U2OS cells have an inactive stopwatch and that activation of the stopwatch results in cell cycle arrest rather than apoptosis in most cell types, including MCF7. Beyond this, it has recently been shown that the level of taxanes and other microtubule poisons achieved in patient tumors is too low to induce mitotic arrest (DOI: 10.1126/scitranslmed.3007965 , DOI: 10.1126/scitranslmed.abd4811 , DOI: 10.1371/journal.pbio.3002339 ), raising concerns about the relevance of prolonged mitosis to paclitaxel response in cancer. The findings here demonstrating that GMCL1 mediates degradation of 53BP1 during mitotic arrest are solid and of interest to cell biologists, but it is unclear that these findings are relevant to paclitaxel response in patients.

      Strengths:

      This study identified 53BP1 as a target of CRL3GMCL1-mediated degradation during mitotic arrest. AlphaFold3 predictions of the binding interface, followed by mutational analysis, identified mutants of each protein (GMCL1 R433A and 53BP1 IEDI1422-1425AAAA) that disrupted their interaction. Knock-in of a FLAG tag into the C-terminus of GMCL1 in HCT116 cells, followed by FLAG immunoprecipitation, confirmed that endogenous GMCL1 interacts with endogenous CUL3 and 53BP1 during mitotic arrest.

      Weaknesses:

      The clinical relevance of the study is overinterpreted. The authors have not taken relevant data about the clinical mechanism of taxanes into account. Supraphysiologic doses of microtubule poisons cause mitotic arrest and can activate the mitotic stopwatch. However, in physiologic concentrations of clinically useful microtubule poisons, cells proceed through mitosis and divide their chromosomes on mitotic spindles that are at least transiently multipolar. Though these low concentrations may result in a brief mitotic delay, it is substantially shorter than the arrest caused by high concentrations of microtubule poisons, and the one mimicked here by 16 hours of 0.4 mg/mL nocodazole, which is not used clinically and does not induce multipolar spindles. Resistance to mitotic arrest occurs through different mechanisms than resistance to multipolar spindles. No evidence is presented in the current version of the manuscript that GMCL1 affects cellular response to clinically relevant doses of paclitaxel.

    1. 3:43 wir haben jetzt den Beginn der Massenarbeitlosigkeit, und das war in jeder einzelnen Revolution immer die allerwichtigste Komponente, weil wenn die Leute nichts mehr zu essen haben und sich auch nicht mehr ihr Netflix Abo leisten können, dann gehen sie auf die Straße. diese Rekordsarbeitslosigkeit, das wird das Todesurteil der neuen Regierung sein, und ab jetzt geht es Berg ab, vor allem es ist ja auch kein Ende in Sicht, jeden Tag haben wir neue Schocknachrichten.

      7:29 und deswegen könnte man jetzt sagen, naja die werden schon nicht auf die Straße gehen, die bekommen ja schließlich Bürgergeld und Sozialhilfe, aber nichts da, wie vorher gesagt implodiert jetzt ja gerade alles gleichzeitig, also auch der ganze Staatshaushalt, weil immer mehr Arbeitslose bedeutet auch weniger Steuereinnahmen und immer mehr Sozialkosten, und mit der Geschwindigkeit wie es gerade ansteigt ist das irgendwann nicht mehr zu bezahlen. und wenn unsere "Goldstücke" dann irgendwann kein Geld mehr bekommen dann geht's richtig Ramba Zamba.

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      This important study combines a range of advanced ultrastructural imaging approaches to define the unusual endosomal system of African trypanosomes. Compelling images show that instead of a distinct set of compartments, the endosome of these protists comprises a continuous system of membranes with functionally distinct subdomains as defined by canonical markers of early, late and recycling endosomes. The findings suggest that the endocytic system of bloodstream stages has evolved to facilitate the extraordinarily high rates of membrane turnover needed to remove immune complexes and survive in the blood, which is of interest to anyone studying infectious diseases.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      Bloodstream stages of the parasitic protist, Trypanosoma brucei, exhibit very high rates of constitutive endocytosis, which is needed to recycle the surface coat of Variant Surface Glycoproteins (VSGs) and remove surface immune complexes. While many studies have shown that the endo-lysosomal systems of T. brucei BF stages contain canonical domains, as defined by classical Rab markers, it has remained unclear whether these protists have evolved additional adaptations/mechanisms for sustaining these very high rates of membrane transport and protein sorting. The authors have addressed this question by reconstructing the 3D ultrastructure and functional domains of the T. brucei BF endosome membrane system using advanced electron tomography and super-resolution microscopy approaches. Their studies reveal that, unusually, the BF endosome network comprises a continuous system of cisternae and tubules that contain overlapping functional subdomains. It is proposed that a continuous membrane system allows higher rates of protein cargo segregation, sorting and recycling than can otherwise occur when transport between compartments is mediated by membrane vesicles or other fusion events.

      Strengths:

      The study is a technical tour-de-force using a combination of electron tomography, super-resolution/expansion microscopy, immune-EM of cryo-sections to define the 3D structures and connectivity of different endocytic compartments. The images are very clear and generally support the central conclusion that functionally distinct endocytic domains occur within a dynamic and continuous endosome network in BF stages.

      Weaknesses:

      The authors suggest that this dynamic endocytic network may also fulfil many of the functions of the Golgi TGN and that the latter may be absent in these stages. Although plausible, this comment needs further experimental support. For example, have the authors attempted to localize canonical makers of the TGN (e.g. GRIP proteins) in T. brucei BF and/or shown that exocytic carriers bud directly from the endosomes?

      We agree with the criticism and have shortened the discussion accordingly and clearly marked it as speculation. However, we do not want to completely abandon our hypothesis.

      The paragraph now reads:

      Lines 740 – 751:

      “Interestingly, we did not find any structural evidence of vesicular retrograde transport to the Golgi. Instead, the endosomal ‘highways’ extended throughout the posterior volume of the trypanosomes approaching the trans-Golgi interface. It is highly plausible that this region represents the convergence point where endocytic and biosynthetic membrane trafficking pathways merge. A comparable merging of endocytic and biosynthetic functions has been described for the TGN in plants. Different marker proteins for early and recycling endosomes were shown to be associated and/ or partially colocalized with the TGN suggesting its function in both secretory and endocytic pathways (reviewed in Minamino and Ueda, 2019). As we could not find structural evidence for the existence of a TGN we tentatively propose that trypanosomes may have shifted the central orchestrating function of the TGN as a sorting hub at the crossroads of biosynthetic and recycling pathways to the endosome. Although this is a speculative scenario, it is experimentally testable.”

      Furthermore, we removed the lines 51 - 52, which included the suggestion of the TGN as a master regulator, from the abstract.

      Reviewer #2 (Public Review):

      The authors suggest that the African trypanosome endomembrane system has unusual organisation, in that the entire system is a single reticulated structure. It is not clear if this is thought to extend to the lysosome or MVB. There is also a suggestion that this unusual morphology serves as a trans-(post)Golgi network rather than the more canonical arrangement.

      The work is based around very high-quality light and electron microscopy, as well as utilising several marker proteins, Rab5A, 11 and 7. These are deemed as markers for early endosomes, recycling endosomes and late or pre-lysosomes. The images are mostly of high quality but some inconsistencies in the interpretation, appearance of structures and some rather sweeping assumptions make this less easy to accept. Two perhaps major issues are claims to label the entire endosomal apparatus with a single marker protein, which is hard to accept as certainly this reviewer does not really even know where the limits to the endosomal network reside and where these interface with other structures. There are several additional compartments that have been defined by Rob proteins as well, and which are not even mentioned. Overall I am unconvinced that the authors have demonstrated the main things they claim.<br /> The endomembrane system in bloodstream form T. brucei is clearly delimited. Compared to mammalian cells it is tidy and confined to the posterior part of the spindleshaped cell. The endoplasmic reticulum is linked to one side of the longitudinal cell axis, marked by the attached flagellum, while the mitochondrion locates to the opposite side. Glycosomes are easily identifiable as spheres, as are acidocalcisomes, which are smaller than glycosomes and – in electron micrographs – are characterized by high electron density. All these organelles extend beyond the nucleus, which is not the case for the endosomal compartment, the lysosome and the Golgi. The vesicles found in the posterior half of the trypanosome cell are quantitatively identifiable as COP1, CCVI or CCVII vesicles, or exocytic carriers. The lysosome has a higher degree of morphological plasticity, but this is not topic of the present work. Thus, the endomembrane system in T. brucei is comparatively well structured and delimited, which is why we have chosen trypanosomes as cell biological model.

      We have published EP1::GFP as marker for the endosome system and flagellar pocket back in 2004. We have defined the fluid phase volume of the trypanosome endosome in papers published between 2002 and 2007. This work was not intended to represent the entirety of RAB proteins. We were only interested in 3 canonical markers for endosome subtypes. We do not claim anything that is not experimentally tested, we have clearly labelled our hypotheses as such, and we do not make sweeping assumptions.

      The approaches taken are state-of-the-art but not novel, and because of the difficulty in fully addressing the central tenet, I am not sure how much of an impact this will have beyond the trypanosome field. For certain this is limited to workers in the direct area and is not a generalisable finding.

      To the best of our knowledge, there is no published research that has employed 3D Tokuyasu or expansion microscopy (ExM) to label endosomes. The key takeaway from our study, which is the concept that "endosomes are continuous in trypanosomes" certainly is novel. We are not aware of any other report that has demonstrated this aspect.

      The doubts formulated by the reviewer regarding the impact of our work beyond the field of trypanosomes are not timely. Indeed, our results, and those of others, show that the conclusions drawn from work with just a few model organisms is not generalisable. We are finally on the verge of a new cell biology that considers the plethora of evolutionary solutions beyond ophistokonts. We believe that this message should be widely acknowledged and considered. And we are certainly not the only ones who are convinced that the term "general relevance" is unscientific and should no longer be used in biology.

      Reviewer #3 (Public Review):

      Summary:

      As clearly highlighted by the authors, a key plank in the ability of trypanosomes to evade the mammalian host’s immune system is its high rate of endocytosis. This rapid turnover of its surface enables the trypanosome to ‘clean’ its surface removing antibodies and other immune effectors that are subsequently degraded. The high rate of endocytosis is likely reflected in the organisati’n and layout of the endosomal system in these parasites. Here, Link et al., sought to address this question using a range of light and three-dimensional electron microscopy approaches to define the endosomal organisation in this parasite.

      Before this study, the vast majority of our information about the make-up of the trypanosome endosomal system was from thin-section electron microscopy and immunofluorescence studies, which did not provide the necessary resolution and 3D information to address this issue. Therefore, it was not known how the different structures observed by EM were related. Link et al., have taken advantage of the advances in technology and used an impressive combination of approaches at the LM and EM level to study the endosomal system in these parasites. This innovative combination has now shown the interconnected-ness of this network and demonstrated that there are no ‘classical’ compartments within the endosomal system, with instead different regions of the network enriched in different protein markers (Rab5a, Rab7, Rab11).

      Strengths:

      This is a generally well-written and clear manuscript, with the data well-presented supporting the majority of the conclusions of the authors. The authors use an impressive range of approaches to address the organisation of the endosomal system and the development of these methods for use in trypanosomes will be of use to the wider parasitology community.

      I appreciate their inclusion of how they used a range of different light microscopy approaches even though for instance the dSTORM approach did not turn out to be as effective as hoped. The authors have clearly demonstrated that trypanosomes have a large interconnected endosomal network, without defined compartments and instead show enrichment for specific Rabs within this network.

      Weaknesses:

      My concerns are:

      i) There is no evidence for functional compartmentalisation. The classical markers of different endosomal compartments do not fully overlap but there is no evidence to show a region enriched in one or other of these proteins has that specific function. The authors should temper their conclusions about this point.

      The reviewer is right in stating that Rab-presence does not necessarily mean Rabfunction. However, this assumption is as old as the Rab literature. That is why we have focused on the 3 most prominent endosomal marker proteins. We report that for endosome function you do not necessarily need separate membrane compartments. This is backed by our experiments.

      ii) The quality of the electron microscopy work is very high but there is a general lack of numbers. For example, how many tomograms were examined? How often were fenestrated sheets seen? Can the authors provide more information about how frequent these observations were?

      The fenestrated sheets can be seen in the majority of the 37 tomograms recorded of the posterior volume of the parasites. Furthermore, we have randomly generated several hundred tiled (= very large) electron micrographs of bloodstream form trypanosomes for unbiased analyses of endomembranes. In these 2D-datasets the “footprint” of the fenestrated flat and circular cisternae is frequently detectable in the posterior cell area.

      We now have included the corresponding numbers in all EM figure legends.

      iii) The EM work always focussed on cells which had been processed before fixing. Now, I understand this was important to enable tracers to be used. However, given the dynamic nature of the system these processing steps and feeding experiments may have affected the endosomal organisation. Given their knowledge of the system now, the authors should fix some cells directly in culture to observe whether the organisation of the endosome aligns with their conclusions here.

      This is a valid criticism; however, it is the cell culture that provides an artificial environment. As for a possible effect of cell harvesting by centrifugation on the integrity and functionality of the endosome system, we consider this very unlikely for one simple reason. The mechanical forces acting in and on the parasites as they circulate in the extremely crowded and confined environment of the mammalian bloodstream are obviously much higher than the centrifugal forces involved in cell preparation. This becomes particularly clear when one considers that the mass of the particle to be centrifuged determines the actual force exerted by the g-forces. Nevertheless, the proposed experiment is a good control, although much more complex than proposed, since tomography is a challenging technique. We have performed the suggested experiment and acquired tomograms of unprocessed cells. The corresponding data is now included as supplementary movie 2, 3 and 4. We refer to it in lines 202 – 206: To investigate potential impacts of processing steps (cargo uptake, centrifugation, washing) on endosomal organization, we directly fixed cells in the cell culture flask, embedded them in Epon, and conducted tomography. The resulting tomograms revealed endosomal organization consistent with that observed in cells fixed after processing (see Supplementary movie 2, 3, and 4).

      We furthermore thank the reviewer for the experiment suggestion in the acknowledgments.

      iv) The discussion needs to be revamped. At the moment it is just another run through of the results and does not take an overview of the results presenting an integrated view. Moreover, it contains reference to data that was not presented in the results.

      We have improved the discussion accordingly.

      Recommendations for the authors:

      The reviewers concurred about the high calibre of the work and the importance of the findings.

      They raised some issues and made some suggestions to improve the paper without additional experiments - key issues include

      (1) Better referencing of the trypanosome endocytosis/ lysosomal trafficking literature.

      The literature, especially the experimental and quantitative work, is very limited. We now provide a more complete set of references. However, we would like to mention that we had cited a recent review that critically references the trypanosome literature with emphasis on the extensive work done with mammalian cells and yeast.

      (2) Moving the dSTORM data that detracts from otherwise strong data in a supplementary figure.

      We have done this.

      (3) Removal of the conclusion that the continuous endosome fulfils the functions of TGN, without further evidence.

      As stated above, this was not a conclusion in our paper, but rather a speculation, which we have now more clearly marked as such. Lines 740 to 751 now read:

      “Interestingly, we did not find any structural evidence of vesicular retrograde transport to the Golgi. Instead, the endosomal ‘highways’ extended throughout the posterior volume of the trypanosomes approaching the trans-Golgi interface. It is highly plausible that this region represents the convergence point where endocytic and biosynthetic membrane trafficking pathways merge. A comparable merging of endocytic and biosynthetic functions was already described for the TGN in plants. Different marker proteins for early and recycling endosomes were shown to be associated and/ or partially colocalized with the TGN suggesting its function in both secretory and endocytic pathways (reviewed in Minamino and Ueda, 2019). As we could not find structural evidence for the existence of a TGN we tentatively propose that trypanosomes may have shifted the central orchestrating function of the TGN as a sorting hub at the crossroads of biosynthetic and recycling pathways to the endosome. Although this is a speculative scenario, it is experimentally testable.”

      (4) Broader discussion linking their findings to other examples of organelle maturation in eukaryotes (e.g cisternal maturation of the Golgi)

      We have improved the discussion accordingly.

      Reviewer #1 (Recommendations For The Authors):

      What are the multi-vesicular vesicles that surround the marked endosomal compartments in Fig 1. Do they become labelled with fluid phase markers with longer incubations (e.g late endosome/ lysosomal)?

      The function of MVBs in trypanosomes is still far from being clear. They are filled with fluid phase cargo, especially ferritin, but are devoid of VSG. Hence it is likely that MVBs are part of the lysosomal compartment. In fact, this part of the endomembrane system is highly dynamic. MVBs can be physically connected to the lysosome or can form elongated structures. The surprising dynamics of the trypanosome lysosome will be published elsewhere.

      Figure 2. The compartments labelled with EP1::Halo are very poorly defined due to the low levels of expression of the reporter protein and/or sensitivity of detection of the Halo tag. Based on these images, it would be hard to conclude whether the endosome network is continuous or not. In this respect, it is unclear why the authors didn't use EP1-GFP for these analyses? Given the other data that provides more compelling evidence for a single continuous compartment, I would suggest removing Fig 2A.

      We have used EP1::GFP to label the entire endosome system (Engstler and Boshart, 2004). Unfortunately, GFP is not suited for dSTORM imaging. By creating the EP1::Halo cell line, we were able to utilize the most prominent dSTORM fluorescent dye, Alexa 647. This was not primarily done to generate super resolution images, but rather to measure the dynamics of the GPI-anchored, luminal protein EP with single molecule precision. The results from this study will be published separately. But we agree with the reviewer and have relocated the dSTORM data to the supplementary material.

      The observation that Rab5a/7 can be detected in the lumen of lysosome is interesting. Mechanistically, this presumably occurs by invagination of the limiting membrane of the lysosome. Is there any evidence that similar invagination of cytoplasmic markers occurs throughout or in subdomains of the endocytic network (possibly indicative of a 'late endosome' domain)?

      So far, we have not observed this. The structure of the lysosome and the membrane influx from the endosome are currently being investigated.

      The authors note that continuity of functionally distinct membrane compartments in the secretory/endocytic pathways has been reported in other protists (e.g T. cruzi). A particular example that could be noted is the endo-lysosomal system of Dictyostelium discoideum which mediates the continuous degradation and eventual expulsion of undigested material.

      We tried to include this in the discussion but ultimately decided against it because the Dictyostelium system cannot be easily compared to the trypanosome endosome.

      Reviewer #2 (Recommendations For The Authors):

      Abstract

      Not sure that 'common' is the correct term here. Frequent, near-universal..... it would be true that endocytosis is common across most eukaryotes.

      We have changed the sentence to “common process observed in most eukaryotes” (line 33).

      Immune evasion - the parasite does not escape the immune system, but does successfully avoid its impact, at least at the population level.

      We have replaced the word “escape” with “evasion” (line 35).

      The third sentence needs to follow on correctly from the second. Also, more than Igs are internalised and potentially part of immune evasion, such as C3, Factor H, ApoL1 etcetera.

      We believe that there may be a misunderstanding here. The process of endocytic uptake and lysosomal degradation has so far only been demonstrated in the context of VSGbound antibodies, which is why we only refer to this. Of course, the immune system comprises a wide range of proteins and effector molecules, all of which could be involved in immune evasion.

      I do not follow the logic that the high flux through the endocytic system in trypanosomes precludes distinct compartmentalisation - one could imagine a system where a lot of steps become optimised for example. This idea needs expanding on if it is correct.

      Membrane transport by vesicle transfer between several separate membrane compartments would be slower than the measured rate of membrane flux.

      Again I am not sure 'efficient' on line 40. It is fast, but how do you measure efficiency? Speed and efficiency are not the same thing.

      We have replaced the word “efficient” with “fast” (line 42).

      The basis for suggesting endosomes as a TGN is unclear. Given that there are AP complexes, retromer, exocyst and other factors that are part of the TGN or at least post-G differentiation of pathways in canonical systems, this seems a step too far. There really is no evidence in the rest of the MS that seems to support this.

      Yes, we agree and have clarified the discussion accordingly. We have not completely removed the discussion on the TGN but have labelled it more clearly as speculation.

      I am aware I am being pedantic here, but overall the abstract seems to provide an impression of greater novelty than may be the case and makes several very bold claims that I cannot see as fully valid.

      We are not aware of any claim in the summary that we have not substantiated with experiments, or any hypothesis that we have not explained.

      Moreover, the concept of fused or multifunctional endosomes (or even other endomembrane compartments) is old, and has been demonstrated in metazoan cells and yeast. The concept of rigid (in terms of composition) compartments really has been rejected by most folks with maturation, recycling and domain structures already well-established models and concepts.

      We agree that the (transient) presence of multiple Rab proteins decorating endosomes has been demonstrated in various cell types. This finding formed the basis for the endosomal maturation model in mammals and yeast, which has replaced the previous rigid compartment model.

      However, we do not appreciate attempts to question the originality of our study by claiming that similar observations have been made in metazoans or yeast. This is simply wrong. There are no reports of a functionally structured, continuous, single and large endosome in any other system. The only membrane system that might be similar was described in the American parasite Trypanosoma cruzi, however, without the use of endosome markers or any functional analysis. We refer to this study in the discussion.

      In summary, the maturation model falls short in explaining the intricacies of the membrane system we have uncovered in trypanosomes. Therefore, one plausible interpretation of our data is that the overall architecture of the trypanosome endosomes represents an adaptation that enables the remarkable speed of plasma membrane recycling observed in these parasites. In our view, both our findings and their interpretation are novel and worth reporting. Again, modern cell biology should recognize that evolution has developed many solutions for similar processes in cells, about whose diversity we have learned almost nothing because of our reductionist view. A remarkable example of this are the Picozoa, tiny bipartite eukaryotes that pack the entire nutritional apparatus into one pouch and the main organelles with the locomotor system into the other. Another one is the “extreme” cell biology of many protozoan parasites such as Giardia, Toxpoplasma or Trypanosoma.

      Higher plants have been well characterised, especially at the level of Rab/Arf proteins and adaptins.

      We now mention plant endosomes in our brief discussion of the trypanosome TGN. Lines 744 – 747:

      “A comparable merging of endocytic and biosynthetic functions was already described for the TGN in plants. Different marker proteins for early and recycling endosomes were shown to be associated and/ or partially colocalized with the TGN suggesting its function in both secretory and endocytic pathways (reviewed in Minamino and Ueda, 2019).”

      The level of self-citing in the introduction is irritating and unscholarly. I have no qualms with crediting the authors with their own excellent contributions, but work from Dacks, Bangs, Field and others seems to be selectively ignored, with an awkward use of the authors' own publications. Diversity between organisms for example has been a mainstay of the Dacks lab output, Rab proteins and others from Field and work on exocytosis and late endosomal systems from Bangs. These efforts and contributions surely deserve some recognition?

      This is an original article and not a review. For a comprehensive overview the reviewer might read our recent overview article on exo- and endocytic pathways in trypanosomes, in which we have extensively cited the work of Mark Field, Jay Bangs and Joel Dacks. In the present manuscript, we have cited all papers that touch on our results or are otherwise important for a thorough understanding of our hypotheses. We do not believe that this approach is unscientific, but rather improves the readability of the manuscript. Nevertheless, we have now cited additional work.

      For the uninitiated, the posterior/anterior axis of the trypanosome cell as well as any other specific features should be defined.

      In lines 102 - 110 we wrote:

      “This process of antibody clearance is driven by hydrodynamic drag forces resulting from the continuous directional movement of trypanosomes (Engstler et al., 2007). The VSG-antibody complexes on the cell surface are dragged against the swimming direction of the parasite and accumulate at the posterior pole of the cell. This region harbours an invagination in the plasma membrane known as the flagellar pocket (FP) (Gull, 2003; Overath et al., 1997). The FP, which marks the origin of the single attached flagellum, is the exclusive site for endo- and exocytosis in trypanosomes (Gull, 2003; Overath et al., 1997). Consequently, the accumulation of VSG-antibody complexes occurs precisely in the area of bulk membrane uptake.”

      We think this sufficiently introduces the cell body axes.

      I don't understand the comment concerning microtubule association. In mammalian cells, such association is well established, but compartments still do not display precise positioning. This likely then has nothing to do with the microtubule association differences.

      We have clarified this in the text (lines 192 – 199). There is no report of cytoplasmic microtubules in trypanosomes. All microtubules appear to be either subpellicular or within the flagellum. To maintain the structure and position of the endosomal apparatus, they should be associated either with subpellicular microtubules, as is the case with the endoplasmic reticulum, or with the more enigmatic actomyosin system of the parasites. We have been working on the latter possibility and intend to publish a follow-up paper to the present manuscript.

      The inability to move past the nucleus is a poor explanation. These compartments are dynamic. Even the nucleus does interesting things in trypanosomes and squeezes past structures during development in the tsetse fly.

      The distance between the nucleus and the microtubule cytoskeleton remains relatively constant even in parasites that squeeze through microfluidic channels. This is not unexpected as the nucleus can be highly deformed. A structure the size of the endosome will not be able to physically pass behind the nucleus without losing its integrity. In fact, the recycling apparatus is never found in the anterior part of the trypanosome, most probably because the flagellar pocket is located at the posterior cell pole.

      L253 What is the evidence that EP1 labels the entire FP and endosomes? This may be extensive, but this claim requires rather more evidence. This is again suggested at l263. Again, please forgive me for being pedantic, but this is an overstatement unless supported by evidence that would be incredibly difficult to obtain. This is even sort of acknowledged on l271 in the context of non-uniform labelling. This comes again in l336.

      The evidence that EP1 labels the entire FP and endosomes is presented here: Engstler and Boshart, 2004; 10.1101/gad.323404).

      Perhaps I should refrain from comments on the dangers of expansion microscopy, or asking what has actually been gained here. Oddly, the conclusion on l290 is a fair statement that I am happy with.

      An in-depth discussion regarding the advantages and disadvantages of expansion microscopy is beyond the manuscript's intended scope. Our approach involved utilizing various imaging techniques to confirm the validity of our findings. We appreciate that our concluding sentence is pleasing.

      F2 - The data in panel A seem quite poor to me. I also do not really understand why the DAPI stain in the first and second columns fails to coincide or why the kinetoplast is so diffuse in the second row. The labelling for EP1 presents as very small puncta, and hence is not evidence for a continuum. What is the arrow in A IV top? The data in panel B are certainly more in line with prior art, albeit that there is considerable heterogeneity in the labelling and of the FP for example. Again, I cannot really see this as evidence for continuity. There are gaps.... Albeit I accept that labelling of such structures is unlikely to ever be homogenous.

      We agree that the dSTORM data represents the least robust aspect of the findings we have presented, and we concur with relocating it to the supplementary material.

      F3 - Rather apparent, and specifically for Rab7, that there is differential representation - for example, Cell 4 presents a single Rab7 structure while the remaining examples demonstrate more extensive labelling. Again, I am content that these are highly dynamic strictures but this needs to be addressed at some level and commented upon. If the claim is for continuity, the dynamics observed here suggest the usual; some level of obvious overlap of organellar markers, but the representation in F3 is clever but not sure what I am looking at. Moreover, the title of the figure is nothing new. What is also a bit odd is that the extent of the Rab7 signal, and to some extent the other two Rabs used, is rather variable, which makes this unclear to me as to what is being detected. Given that the Rab proteins may be defining microdomains or regions, I would also expect a region of unique straining as well as the common areas. This needs to at least be discussed.

      The differences in the representation result from the dynamics of the labelled structures. Therefore, we have selected different cells to provide examples of what the labelling can look like. We now mention this in the results section.

      The overlap of the different Rab signals was perhaps to be expected, but we now have demonstrated it experimentally. Importantly, we performed a rigorous quantification by calculating the volume overlaps and the Pearson correlation coefficients.

      In previous studies the data were presented as maximal intensity projections, which inherently lack the complete 3D information.

      We found that Rab proteins define microdomains and that there are regions of unique staining as well as common areas, as shown in Figure 3. The volumes do not completely overlap. This is now more clearly stated in lines 315 – 319:

      “These objects showed areas of unique staining as well as partially overlapping regions. The pairwise colocalization of different endosomal markers is shown in Figure 3 A, XI - XIII and 3 B. The different cells in Figure 3 B were selected to represent the dynamic nature of the labelled structures. Consequently, the selected cells provide a variety of examples of how the labelling can appear.”

      This had already been stated in lines 331 – 336:

      “In summary, the quantitative colocalization analyses revealed that on the one hand, the endosomal system features a high degree of connectivity, with considerable overlap of endosomal marker regions, and on the other hand, TbRab5A, TbRab7, and TbRab11 also demarcate separated regions in that system. These results can be interpreted as evidence of a continuous endosomal membrane system harbouring functional subdomains, with a limited amount of potentially separated early, late or recycling endosomes.”

      F4-6 - Fabulous images. But a couple of issues here; first, as the authors point out, there is distance between the gold and the antigen. So, this of course also works in the z-plane as well as the x/y-planes and some of the gold may well be associated with membraneous figures that are out of the plane, which would indicate an absence of colinearity on one specific membrane. Secondly, in several instances, we have Rab7 essentially mixed with Rab11 or Rab5 positive membrane. While data are data and should be accepted, this is difficult to reconcile when, at least to some level, Rab7 is a marker for a late-endosomal structure and where the presence of degradative activity could reside. As division of function is, I assume, the major reason for intracellular compartmentalisation, such a level of admixture is hard to rationalise. A continuum is one thing but the data here seem to be suggesting something else, i.e. almost complete admixture.

      We are grateful for the positive feedback regarding the image quality. It is true that the "linkage error," representing the distance between the gold and the antigen, also functions to some extent in the z-axis. However, it's important to note that the zdimension of the section in these Figures is 55 nm. Nevertheless, it's interesting to observe that membranes, which may not be visible within the section itself but likely the corresponding Rab antigen, is discernible in Figure 4C (indicated by arrows).

      We have clarified this in lines 397 – 400:

      “Consequently, gold particles located further away may represent cytoplasmic TbRab proteins or, as the “linkage error” can also occur in the z-plane, correspond to membranes that are not visible within the 55 nm thickness of the cryosection (Figure 4, panel C, arrows). “

      The coexistence of different Rabs is most likely concentrated in regions where transitions between different functions are likely. Our focus was primarily on imaging membranes labelled with two markers. We wanted to show that the prevailing model of separate compartments in the trypanosome literature is not correct.

      F7 - Not sure what this adds beyond what was published by Grunfelder.

      First, this figure is an important control that links our results to published work (Grünfelder et al. (2003)). Second, we include double staining of cargo with Rab5, Rab7, and Rab11, whereas Grünfelder focused only on Rab11. Therefore, our data is original and of such high quality that it warrants a main figure.

      F8 - and l583. This is odd as the claim is 'proof' which in science is a hard thing to claim (and this is definitely not at a six sigma level of certainty, as used by the physics community). However, I am seeing structures in the tomograms which are not contiguous - there are gaps here between the individual features (Green in the figure).

      We have replaced the term "proof". It is important to note that the structures in individual tomograms cannot all be completely continuous because the sections are limited to a thickness of 250 nm. Therefore, it is likely that they have more connectivity above and below the imaged section. Nevertheless, we believe that the quality of the tomograms is satisfactory, considering that 3D Tokuyasu is a very demanding technique and the production of serial Tokuyasu tomograms is not feasible in practice.

      Discussion - Too long and the self-citing of four papers from the corresponding author to the exclusion of much prior work is again noted, with concerns about this as described above. Moreover, at least four additional Rab proteins are known associated with the trypanosome endosomal system, 4, 5B, 21 and 28. These have been completely ignored.

      We have outlined our position on referencing in original articles above. We also explained why we focused on the key marker proteins associated with early (Rab5), late (Rab7) and recycling endosomes (Rab11). We did not ignore the other Rabs, we just did not include them in the present study.

      Overall this is disappointing. I had expected a more robust analysis, with a clearer discussion and placement in context. I am not fully convinced that what we have here is as extreme as claimed, or that we have a substantial advance. There is nothing here that is mechanistic or the identification of a new set of gene products, process or function.

      We do not think that this is constructive feedback.

      This MS suggests that the endosomal system of African trypanosomes is a continuum of membrane structures rather than representing a set of distinct compartments. A combination of light and electron microscopy methods are used in support. The basic contention is very challenging to prove, and I'm not convinced that this has been. Furthermore, I am also unclear as to the significance of such an organisation; this seems not really addressed.

      We acknowledge and respect varying viewpoints, but we hold a differing perspective in this matter. We are convinced that the data decisively supports our interpretation. May future work support or refute our hypothesis.

      Reviewer #3 (Recommendations For The Authors):

      Line 81 - delete 's

      Done.

      Generally, the introduction was very well written and clearly summarised our current understanding but the paragraph beginning line 134 felt out of place and repeated some of the work mentioned earlier.

      We have removed this paragraph.

      For the EM analysis throughout quantification would be useful as highlighted in the public review. How many tomograms were examined, and how often were types of structures seen? I understand the sample size is often small but this would help the reader appreciate the diversity of structures seen.

      We have included the numbers.

      Following on from this how were the cells chosen for tomogram analysis? For example, the dividing cell in 1D has palisades associating with the new pocket - is this commonly seen? Does this reflect something happening in dividing cells. This point about endosomal division was picked up in the discussion but there was little about in the main results.

      This issue is undoubtedly inherent to the method itself, and we have made efforts to mitigate it by generating a series of tomograms recorded randomly. We have refrained from delving deeper into the intricacies of the cell cycle in this manuscript, as we believe that it warrants a separate paper.

      As the authors prosecute, the co-localisation analysis highlights the variable nature of the endosome and the overlap of different markers. When looking at the LM analysis, I was struck by the variability in the size and number of labelled structures in the different cells. For example, in 3A Rab7 is 2 blobs but in 3B Cell 1 it is 4/5 blobs. Is this just a reflection of the increase in the endosome during the cell cycle?

      The variability in representation is a direct consequence of the dynamic nature of the labelled structures. For this reason, we deliberately selected different cells to represent examples of how the labelling can look like. We have decided not to mention the dynamics of the endosome during the cell cycle. This will be the subject of a further report.

      Moreover, Rab 11 looks to be the marker covering the greatest volume of the endosomal system - is this true? I think there's more analysis of this data that could be done to try and get more information about the relative volumes etc of the different markers that haven't been drawn out. The focus here is on the co-localisation.

      Precisely because we recognize the importance of this point, we intend to turn our attention to the cell cycle in a separate publication.

      I appreciate that it is an awful lot of work to perform the immuno-EM and the data is of good quality but in the text, there could be a greater effort to tie this to the LM data. For example, from the Rab11 staining in LM you would expect this marker to be the most extensive across the networks - is this reflected in the EM?

      For the immuno-EM there were no numbers, the authors had measured the position of the gold but what was the proportion of gold that was in/near membranes for each marker? This would help the reader understand both the number of particles seen and the enrichment of the different regions.

      Our original intent was to perform a thorough quantification (using stereology) of the immuno-EM data. However, we later realized that the necessary random imaging approach is not suitable for Tokuyasu sections of trypanosomes. In short, the cells are too far apart, and the cell sections are only occasionally cut so that the endosomal membranes are sufficiently visible. Nevertheless, we continue to strive to generate more quantitative data using conventional immuno-EM.

      The innovative combination of Tokuyasu tomograms with immuno-EM was great. I noted though that there was a lack of fenestration in these models. Does this reflect the angle of the model or the processing of these samples?

      We are grateful to the referee, as we have asked ourselves the same question. However, we do not attribute the apparent lack of fenestration to the viewing angle, since we did not find fenestration in any of the Tokuyasu tomograms. Our suspicion is more directed towards a methodological problem. In the Tokuyasu workflow, all structures are mainly fixed with aldehydes. As a result, lipids are only effectively fixed through their association with membrane proteins. We suggest that the fenestration may not be visible because the corresponding lipids may have been lost due to incomplete fixation.

      We now clearly state this in the lines 563 – 568.

      “Interestingly, these tomograms did not exhibit the fenestration pattern identified in conventional electron tomography. We suspect that this is due to methodological reasons. The Tokuyasu procedure uses only aldehydes to fix all structures. Consequently, effective fixation of lipids occurs only through their association with membrane proteins. Thus, the lack of visible fenestration is likely due to possible loss of lipids during incomplete fixation.”

      The discussion needs to be reworked. Throughout it contains references to results not in the main results section such as supplementary movie 2 (line 735). The explicit references to the data and figures felt odd and more suited to the results rather than the discussion. Currently, each result is discussed individually in turn and more effort needs to be made to integrate the results from this analysis here but also with previous work and the data from other organisms, which at the moment sits in a standalone section at the end of the discussion.

      We have improved the discussion and removed the previous supplementary movies 2 and 3. Supplementary movie 1 is now mentioned in the results section.

      Line 693 - There was an interesting point about dividing cells describing the maintenance of endosomes next to the old pocket. Does that mean there was no endosome by the new pocket and if so where is this data in the manuscript? This point relates back to my question about how cells were chosen for analysis - how many dividing cells were examined by tomography?

      The fate of endosomes during the cell cycle is not the subject of this paper. In this manuscript we only show only one dividing cell using tomography. An in-depth analysis focusing on what happens during the cell cycle will be published separately.

      Line 729 - I'm unclear how this represents a polarization of function in the flagellar pocket. The pocket I presume is included within the endosomal system for this analysis but there was no specific mention of it in the results and no marker of each position to help define any specialisation. From the results, I thought the focus was on endosomal co-localisation of the different markers. If the authors are thinking about specialisation of the pocket this paper from Mark Field shows there is evidence for the exocyst to be distributed over the entire surface of the pocket, which is relevant to the discussion here. Boehm, C.M. et al. (2017) The trypanosome exocyst: a conserved structure revealing a new role in endocytosis. PLoS Pathog. 13, e1006063

      We have formulated our statement more cautiously. However, we are convinced that membrane exchange cannot physically work without functional polarization of the pocket. We know that Rab11, for example, is not evenly distributed on the pocket. By the way, in Boehm et al. (2017) the exocyst is not shown to cover the entire pocket (as shown in Supplementary Video 1).

      We now refer to Boehm et al. (Lines 700 – 703):

      “Boehm et al (2017) report that in the flagellar pocket endocytic and exocytic sites are in close proximity but do not overlap. We further suggest that the fusion of EXCs with the flagellar pocket membrane and clathrin-mediated endocytosis take place on different sites of the pocket. This disparity explains the lower colocalization between TbRab11 and TbRab5A.”

      Line 735 - link to data not previously mentioned I think. When I looked at this data I couldn't find a key to explain what all the different colours related to.

      We have removed the previous supplementary movies 2 and 3. We now reference supplementary movie 1 in the results section.

    1. Grappling with Grendel. To God I am thankful To be suffered to see thee safe from thy journey.

      Annotation by: Samuel Godinho CC License: CC- BY-NC Tag: #SP2025-LIT211

      I find the religious tension within the poem to be very interesting. The narrator and Beowulf frequently reference God and divine justice, but the poem still upholds Paganism and pagan ideals like fate and blood vengeance. This also shows the transitional period in which it was written, showing a cultural tug of war with the merging of old beliefs and emerging Christian values. The original poem shows many pagan values but once it was transcribed and translated it took on more Christian characteristics. This is an example of how religious values influenced this text.

    2. When my earth-joys were over, thou wouldst evermore serve me In stead of a father; my faithful thanemen, My trusty retainers, protect thou and care for, Fall I in battle: and, Hrothgar belovèd,

      Annotation by: Jatnna Sanchez CC License: CC BY-NC-SA 4.0 Tag: #SP2025-Lit211

      Linguistic and Cultural Context: Hall’s translation is from the 1800s, so it uses older and fancier words to describe Beowulf and how his characteristics make him a hero. Gummere’s translation is from the early 1900s and is easier to read using more of modern texts and descriptions. These differences show how ideas of heroism and masculinity can change over time, even though Beowulf is always a strong, brave hero.

    3. Beowulf spake, Ecgtheow’s son: “Recall now, oh, famous kinsman of Healfdene, Prince very prudent, now to part I am ready, Gold-friend of earlmen, what erst we agreed on

      Annotation by: Jatnna Sanchez CC License: CC BY-NC-SA 4.0 Tag: #SP2025-Lit211

      Comparative Insight: Both versions show Beowulf as a brave and respectful hero, but Hall’s version is more poetic, which makes Beowulf seem like a legendary figure. Gummere’s version is simpler and makes Beowulf seem more like a real person narrating the story. Both connect to gender politics by highlighting how a hero must be strong but also respectful.

    4. Beowulf spake, Ecgtheow’s son: “Recall now, oh, famous kinsman of Healfdene,

      Annotation by: Jatnna Sanchez CC License: CC BY-NC-SA 4.0 Tag: #SP2025-Lit211

      Analysis: In this version, Beowulf is shown as a respectful hero where we can see here how he talks to the king to get approval before taking action. This shows male characteristics that are liked such as polite, honarable and being loyal. These connect to political gender as it emphasizes the qualities of traditional male characteristics.

    1. Renewal for children under 15 ½Submit your renewal application online

      These two headings and generally all other headings on the page are using appropriate HTML tags to signify their semantic order and flow on the page. "Renewal for children under 15 and 1/2" is using an h2 tag while the sub-heading "Submit your renewal application online" is using an appropriate semantically correct h3 tag, which was found on inspection using dev tools. This allows screen readers to properly parse the page and also gives proper visual indication that one is a heading and the other is a sub-heading. This corresponds to the principle of "perceivable" because information is clearly being presented to users in a way they can perceive whether via the screen reader correctly parsing the text, or by visually with clear visual differences indicating the semantics and order of the content.

    2. Learn how to renew an Ontario health card. You need a valid card to get coverage through the Ontario Health Insurance Plan (OHIP).

      (Reference to the image to the right of this text) The image of the Ontario Health Card on the top of the page has an alt attribute (inspected using dev tools) less than 125 characters that reads "Ontario health card" which is concise and describes the image. (Screen readers will detect it is an img tag and say something along the lines of "image of" and then read the alt attribute text). This corresponds to the web accesibility principle of "robust" as the descriptive and concise alt attribute allows the image to be interpreted by a wide variety of assistive technologies.

    1. Joseph’s life is a series of highs and lows — literally and figuratively. In his father’s house, Joseph is the favored son: “Israel (another name for Jacob) loved Joseph more than all his sons since he was a child of his old age” (Genesis 37:3). Joseph likely also has this status because he is the eldest child of Jacob’s favorite (deceased) wife, Rachel. To demonstrate this preference, Jacob gifts Joseph with the famous kitonet passim, translated as both a garment with long sleeves, or a fine woolen tunic. (Commentators extrapolate that it had stripes of different colors.) This preferential treatment from their father elicits much jealousy from Joseph’s 10 older brothers.

      Annotation about josey's favoritism towards him by his father. Author: David Sanchez CC License: CC BY-NC Tag: #SP2025-Lit211

      The story of Joseph in the book of Genesis shows us some of the aspects that marked the present and future of his life. The book of Genesis tells us about the favoritism and devotion that his father Jacob always had towards him, being the favorite son of 12 brothers. “Israel (another name for Jacob) loved Joseph more than all his sons since he was a child of his old age” (Genesis 37:3). This favoritism towards Joseph on the part of Jacob was because Joseph was the firstborn of the woman that Jacob had loved the most, who was Rachel. As a sign of his love and affection, Jacob gave him a colorful tonic (ketones passim), which symbolized a gesture of favoritism towards Joseph and aroused the anger and fury of his brothers. These texts show us how favoritism towards certain members of a family is something bad and unnecessary, even for the beneficiary who in this case was Joseph, because this blatant favoritism on the part of Jacob was what somehow caused Joseph to be sold by his brothers to the Ishmaelites, thus causing a very tragic situation for Jacob's family.

      References: The Holy Bible: New Revised Standard Version. Genesis 37:3.

      Roth, Elana. “The Story of Joseph.” My Jewish Learning, 20 June 2023, www.myjewishlearning.com/article/the-story-of-joseph/.

    2. Joseph’s life is a series of highs and lows — literally and figuratively. In his father’s house, Joseph is the favored son: “Israel (another name for Jacob) loved Joseph more than all his sons since he was a child of his old age” (Genesis 37:3). Joseph likely also has this status because he is the eldest child of Jacob’s favorite (deceased) wife, Rachel. To demonstrate this preference, Jacob gifts Joseph with the famous kitonet passim, translated as both a garment with long sleeves, or a fine woolen tunic. (Commentators extrapolate that it had stripes of different colors.) This preferential treatment from their father elicits much jealousy from Joseph’s 10 older brothers.

      Annotation about josey's favoritism towards him by his father. Author: David Sanchez CC License: CC BY-NC Tag: #SP2025-Lit211

      The story of Joseph in the book of Genesis shows us some of the aspects that marked the present and future of his life. The book of Genesis tells us about the favoritism and devotion that his father Jacob always had towards him, being the favorite son of 12 brothers. “Israel (another name for Jacob) loved Joseph more than all his sons since he was a child of his old age” (Genesis 37:3). This favoritism towards Joseph on the part of Jacob was because Joseph was the firstborn of the woman that Jacob had loved the most, who was Rachel. As a sign of his love and affection, Jacob gave him a colorful tonic (ketones passim), which symbolized a gesture of favoritism towards Joseph and aroused the anger and fury of his brothers. These texts show us how favoritism towards certain members of a family is something bad and unnecessary, even for the beneficiary who in this case was Joseph, because this blatant favoritism on the part of Jacob was what somehow caused Joseph to be sold by his brothers to the Ishmaelites, thus causing a very tragic situation for Jacob's family.

      References: The Holy Bible: New Revised Standard Version. Genesis 37:3.

      Roth, Elana. “The Story of Joseph.” My Jewish Learning, 20 June 2023, www.myjewishlearning.com/article/the-story-of-joseph/.

    1. You may have come across the tag "BURNBABY" in connection with the LM powered flight software. That was us. We might not have been out on the streets, but we did listen to the news, and the two biggest news stories were Viet Nam and Black Power, the latter including H. Rap Brown and his exhortations to 'Burn Baby, Burn' -- this was 1967, after all.

      Not the Magnificent Montgue

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Manuscript number: RC-2025-02887

      Corresponding author(s): Philippe Bastin

      1. General Statements [optional]

      • *

      We thank the reviewers for their constructive suggestions. We are delighted to see that they appreciated our work and its interest for the broad cell biology community, as well as the potential impact of the inducible expression of tagged tubulin as a new tool to investigate microtubule assembly at large.

      We are now providing a full revision that contains two major modifications and that addresses all the minor points detailed below. The two major modifications are:

      • A simplification and a shortening of the text as requested by reviewers 1 and 3
      • The addition of a new experiment evaluating the role of the locking protein CEP164C to gain insight into the mechanism, as suggested by reviewers 1 and 2 Briefly, CEP164C is a protein localised to the transition fibres (structures that dock the basal body of the flagellum to the membrane) of only the old flagellum. Its depletion leads to an excessive elongation of the old flagellum and the production of a shorter new flagellum, suggesting competition between the two flagella for tubulin incorporation (Atkins et al., 2021). In the new figure 5, we have expressed tagged tubulin in the CEP164CRNAi cell line and formally demonstrated simultaneous incorporation in both flagella. Unexpectedly, the new flagellum incorporated more tubulin than the old one, suggesting a bias of tubulin targeting in favour of the new flagellum and the existence of additional contributors to the Grow-and-Lock model.

      2. Point-by-point description of the revisions

      This section is mandatory. *Please insert a point-by-point reply describing the revisions that were already carried out and included in the transferred manuscript. *

      • *

      Reviewer #1

      Evidence, reproducibility and clarity

      The manuscript by Daniel Abbühl on "A novel approach to tagging tubulin reveals MT assembly dynamics of the axoneme in Trypanosoma brucei" uses an innnovative approach to label tubulin, which allows the authors to unveil new mechanisms in flagellar length regulation.

      The manuscript is very nice and will be very interesting for the cell biology community and therefore should be accepted. In some parts it becames a bit complex with all the models and complex phrasing, I wonder whether the text could be simplified to be more appealing. I have a few minor comments:

      We agree that some of the explanations are lengthy and complex. We have simplified the explanations and hopefully made the models more accessible. Complexity comes from the fact that trypanosomes do not have a synchronized cell cycle.

      -From the model the authors show in Figure 8- there should be a way of pulsing the cells in G1 for a short amount of time -2 hours- and getting both flagella tips labelled. But the authors seem to require longer labelling to get that result. This should be better explained.

      We are not quite sure what is meant here with both flagella as in G1-phase, all cells are mono-flagellated. We do see mono-flagellated cells with a labelled tip after 2 hours, both with the HALO-tag or the Ty-1-tubulin system.

      In regard to bi-flagellate cells, we believe that incorporation in the OF happened at the beginning of G1-phase when the cell was mono-flagellated. If tubulin is present at that point, it will be incorporated at the tip. This cell then approaches the end of G1-phase and starts to initiate NF assembly. Since tagged tubulin is already present it will be incorporated along the whole length of the NF.

      A short induction of 2h would not suffice as it wouldn't cover the duration of the G1-phase and the initiation of a NF (duration of G1-phase is ~4h). We attempted to explain this in Fig. 4 and reworked the text to make this clearer.

      -Why do some cells not express the construct? Weren´t they all selected?

      We never managed to get a cell line where inducible expression is present in 100% of cells. Here, around 95% of cells were positive for Ty-1-tubulin after 24h of induction. Non-expression is not a phenomenon restricted to this tubulin cell line but also observed with other ectopically expressed proteins (e.g. Sunter et al. JCS 2015, Bastin et al. MCB 1999). All these cell lines represent clonal populations and are resistant to antibiotic treatment, however not all cells express the respective protein. For each experiment where we believed the number of expressing cells matter (for example the washout), we quantified in how many cells Ty-1-tubulin was present in the cell body microtubules.

      -"The linear regression line in Fig. 3C was corrected by subtracting 45 minutes from each timepoint due to the previously reported delay between addition of tetracycline and the expression of the respective protein". However, in the authors data the delay may amount to one hour (western analysis- S4). Shouldn´t they use their data.

      Indeed, the western blot shows expression after 1-hour, however we did not take a 45-minute timepoint, so we don't know if the protein was detectable at that time. In addition, IFA is more sensitive than western blot. We cannot say exactly when the average cell starts to express the induced protein.

      -Fig 3: To measure the timepoints of flagella growth, wouldn´t it be better to do it with NF that started to grow before induction, rather than starting to grow after induction, to be sure that the timing of incorporation is fully accounted for?

      We indeed did consider only NFs, which started to grow before induction, as suggested by the reviewer. In the revised version the description of the experiment can be found on page 9 line 22 - 28.

      -Although it is not the focus of the manuscript it would have been very interesting to use the CEP164C mutant to see whether it would change the dynamics of incorporation and fully test their model and discussion.

      This is a great suggestion, so we performed some experiments to address this issue. When CEP164C was knocked down before Ty-1-tubulin expression, integration is seen at the distal tip of both NF and OF. This is coherent with the idea of removal of the locking protein from the OF. However, lengths of the green segments in NF and OF do not have the same length (NF ~6 µm, OF ~2 µm), which indicates that CEP164C might not be the only protein involved in regulating flagellum length. A new figure explaining this experiment was added (Fig. 5, Fig. S6). We believe this data provides novel insight on the locking mechanism and strengthens the manuscript.

      -In some parts of the manuscript/supplemental material the authors say they insert the Ty-1- tag one aminoacid after the acetylated lysine- other parts they say two aminoacids after- this should be consistent.

      We thank the reviewer for spotting these mistakes, we have changed the text accordingly.

      -Fig. S1: 'Binding epitope of the TAT-1 antibody is highlighted in red'. There is no highlighting in red in this figure?

      This sentence was removed.

      -Fig. S2: Western blots are not very clear. What is the 'X' present in the C (first lane)? Weight of markers should be shown also in S4.

      Molecular weight markers have been added. X is an empty lane, we have now indicated this in the figure legend.

      -Fig 5: 'C: Frequency of bi-flagellated cells grouped by the different types of' The authors didn't finish the sentence.

      Previous Fig. 5 is now Fig. 6. Sentence has been completed. "Frequency of bi-flagellated cells grouped by different types of old flagella"

      -Fig. S7: The 'B' is missing in both picture and legend.

      This has been added


      Significance

      This study advances our knowledge of flagellar length regulation and maintenance. Moreover, the tools designed in this work will be very useful for the cell biology community in general.


      Reviewer #2

      Evidence, reproducibility and clarity

      Summary: The length of the old flagellum of Trypanosome is constant during G1 phase as well as during cell cycle progression when the new flagellum is assembled. The authors have previously proposed a "Grow and Lock" model for the flagellar length control in which no flagellar building blocks are incorporated. To test this hypothesis, the authors used a tagging strategy for alpha-tubulin and tracking its incorporation. The authors showed that the new flagellum incorporates new tubulins, as is expected. For the mature flagellum, tubulins are incorporated at the flagellar tip and only when the cells start to assemble the new flagellum. Thus, it shows that old flagellum is stable but not completely locked for the incorporation of tubulins.

      Major comments: The study is methodologically rigorous, integrating fluorescence microscopy, biochemical approaches, and proteomic analyses to validate the functionality of the tagged tubulin. The use of both inducible expression and endogenous protein tagging (HaloTag) strengthens the conclusions. This study has supported the "Grow-and-Lock" model" that the authors previously proposed. In addition, they have revealed that the stability of the old flagellum is temporally controlled.

      The data showed that brief incorporation of tubulins at the tip of the old flagellum occurs when the cells start to form the new flagellum. I thought the assembly of the new flagellum occurs during the cell division. However, in the abstract, it says that "The restriction is lifted briefly after the bi-flagellated cell has divided." Is my understanding wrong?

      We believe incorporation at the tip of the "OF" occurred after the cell has divided, when the OF daughter is mono-flagellated. It happens before this daughter cells starts assembling its new flagellum is formed. Of course, when looking at biflagellated cells, the NF as well as the tip of the OF will be green, but our data supports that incorporation happened in G1-phase and not during the biflagellated stage as the lock seals the OF before the NF emerges. To clarify on terminology: The bi-flagellate stage begins when basal bodies are duplicated, shortly after the beginning of S-phase and ends with cytokinesis. This means G1-phase and the mono-flagellated stage are nearly the same (Woodward and Gull, JCS1990) and occupy ~40% of the cell cycle.

      P12, "The cartoon in Fig. 5A illustrates the progression of the cells in scenario 2 (Fig. 4A) over the duration of one cell cycle (~9 hours)" I thought that one cell cycle should start with cell with only one flagellum, followed by assembly of a new flagellum during cell division, the cell then divides when the new flagellum is almost completely assembled. If my understanding is correct, perhaps the cartoon should be modified accordingly.

      Indeed, the cell cycle starts with a cell in G1-phase. Here, we have chosen the initiation of a NF assembly as our starting point because we focused the investigation on bi-flagellated cells. We have now illustrated the cell cycle (adapted from Woodward and Gull 1990) and when cells are biflagellated in Fig. 6A (revised version).

      Minor comments:

      1) Several references are not correctly formatted. P3: (Flavin and Slaughter, 1974) (Rosenbaum 1969). P10, (Sherwin et al., 1987)(Sheriff et al., 2014) 2) In several places there are no space between the number and the unit. For eample, P3, 9 - 24µm/h. 7, 1μg/m; P8, 50kDa; P9, 1M; 8-9h; P11, 2.9µm/h and etc. 3) P11, Flagella were extracted. I thought the cells were extracted.

      Thank you for pointing these out, we have changed these in the text.


      Significance

      Cilia and eukaryotic flagella are considered dynamic structures in which the flagellar components especially tubulins under constant turnovers even in steady state. This work demonstrates that in Trypanosome the stable old flagellum is temporally controlled for tubulin turnovers, suggesting a tight regulation of microtubule dynamics. Future elucidation of the regulatory mechanism will be more interesting. This work will be interesting to the field of cilia and microtubules. In addition, the new technique used for tracking tubulins will also be interesting.

      I am an expert on ciliary biology.

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      Summary:

      This study seeks to investigate the mechanism by which the length of an eukaryotic cilium is set and maintained in a constant state. The flagellated protist Trypanosoma brucei serves as the study model and the authors take advantage of the genetic tools that allow precise modification and tagging of flagellar proteins and they build on prior knowledge about the well-characterised flagellar assembly cycle, which allows tracking the assembly of a new flagellum alongside an existing old one in the course of one cell cycle. The group of Bastin has previously reported a very interesting "Grow-and-Lock Model for the Control of Flagellum Length in Trypanosomes" and this current manuscript provides a test of this model, and a refinement. Key to this is an advance in technique, reported here, namely expression of an epitope tagged version of alpha tubulin. The epitope is inserted in an internal loop, which apparently for the first time provides a traceable tubulin that is reliably incorporated into the cytoskeleton (subpellicular array, spindle and cilium). Expressing an inducible version of this Ty-1-tubulin allows for a set of experiments that measure the place and timing of tubulin incorporation into cilia. The results are largely confirmatory of previous findings (incorporation exclusively into the new flagellum, at the distal end, linear growth rate that matches previous estimates). Examination of tubulin incorporation patterns then reveal additional information about the old flagellum: evidence from Ty-1-tubulin labelling, corroborated by incorporation patterns of another ciliary protein (RSP 4/6) suggest that the "lock" on the old flagellum is relieved for short periods after cell division, leading to a refined model presented in Figure 8.

      Major comments:

      This study provides an elegant test of the grow-and-lock model and the major conclusions are supported by the data. I have no major concerns.

      Minor comments:

      There are several minor points that could be addressed to make the manuscript easier to follow (and adding line numbers to the manuscript would help with reviewing).

      The introduction is quite long. Some of the well-established background information on the T. brucei cell cycle could be shortened. If the paper is intended for a broader audience, it would be valuable instead to cite studies that have succeeded in tagging tubulin and tracing its incorporation in other cilia. Could the Ty-1-tubulin approach be relevant more broadly or are simpler methods already established?

      The introduction has been shortened, we now also cite two published studies that tracked tubulin integration in Chlamydomonas and C. elegans respectively.

      On p.6 the rationale for endogenous tagging was to "reduce the risk of artifacts portentially due to untimely expression or unnatural protein levels". However most of the experiments were done with ectopically expressed inducible Ty-1-tubulin. For the experiments it is crucial to use an inducible system but the authors may wish to comment why the risk of artifacts was no longer a concern.

      The reasoning here was that in case the Ty-1-tubulin would not have been incorporated into MTs, we could have attributed it solely to the presence of the tag and no other factors, but this was not the case. This therefore allowed us to move to the inducible expression system.

      On p.7 / Fig S2A-B there appears to be a mistake in the presentation. Spindles are mentioned in the text - I can't see any in the figure. Fig S2A and B both show cytoskeletons, but the text suggests only B is about cytoskeletons. None of the blot shows BB2 staining of different cell fractions, contrary to statements in the text. The letter codes in the panel (T, C, D) don't match the codes in the legend (T, P, S).

      We thank the reviewer for spotting the mistakes. A panel with the spindle was added in Fig. S2. We did not stain fraction blots of the in-situ tagged cell lines with BB2. However, this was done with the inducible cell line and is shown in Fig. 1D. Letter code in the legend was adapted to match the figure.

      Figure 1. The evidence for incorporation into spindles is not strong. The structure indicated by the arrive could be a spindle but it's not very clear. There is a great example of a labelled spindle only in figure S5A. Here, at the start, it would be good to show a panel of cells in successive cell cycle stages (best, whole cells and cytoskeletons) to clearly show the structures that are labelled with Ty-1-tubulin.

      The current Fig. 1B (Fig. 1A before) depicts whole cells of an induced and a non-induced culture; we show whole cells to provide a complete picture of tubulin integration. A panel with detergent extracted cytoskeletons from the in situ tagged cell line has been added to Fig. 1A. We chose to show cytoskeletons or isolated flagella instead of whole cells because (1) the flagella are easier to see and (2) it formally demonstrates that tagged tubulin is incorporated in MTs.

      In general, tubulin labelling of the spindle was more consistently observed in whole cells as we did not use spindle preserving extraction buffers when preparing cytoskeletons. However, we did observe clear spindles in cytoskeletons as well (see Fig. S5 for example). The same was observed for the beta-tubulin specific KMX1 antibody in the past which is the gold standard to visualize the spindle (Sasse and Gull JCS1988). Regardless, a panel depicting spindle progression through mitosis using staining of Ty-1-tubulin has been added in Fig. S2 (The panel is a mix of whole cells and cytoskeletons).

      On p.8 (end of first paragraph) there is reference to cell cycle analyses, but no data is shown. Also on p.8, please clarify what the evidence is that "a fraction of cells did not respond to tetracycline". The fact that they remain unstained by Ty-1-tubulin is not in itself evidence they did not respond to tetracycline.

      We did not show the cell cycle data as it was similar to non-induced and does not provide any new information in our opinion. Hence, the sentence has been removed.

      The reviewer is correct that we do not have evidence that these cells did not respond to tetracycline. Some cells remained completely devoid of Ty-1-tubulin even after multiple days of induction. This was typically between 5-10% of cells. In experiments where the exact number is important, we counted the amount of "non-expressers" in whole cells.

      Figure S4A. The blot for the soluble fraction is not of great quality. I don't see how the conclusion was reached that the Ty-1-tubulin bands were faint.

      The blot of the soluble fraction that was stained with BB2 had to be exposed a lot longer compared to the blot stained with TAT-1. The soluble blots were repeated with the same result (lots of background noise when using BB2, a clear blot with TAT-1). In the TAT-1 blot only the endogenous tubulin band is clearly visible, with some very faint signal above corresponding to the Ty-1-tubulin. Soluble Ty-1-tubulin with BB2 or TAT-1 is visible in Fig. 1D after longer inductions.

      On p.11, it would be interesting to compare measured elongation rates with previously measured estimates for flagellum growth, comparing the growth rates, and relating them to cell cycle times in the corresponding experiments (which vary slightly between labs and studies).

      We attempted to address this in the discussion by comparing our experiments to the assembly rate measured with the PFR as reporter (Bastin et al. 1999). We could mention the corresponding doubling times in correlation to how many cells are bi-flagellated, but this was only done with the Ty-1-tubulin cell line and not with the PFR. In our experiments the average doubling time was ~9 hours with 52% of cells being bi-flagellated. This was measured with FTZC (marker of the transition zone at the base of the flagellum) and Mab25 (marker of the axoneme of the flagellum) which will lead to a slight underestimate of the real number of bi-flagellated cells, as the NF is initially very close which makes it difficult to notice/differentiate from the old one.

      Figure S6. I find the presentation of this figure confusing. It should be revised with clearer labelling of "cell cycle 1", "cell cycle 2", and the precise meaning of "type 3" should be clarified. There are two instances of "type 1" in the drawing, but one of these seems to fulfil the criteria of "type 3" (OF 1-4µm).

      We agree with the reviewer and therefore decided to remove this figure. We also considered the comments of the other two reviewers about complexity of the manuscript and changed the text of figure 5 to make it more approachable. This includes a simpler explanation for the expected amounts of flagella.

      Figure 7. In panel A, the absence of label at the NF distal end is not total, a purple line is still visible. Was any quantitation attempted (signal intensity, changes in length of labelled fragments over time?). Minimally, say how many cells were analysed for the numbers in panels D and E, and how many times this experiment was done.

      We agree with the reviewer that the decrease in the TMR signal in the NF of the cell in the original Fig. 7A (currently Fig. 8A) is gradual and not abrupt. Similarly to the Ty-1-tubulin experiments where the tagged protein becomes progressively more available (increasing intensity), the intensity of TMR-ligand becomes progressively less abundant (gradually decreasing intensity) as new (not TMR labelled) protein gets synthesized during the period of NF construction, progressively diluting the initially fully labeled population of RSP4/6. The slope of the gradient may differ between axonemal constituents, as it reflects the kinetics of protein synthesis, degradation, its incorporation into the axoneme, as well as the size of the soluble protein pool in the cytosol. We classify this type of signal as gradients, as opposed to the sharp decrease. At initial times after TMR-ligand washout (e.g. 4 hours in Fig. 8C), this long gradient is observed at the distal end of NFs and in some uniflagellated cells (NF-inheriting daughters). The distal ends of OFs in these experiments (if not fully labelled) display a sharp decrease, as do frequent uniflagellated cells, likely OF-inheriting daughters. The existence of these two different patterns demonstrates that two different mechanisms are responsible for incorporation of fresh RSP4/6 into the NF and OF axoneme, respectively. While incorporation into the NF is gradual, incorporation into the distal region of the OF is stepwise (restricted in time). Numbers of cells quantified for the table in Fig. 8 have been added. The NFs and OFs displaying the patterns of the gradient and sharp decrease, respectively, were observed in multiple experiments.

      Reviewer #3 (Significance (Required)):

      • General assessment: strengths and limitations

      Strengths: Trypanosoma brucei is a powerful model system in which to ask detailed questions about the assembly dynamics and hierarchy of microtubule-based cytoskeletal structures in general and cilia in particular. This elegant and well-designed study overcomes a previous technical limitation by allowing for the direct labelling of alpha tubulin, one of the main building blocks of the ciliary axoneme. The study sets out to test a specific hypothesis (grow-and-lock model) and provides evidence in support, leading to a refined model for cilia length regulation in trypanosomes.

      Limitations: With this system, visualisation of new tubulin incorporation requires de novo synthesis. There is a time lag between inducing expression of Ty-1-tubulin with tetracycline and being able to visualize the tagged proteins that needs to be taken into consideration. This time lag was estimated based on previous studies and the relatively quick appearance of Ty-1-tubulin on Western blots (within hours). This inevitably creates a situation where levels of tagged tubulin change rapidly, creating gradients of signal intensity (and variations in levels) that lead to some uncertainty in estimations of length of labelled microtubule fragments. Furhtermore, the epitope label is not compatible with live cell imaging, restricting analyses to fixed cells. The Ty-1-tubulin data is well ducmented; the RSP4/6 data appear to corroborate these findings but are less extensively documented.

      • Advance: The results succeed in integrating several recent findings from different research groups into a refined coherent model about cilia length regulation in trypanosomes. The tubulin tagging method could be gainfully transferred to other systems (although the state of the field in tubulin tagging in other systems is not clearly laid out in the paper).

      This paper could be of interest to a broad cell biology community interested in cilia and cytoskeletal dynamics.

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #1

      Evidence, reproducibility and clarity

      The manuscript by Daniel Abbühl on "A novel approach to tagging tubulin reveals MT assembly dynamics of the axoneme in Trypanosoma brucei" uses an innnovative approach to label tubulin, which allows the authors to unveil new mechanisms in flagellar length regulation.

      The manuscript is very nice and will be very interesting for the cell biology community and therefore should be accepted. In some parts it becames a bit complex with all the models and complex phrasing, I wonder whether the text could be simplified to be more appealing. I have a few minor comments:

      • From the model the authors show in Figure 8- there should be a way of pulsing the cells in G1 for a short amount of time -2 hours- and getting both flagella tips labelled. But the authors seem to require longer labelling to get that result. This should be better explained.
      • Why do some cells not express the construct? Weren´t they all selected?
      • "The linear regression line in Fig. 3C was corrected by subtracting 45 minutes from each timepoint due to the previously reported delay between addition of tetracycline and the expression of the respective protein". However, in the authors data the delay may amount to one hour (western analysis- S4). Shouldn´t they use their data.
      • Fig 3: To measure the timepoints of flagella growth, wouldn´t it be better to do it with NF that started to grow before induction, rather than starting to grow after induction, to be sure that the timing of incorporation is fully accounted for?
      • Although it is not the focus of the manuscript it would have been very interesting to use the CEP164C mutant to see whether it would change the dynamics of incorporation and fully test their model and discussion.
      • In some parts of the manuscript/supplemental material the authors say they insert the Ty-1- tag one aminoacid after the acetylated lysine- other parts they say two aminoacids after- this should be consistent.
      • Fig. S1: 'Binding epitope of the TAT-1 antibody is highlighted in red'. There is no highlighting in red in this figure?
      • Fig. S2: Western blots are not very clear. What is the 'X' present in the C (first lane)? Weight of markers should be shown also in S4.
      • Fig 5: 'C: Frequency of bi-flagellated cells grouped by the different types of' The authors didn't finish the sentence.
      • Fig. S7: The 'B' is missing in both picture and legend.

      Significance

      This study advances our knowledge of flagellar length regulation and maintenance. Moreover the tools designed in this work will be very useful for the cell biology community in general.

    1. Wide o'er man my realm extends, and proud the name that I, the goddess Cypris, bear, both in heaven's courts and 'mongst all those who dwell within the limits of the sea and the bounds of Atlas, beholding the sun-god's light; those that respect my power I advance to honour, but bring to ruin all who vaunt themselves at me. For even in the race of gods this feeling finds a home, even pleasure at the honour men pay them. And the truth of this I soon will show; for that son of Theseus, born of the Amazon, Hippolytus, whom holy Pittheus taught, alone of all the dwellers in this land of Troezen, calls me vilest of the deities. Love he scorns, and, as for marriage, will none of it; but Artemis, daughter of Zeus, sister of Phoebus, he doth honour, counting her the chief of goddesses, and ever through the greenwood, attendant on his virgin goddess, he clears the earth of wild beasts with his fleet hounds, enjoying the comradeship of one too high for mortal ken. 'Tis not this I grudge him, no! why should I? But for his sins against me

      Annotation by: [Your Full Name] CC License: CC BY-NC-SA 4.0 Tag: #SP2025-Lit211

      Linguistic and Cultural Context: Aphrodite talks in a super fancy way here. She talks and acts like a queen to make herself sound more powerful. This is because she’s a goddess, and in Greek plays, gods were always shown as being really important. The way she talks is all about showing off her power. She says she can help people who respect her or destroy people who don’t. This kind of serious, dramatic language is normal for Greek gods in plays because it makes them seem way bigger and more important than normal people.

    2. Wide o'er man my realm extends, and proud the name that I, the goddess Cypris, bear, both in heaven's courts and 'mongst all those who dwell within the limits of the sea and the bounds of Atlas, beholding the sun-god's light; those that respect my power I advance to honour, but bring to ruin all who vaunt themselves at me.

      Annotation by: Jatnna Sanchez CC License: CC BY-NC-SA 4.0 Tag: #SP2025-Lit211

      Comparative Insight: In this quote, Aphrodite declares her vast influence over both mortals and gods, emphasizing that she rewards those who honor her and punishes those who don't. This showcases her as a powerful female deity who demands respect and can control the fates of individuals. Her power over love and desire contrasts with Hippolytus' self-control and rejection of passion, highlighting the different ways power is portrayed in the play.

    3. Wide o'er man my realm extends, and proud the name that I, the goddess Cypris, bear, both in heaven's courts and 'mongst all those who dwell within the limits of the sea and the bounds of Atlas, beholding the sun-god's light; those that respect my power I advance to honour, but bring to ruin all who vaunt themselves at me.

      Annotation by: Jatnna Sanchez CC License: CC BY-NC-SA 4.0 Tag: #SP2025-Lit211

      Analysis: In this quote, Aphrodite talks about how powerful she is. She controls love and desire everywhere, and she makes it clear that if people respect her, she will help them. But if they ignore her or disrespect her, she will punish them. This shows that even though she is a goddess of love, she is not just kind and gentle but that she can also be dangerous if people make her angry. This makes her a really powerful female character in the story because she can control people’s feelings and lives.

    1. I honor those who reverence my power, but I lay low all those who think proud thoughts against me. For in the gods as well one finds this trait: they enjoy receiving honor from mortals.

      Annotation by: Jatnna Sanchez CC License: CC BY-NC-SA 4.0 Tag: #SP2025-Lit211

      Analysis: In this quote, Aphrodite talks about how she rewards people who respect her but punishes anyone who disrespects her. This shows how powerful she is because everyone has to listen to her, even though she’s a goddess of love. It also shows how women, especially goddesses, were expected to be respected but could also be blamed if something went wrong.

    1. He waswise, lie saw mysteries and knew secret things, he brought us a tale of the daysbefore the flood.

      Annotation by: Jatnna Sanchez CC License: CC BY-NC-SA 4.0 Tag: #SP2025-Lit211

      Linguistic and Cultural Context: Kovacs’ version is written in modern and clear English, which makes it easy to understand and focuses on Gilgamesh’s journey. Sandars’ version is written in a more poetic style, making him look like a hero. These two styles show how translators can change the way we see a character, depending on whether they want him to look like a brave man or a famous hero.

    2. e went on a long journey, was weary, worn-out with labour,returning he rested, he engraved on a stone the whole story

      Annotation by: Jatnna Sanchez CC License: CC BY-NC-SA 4.0 Tag: #SP2025-Lit211

      Comparative Insight: Both versions show Gilgamesh as a hero, but they focus on different things. Kovacs’ version shows him as someone who goes on a tough journey and learns a lot, while Sandars’ version makes him look like a famous legend whose story should be told to everyone. This connects to gender politics because it shows two ways of being a "great man", first is about bravery and wisdom, and the other is about being remembered.

    3. WILL proclaim to the world the deeds of Gilgamesh. This was the man to whomall things were known; this was the king who knew the countries of the world. He waswise, lie saw mysteries and knew secret things, he brought us a tale of the daysbefore the flood. He went on a long journey, was weary, worn-out with labour,returning he rested, he engraved on a stone the whole story.

      Annotation by: Jatnna Sanchez CC License: CC BY-NC-SA 4.0 Tag: #SP2025-Lit211

      Analysis: In this version, Gilgamesh is shown as a hero who had come back from a journey and shares his stories from these adventures. This connects to gender politics because it shows how men were expected to be strong leaders who were remembered for their work and achievements.

    1. He went on a distant journey, pushing himself to exhaustion,but then was brought to peace

      Annotation by: Jatnna Sanchez CC License: CC BY-NC-SA 4.0 Tag: #SP2025-Lit211

      Linguistic and Cultural Context: Kovacs’ version is written in modern and clear English, which makes it easy to understand and focuses on Gilgamesh’s journey. Sandars’ version is written in a more poetic style, making him look like a hero. These two styles show how translators can change the way we see a character, depending on whether they want him to look like a brave man or a famous hero.

    2. He carved on a stone stela all of his toils,and built the wall of Uruk-Haven,the wall of the sacred Eanna Temple, the holy sanctuary

      Annotation by: Jatnna Sanchez CC License: CC BY-NC-SA 4.0 Tag: #SP2025-Lit211

      Comparative Insight: Both versions show Gilgamesh as a hero, but they focus on different things. Kovacs’ version shows him as someone who goes on a tough journey and learns a lot, while Sandars’ version makes him look like a famous legend whose story should be told to everyone. This connects to gender politics because it shows two ways of being a "great man", first is about bravery and wisdom, and the other is about being remembered.

    3. He saw the Secret, discovered the Hidden,he brought information of (the time) before the Flood.He went on a distant journey, pushing himself to exhaustion,but then was brought to peace

      Annotation by: Jatnna Sanchez CC License: CC BY-NC-SA 4.0 Tag: #SP2025-Lit211 In this version, Gilgamesh is shown as a hero who goes on a long journey, learns a lot, and brings back stories from the past. This makes him look like the a good hero where he has characteristics of someone who is brave, curious, and always trying to learn more. This connects to gender politics because it shows how men were expected to be strong, adventurous, and wise.

    1. “This was my thought, when my thanes and I bent to the ocean and entered our boat, that I would work the will of your people fully, or fighting fall in death, in fiend’s gripe fast. I am firm to do an earl’s brave deed, or end the days of this life of mine in the mead-hall here.”

      Annotation by: Jatnna Sanchez CC License: CC BY-NC-SA 4.0 Tag: #SP2025-Lit211

      Linguistic and Cultural Context: Hall’s translation is from the 1800s, so it uses older and fancier words to describe Beowulf and how his characteristics make him a hero. Gummere’s translation is from the early 1900s and is easier to read using more of modern texts and descriptions. These differences show how ideas of heroism and masculinity can change over time, even though Beowulf is always a strong, brave hero.

    2. I would work the will of your people fully, or fighting fall in death,

      Annotation by: Jatnna Sanchez CC License: CC BY-NC-SA 4.0 Tag: #SP2025-Lit211

      Comparative Insight: Both versions show Beowulf as a brave and respectful hero, but Hall’s version is more poetic, which makes Beowulf seem like a legendary figure. Gummere’s version is simpler and makes Beowulf seem more like a real person narrating the story. Both connect to gender politics by highlighting how a hero must be strong but also respectful.

    3. This was my thought, when my thanes and I bent to the ocean and entered our boat, that I would work the will of your people fully, or fighting fall in death,

      Annotation by: Jatnna Sanchez CC License: CC BY-NC-SA 4.0 Tag: #SP2025-Lit211

      Analysis: In this quote, Beowulf shows his bravery by talking about how he and his men sailed across the sea to help Hrothgar and his people, knowing that they might die. This is a big part of gender politics because it shows the traditional idea of masculinity of being strong, fearless, and willing to sacrifice yourself for honor.

    1. multitude of dreams at night

      Annotation by: Jatnna Sanchez CC License: CC BY-NC-SA 4.0 Tag: #SP2025-Lit211

      Linguistic and Cultural Context: Potter's version is more descriptive in her feelings of her son's departure. It shows more of an emotional side of the story. Smyth's version tells the story like a book where it does not show as much emotion and gets to the point. These two stories show how different emotions can be shown of the same character based on different writing.

    2. I have been haunted by a multitude of dreams at night since the time when my son, having despatched his army, departed with intent to lay waste the land of the Ionians. But never yet have I beheld so distinct a vision [180] as that of the last night. This I will describe to you.

      Annotation by: Jatnna Sanchez CC License: CC BY-NC-SA 4.0 Tag: #SP2025-Lit211

      Comparative Insight: Both versions show Atossa being upset, but in different ways. In Potter’s version, she’s emotional and scared, which makes her seem vulnerable. In Smyth’s version, she’s more controlled, which makes her look strong.

    3. I have been haunted by a multitude of dreams at night since the time when my son, having despatched his army, departed with intent to lay waste the land of the Ionians.

      Annotation by: Jatnna Sanchez CC License: CC BY-NC-SA 4.0 Tag: #SP2025-Lit211

      Analysis: This version of Atossa is different. She’s still worried, but instead of showing it publicly, she keeps her feelings inside. She instead tells us about the dreams she has about her son. This connects to the view of women as she is showing us a different version of her being more strong as she isn't showing her emotions publically but has dreams instead.

    1. Haunting my dreams, how plainly did you show

      Annotation by: Jatnna Sanchez CC License: CC BY-NC-SA 4.0 Tag: #SP2025-Lit211

      Linguistic and Cultural Context: Potter's version is more descriptive in her feelings of her son's departure. It shows more of an emotional side of the story. Smyth's version tells the story like a book where it does not show as much emotion and gets to the point. These two stories show how different emotions can be shown of the same character based on different writing.

    2. Ah me, what sorrows for our ruin'd host Oppress my soul! Ye visions of the night

      Annotation by: Jatnna Sanchez CC License: CC BY-NC-SA 4.0 Tag: #SP2025-Lit211

      Analysis: In this version, Atossa is emotional as she talks about nightmares that keep haunting her, and it shows how worried she is for her son and the Persian army. It shows a traditional view of women that show emotions as she shows her emotions of sad, fear, anxious, etc when it comes to her son and the people.

    3. Ah me, what sorrows for our ruin'd host Oppress my soul! Ye visions of the night Haunting my dreams, how plainly did you show These ills!-You set them in too fair a light.

      Annotation by: Jatnna Sanchez CC License: CC BY-NC-SA 4.0 Tag: #SP2025-Lit211

      Comparative Insight: Both versions show Atossa being upset, but in different ways. In Potter’s version, she’s emotional and scared, which makes her seem vulnerable. In Smyth’s version, she’s more controlled, which makes her look strong.

    1. eLife Assessment

      TDP-43 mislocalization is a key feature of some neurodegenerative diseases, but cellular models are lacking. The authors endogenously-tagged TDP-43 with a C-terminal GFP tag in human iPSCs, followed by expression of an intrabody-NES that targeted GFP to the cytosol. They convincingly report physical mislocalization and functional depletion of TDP-43, as measured by microscopy and RNAseq. This method will be valuable to investigators studying the biological consequences of TDP-43 mislocalization and the methodology is in line with the current state-of-the-art.

    2. Reviewer #2 (Public review):

      Summary:

      TDP-43 mislocalization occurs in nearly all of ALS, roughly half of FTD, and as a co-pathology in roughly half of AD cases. Both gain of function and loss of function mechanisms associated with this mislocalization likely contribute to disease pathogeneisis.

      Here, the authors describe a new method to induce TDP-43 mislocalization in cellular models. They endogenously-tagged TDP-43 with a C-terminal GFP tag in human iPSCs. They then expressed an intrabody - fused with a nuclear export signal (NES) - that targeted GFP to the cytosol. Expression of this intrabody-NES in human iPSC derived neurons induced nuclear depletion of homozygous TDP-43-GFP, caused its mislocalization to the cytosol, and at least in some cells appeared to cause cytosolic aggregates. This mislocalization was accompanied by induction of cryptic exons in well characterized transcripts known to be regulated by TDP-43, a hallmark of functional TDP-43 loss and consistent with pathological nuclear TDP-43 depletion. Interestingly, in heterozygous TDP-43-GFP neurons, expression of intrabody-NES appeared to also induce the mislocalization of untagged TDP-43 in roughly half of the neurons, suggesting that this system can also be used to study effects on untagged endogenous TDP-43 as well as TDP-43-GFP fusion protein.

      Strengths:

      A clearer understanding of how TDP-43 mislocalization alters cellular function, as well as pathways that mitigate clearance of TDP-43 aggregates, is critical. But modeling TDP-43 mislocalization in disease-relevant cellular systems has proven to be challenging. High levels of overexpression of TDP-43 lacking an NES can drive endogenous TDP-43 mislocalization, but such overexpression has direct and artificial consequences on certain cellular features (e.g. altered exon skipping) not seen in diseased patients. Toxic small molecules such as MG132 and arsenite can induce TDP-43 mislocalization, but co-induce myriad additional cellular dysfunctions unrelated to TDP-43 or ALS. TDP-43 binding oligonucleotides can cause cytosolic mislocalization as well. Each system has pros and cons, and additional ways to induce TDP-43 mislocalization would be useful for the field. The method described in this manuscript could provide researchers with a powerful way to study the combined biology of cytosolic TDP-43 mislocalization and nuclear TDP-43 depletion, with additional temporal control that is lacking in current method. Indeed, the author see some evidence of differences in RNA splicing caused by pure TDP-43 depletion versus their induced mislocalization model. Finally, their method may be especially useful in determining how TDP-43 aggregates are cleared by cells, potentially revealing new biological pathways that could be therapeutically targeted.

      Weaknesses:

      The method and supporting data have some limitations.

      • Tagging of TDP-43 with a bulky GFP tag may alter its normal physiological functions, for example, phase separation properties and functions within complex ribonucleoprotein complexes. The authors show that normal splicing function of GFP-TDP-43 is maintained, suggesting that physiology is largely preserved, but other functions and properties of TDP-43 that were not directly tested could be altered.

      • Potential differences in splicing and micro RNAs between TDP-43 knockdown and TDP-43 mislocalization are potentially interesting. However, different patterns of dysregulated RNA splicing can occur at different levels of TDP-knockdown and can differ in different batches of experiments, thus it is difficult to asses whether the changes observed in this paper are due to mislocalization per se, or rather just reflect differences in nuclear TDP-43 abundance or batch effects.

    3. Author response:

      The following is the authors’ response to the previous reviews

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      Nuclear depletion and cytoplasmic mislocalization/aggregation of the DNA and RNA binding protein TDP-43 are pathological hallmarks of multiple neurodegenerative diseases. Prior work has demonstrated that depletion of TDP-43 from the nucleus leads to alterations in transcription and splicing. Conversely, cytoplasmic mislocalization/aggregation can contribute to toxicity by impairing mRNA transport and translation as well as miRNA dysregulation. However, to date, models of TDP-43 proteinopathy rely on artificial knockdown- or overexpression-based systems to evaluate either nuclear loss or cytoplasmic gain of function events independently. Few model systems authentically reproduce both nuclear depletion and cytoplasmic miscloalization/aggregation events. In this manuscript, the authors generate novel iPSC-based reagents to manipulate the localization of endogenous TDP-43. This is a valuable resource for the field to study pathological consequences of TDP-43 proteinopathy in a more endogenous and authentic setting. However, in the current manuscript, there are a number of weaknesses that should be addressed to further validate the ability of this model to replicate human disease pathology and demonstrate utility for future studies.

      Strengths:

      The primary strength of this paper is the development of a novel in vitro tool.

      Weaknesses:

      There are a number of weaknesses detailed below that should be addressed to thoroughly validate these new reagents as more authentic models of TDP-43 proteinopathy and demonstrate their utility for future investigations.

      (1) The authors should include images of their engineered TDP-43-GFP iPSC line to demonstrate TDP-43 localization without the addition of any nanobodies (perhaps immediately prior to addition of nanobodies). Additionally, it is unclear whether simply adding a GFP tag to endogenous TDP-43 impact its normal function (nuclear-cytoplasmic shuttling, regulation of transcription and splicing, mRNA transport etc).

      We have included images of the untransduced day 20 MNs derived from the engineered TDP43-GFP iPSC lines and the unedited line (Supplementary Fig. 1B).

      We acknowledge the reviewer’s concern about the potential impact of the GFP tag on TDP43's normal function. To address this, we have validated the functionality of TDP43 by assessing the inclusion of cryptic exons in highly sensitive targets such as UNC13A and STMN2, both of which are known to be directly regulated by TDP43.

      We compared MNs derived from the unedited parent line with the TDP43-GFP MNs prior to nanobody addition. As measured by qPCR, cryptic exon inclusion in UNC13A and STMN2 was not observed in the unedited or edited TDP43-GFP MNs (Supplementary Fig.1C), confirming that the tagging does not induce splicing defects by itself. The cryptic exon inclusion in UNC13A and STMN2 were only observed in TDP43-GFP MNs expressing the NES nanobody (Supplementary Fig. 2D). These findings were further supported by our next-generation sequencing data, which also showed that cryptic exon inclusion was specific to the TDP43 mislocalization condition (Supplementary Fig.3 and 4).

      Thus, we have strong evidence that the GFP-tagged TDP43 behaves similarly to the wild-type protein and does not interfere with its function in our model.

      (2) Can the authors explain why there is a significant discrepancy in time points selected for nanobody transduction and immunostaining or cell lysis throughout Figure 1 and 2? This makes interpretation and overall assessment of the model challenging.

      For the phenotypic data shown in Fig.1, we added the AAVs at day 18 or 20 and analyzed the cells at day 40. For the phosphorylated TDP43 western blot (revised Fig. 3D), cells were treated with doxycycline at day 20 to induce nanobody expression and samples were harvested at day 40. Thus, cells were harvested between days 20 or 22 after adding the nanobodies. The onset of transgene expression when using AAVs in neurons typically display slow kinetics. We observed TDP43 mislocalization in less than 50% of the neurons after 7 days post-transduction that peaked at 10-12 days after addition of the nanobodies, when more than 80% of the cells displayed TDP43 mislocalization. Hence, we do not believe that a two-day difference significantly alters the interpretation of the data.

      The decision to harvest neurons at day 30 for the qPCR data was taken to investigate whether the splicing changes seen at day 40 from the transcriptomics analysis can be detected well before the phenotypes observed at day 40.

      (3) The authors should further characterize their TDP-43 puncta. TDP-43 immunostaining is typically punctate so it is unclear if the puncta observed are physiologic or pathologic based on the analyses carried out in the current version of this manuscript. Additionally, do these puncta co-localize with stress granule markers or RNA transport granule markers? Are these puncta phosphorylated (which may be more reminiscent of end-stage pathologic observations in humans)?

      We have tried immunostaining neurons for phosphorylated TDP43. However, our immunostaining attempts were unsuccessful. Depending on the antibody, we either saw no signal (antibody from Cosmo Bio, TIP-PTD-M01A) or even the control neurons displayed detectable phosphorylation within the nucleus (antibody from Proteintech 22309-1-AP). Consequently, we performed western blot analysis using an antibody from Cosmo Bio, (TIP-PTD-M01A) that clearly shows hyperphosphorylation of TDP43 in whole cell lysates (Fig. 3D, E). Hence, we have referred to these structures as puncta and not aggregates (Page 4).

      To assess co-localization of the puncta with stress granules, we immunostained for the stress granule marker G3BP1. This was done in MNs that were treated with sodium arsenite (SA) or PBS as a control. In the PBS treated control MN cultures, TDP43 mislocalization alone did not induce stress granule formation. G3BP1+ stress granules were only observed following SA stress (0.5 mM, 60 minutes). Further, only a subset of TDP43 puncta overlapped with these stress granules (Supplementary Fig. 7) (Page 6).

      (4) The authors should include multiple time points in their evaluation of TDP-43 loss of function events and aggregation. Does loss of function get worse over time? Is there a time course by which RNA misprocessing events emerge or does everything happen all at once? Does aggregation get worse over time? Do these neurons die at any point as a result of TDP-43 proteinopathy?

      We agree that a time course to analyze TDP43 mislocalization and its consequences would be ideal. However, the mislocalization of TDP43 across neurons is not a coordinated process. At each given time instance, neurons display varying levels of TDP43 mislocalization. Answering the questions raised by the reviewer would require tracking individual neurons in real time in a controlled environment over weeks. Unfortunately, we currently do not have the hardware to run these experiments. However, we do observe increased levels of cleaved caspase 3 in MNs expressing the NES nanobody, indicating that these neurons indeed undergo apoptosis by day 40 (Fig.1).

      We have, however, analyzed changes in splicing using qPCR for 12 genes over a time course starting as early as 4 hours after inducing mislocalization. We detect time-dependent cryptic splicing events in all genes as early as 8 hours after doxycycline addition, coinciding with the appearance TDP43 mislocalization (Fig. 4A, B).

      (5) Can the authors please comment on whether or not their model is "tunable"? In real human disease, not every neuron displays complete nuclear depletion of TDP-43. Instead there is often a gradient of neurons with differing magnitudes of nuclear TDP-43 loss. Additionally, very few neurons (5-10%) harbor cytoplasmic TDP-43 aggregates at end-stage disease. These are all important considerations when developing a novel authentic and endogenous model of TDP-43 proteinopathy which the current manuscript fails to address.

      As shown in Fig .1, the neurons expressing the NES-nanobody display a wide range of mislocalization as assessed by the % of nuclear TDP43 present. By titrating the amount of AAVs added to the culture, the model can be tuned to achieve a wide gradient of TDP43 mislocalization.

      We calculated the size and percentage of neurons displaying TDP43 puncta. The size and the number of aggregates varies across the neurons that display TDP43 mislocalization. Around 50% of the neurons displayed small (1  um<sup>2</sup>) puncta while large puncta (> 5  um<sup>2</sup>) were observed in <10% of the cells, similar to observations in patient tissue (Fig. 1F).

      Reviewer #2 (Public Review):

      Summary:

      TDP-43 mislocalization occurs in nearly all of ALS, roughly half of FTD, and as a co-pathology in roughly half of AD cases. Both gain-of-function and loss-of-function mechanisms associated with this mislocalization likely contribute to disease pathogeneisis.

      Here, the authors describe a new method to induce TDP-43 mislocalization in cellular models. They endogenously tagged TDP-43 with a C-terminal GFP tag in human iPSCs. They then expressed an intrabody - fused with a nuclear export signal (NES) - that targeted GFP to the cytosol. Expression of this intrabody-NES in human iPSC-derived neurons induced nuclear depletion of homozygous TDP-43-GFP, caused its mislocalization to the cytosol, and at least in some cells appeared to cause cytosolic aggregates. This mislocalization was accompanied by induction of cryptic exons in well characterized transcripts known to be regulated by TDP-43, a hallmark of functional TDP-43 loss and consistent with pathological nuclear TDP-43 depletion. Interestingly, in heterozygous TDP-43-GFP neurons, expression of intrabody-NES appeared to also induce the mislocalization of untagged TDP-43 in roughly half of the neurons, suggesting that this system can also be used to study effects on untagged endogenous TDP-43 as well as TDP-43-GFP fusion protein.

      Strengths:

      A clearer understanding of how TDP-43 mislocalization alters cellular function, as well as pathways that mitigate clearance of TDP-43 aggregates, is critical. But modeling TDP-43 mislocalization in disease-relevant cellular systems has proven to be challenging. High levels of overexpression of TDP-43 lacking an NES can drive endogenous TDP-43 mislocalization, but such overexpression has direct and artificial consequences on certain cellular features (e.g. altered exon skipping) not seen in diseased patients. Toxic small molecules such as MG132 and arsenite can induce TDP-43 mislocalization, but co-induce myriad additional cellular dysfunctions unrelated to TDP-43 or ALS. TDP-43 binding oligonucleotides can cause cytosolic mislocalization as well. Each system has pros and cons, and additional ways to induce TDP-43 mislocalization would be useful for the field. The method described in this manuscript could provide researchers with a powerful way to study the combined biology of cytosolic TDP-43 mislocalization and nuclear TDP-43 depletion, with additional temporal control that is lacking in current method. Indeed, the authors see some evidence of differences in RNA splicing caused by pure TDP-43 depletion versus their induced mislocalization model. Finally, their method may be especially useful in determining how TDP-43 aggregates are cleared by cells, potentially revealing new biological pathways that could be therapeutically targeted.

      Weaknesses:

      The method and supporting data have limitations in its current form, outlined below, and in its current form the findings are rather preliminary.

      (1) Tagging of TDP-43 with a bulky GFP tag may alter its normal physiological functions, for example phase separation properties and functions within complex ribonucleoprotein complexes. In addition, alternative isoforms of TDP-43 (e.g. "short" TDP-43, would not be GFP tagged and therefore these species would not be directly manipulatable or visualizable with the tools currently employed in the manuscript.

      With reference to our answer above, we have confirmed using qPCR and RNA-seq analysis that adding a GFP tag to the C-terminus of TDP43 does not result in an appreciable loss of functionality. We do not observe any cryptic exon inclusion in STMN2 and UNC13A. Cryptic exon inclusion in these genes, especially STMN2, has been recognized as a very sensitive indicator of TDP43 loss of function (Supplementary Fig 1C, Supplementary 2D, Fig. 3, Fig.4)

      We acknowledge that truncated alternatively spliced versions of TDP43 will lose the GFP-tag and cannot be manipulated with our system. Since our GFP tag is positioned on the C-terminus, our system cannot manipulate these truncated fragments as the tag is lost in these isoforms. But these isoforms, if present, should be detectable using the Proteintech antibody against total TDP43, which recognizes N-terminal TDP43 epitopes. However, western blot analysis, even 20 days after inducing TDP43 mislocalization, showed no truncated fragments. This suggests that TDP43 mislocalization alone is insufficient to generate significant levels of truncated isoforms. We have added this section to the Limitations paragraph (page 9).

      (2) The data regarding potential mislocalization of endogenous TDP-43 in the heterozygous TDP-43-GFP lines is especially intriguing and important, yet very little characterization was done. Does untagged TDP-43 co-aggregate with the tagged TDP-43? Is localization of TDP-43 immunostaining the same as the GFP signal in these cells?

      The purpose of the heterozygous experiments was to see whether mislocalized TDP43 could potentially trap the untagged TDP43. If this was not the case, we would have seen a maximum of 50% of the TDP43 signal mislocalized to the cytoplasm. The fact that a sizeable proportion of cells had significantly higher levels of TDP43 loss from the nucleus, indicates that mislocalized TDP43 can indeed trap the untagged protein fraction. We used GFP immunostaining to identify the tagged TDP43 while an antibody against the endogenous TDP43 protein was used to detect total TDP43 levels. In the cells that show near complete loss of nuclear TDP43, the total TDP43 signal coincides with the GFP (tagged TDP43) signal. We are unable to distinguish the untagged fraction selectively as we do not have an antibody that can detect this directly.  

      But we agree with the reviewer that these observations need further detailed follow-up that we are unable to provide currently. Hence, we have removed this figure from the manuscript.

      (3) The experiments in which dox was used to induce the nanobody-NES, then dox withdrawn to study potential longer-lasting or self-perpetuating inductions of aggregation is potentially interesting. However, the nanobody was only measured at the RNA level. We know that protein half lives can be very long in neurons, and therefore residual nanobody could be present at these delayed time points. The key measurement to make would be at the protein level of the nanobody if any conclusions are be made from this experiment.

      The reviewer has highlighted an important point. To address this issue, we tagged the nanobodies with a V5 tag that allowed us to directly measure nanobody levels within cells. After Dox withdrawal, we indeed observed significant expression of the nanobody within cells even after two weeks of Dox withdrawal. Extending the time point to three weeks allowed complete loss of the nanobody in most neurons. However, in contrast to our observations at two weeks, this was accompanied by a reversal of TDP43 mislocalization in these neurons at three weeks (Fig. 5).

      Surprisingly, in less than 10% of the neurons, we observed >80% of the total TDP43 still mislocalized to the cytoplasm, despite nearly undetectable levels of the nanobody. Super-resolution microscopy further revealed persistent cytoplasmic TDP43 in these neurons that did not overlap with residual nanobody signal. This suggests that in these neurons, the nanobody was no longer required to maintain TDP43 mislocalization (Fig. 5, page 7)

      (4) Potential differences in splicing and microRNAs between TDP-43 knockdown and TDP-43 mislocalization are potentially interesting. However, different patterns of dysregulated RNA splicing can occur at different levels of TDP-knockdown, thus it is difficult to assess whether the changes observed in this paper are due to mislocalization per se, or rather just reflect differences in nuclear TDP-43 abundance.

      This a fair point. It is possible that microRNA dysregulation might require a greater loss of nuclear TDP43 and maybe more resilient to TDP43 loss as compared to splicing. We have acknowledged this in the discussion section (page 9).

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      (1) It would be helpful to include nuclear vs cytoplasmic ratios of TDP-43 instead of simply "% nuclear TDP-43"

      We have used % nuclear TDP43 as these values have biologically meaningful upper and lower bounds, which makes it easier to compare across experiments. We found that using a ratio of nuclear vs cytoplasmic TDP43 intensities displayed higher variability and a wider range.

      We have re-labelled the y-axis as “% Nuclear TD43 / soma TDP43” to make our quantification clearer. The conversion from % nuclear TDP43 to N/C is straightforward. If the % nuclear TDP43 is X, then the N/C ratio can be calculated as X / (100-X). For example, a % nuclear TDP43 of 80% would amount to an N/C ratio of 80/20 = 4.

      (2) The axis descriptions in Figure 1D are very unclear. While this is described better in the figure legend, it would be beneficial to have a more descriptive y-axis title in the figure (which may mean increasing the number of graphs).

      Axis descriptions and figures changed as recommended.

      (3) In Figure 1, the time points at which iPSNs were transduced with nanobody and/or fixed for immunostaining is somewhat inconsistent across all panels. This hinders interpretation of the figure as a whole. The authors should use same transduction and immunostaining time points for consistency or demonstrate that the same phenotype is observed regardless of transduction and immunostaining day as long as the time in between (time of nano body expression) is consistent. Subsequently, in Figure 2, a different set of time points is used.

      Please see our response in the public comments above

      (4) In Figure 1, please show individual data points for each independent differentiation to demonstrate the level of reproducibility from batch to batch.

      Data points have been shown per replicate (Supplementary Fig. 2)

      We have refined our approach for phenotypic analysis to improve consistency across different clones. Previously, we set thresholds on % nuclear TDP43 to distinguish MNs with nuclear versus mislocalized TDP43. This was done by ranking all cells based on % nuclear TDP43 and applying quantile-based thresholds—designating the top 25% as control and the bottom 25% as mislocalized, ensuring equal number of cells per category. However, we observed significant variability in thresholds across clones. For instance, the E8 clone had thresholds of 96% and 29%, while the E5 clone had 93% and 40%.

      To address this, we reanalysed the data using a standardized three-bin approach:

      (1) Control: MNs expressing the control nanobody.

      (2) Low-Moderate Mislocalization: MNs expressing the NES nanobody with > 40% nuclear TDP43.

      (3) Severe Mislocalization: MNs expressing the NES nanobody with < 40% nuclear TDP43.

      This approach ensured a more reliable comparison of TDP43 mislocalization effects across experiments. The conclusions remain the same.

      (5) In Figure 2, please show individual data points.

      Data points for all the qPCR analyses in the paper have been included as a supplementary text file.

      (6) In Figure 3, please show individual data points.

      Data points for the western blot data have been included as a supplementary data file.

      All other comments are within the public review.

      Reviewer #2 (Recommendations For The Authors):

      (1) In general more robust quantification of many of the described phenotypes are necessary. In particular, no apparent quantification of cytosolic mislocalization was performed in Figure 1, or quantification of mislocalization of Figure 3F. It is unclear in the western blot in Fig 1G if TDP-43 signal were normalized to total protein, and of note it seems that expression of the intrabody-NES reduced total proteins in the western blots that were shown. No quantification or measurement of the insoluble material was done or shown.

      We have quantified cytosolic mislocalization of TDP43 (Fig. 1C). The y-axis indicates the total TDP43 signal observed in the nucleus as a percentage of the total signal observed in the soma (including the nucleus). This value has the advantage of ranging between 100% (perfectly nuclear) to 0% (complete nuclear loss). The boxplots indicate that expression of the NES-nanobody results in a range of cytosolic mislocalization with a median value around 40% of the TDP43 remaining in the nucleus.

      Western blot data in previous Fig. 1G was normalized to alpha-tubulin. We were unable to get a good signal for the insoluble fraction. From the alpha-tubulin alone, it cannot be concluded that NES-nanobody results in a decrease in total protein levels. In the revised western blot for phosphorylated TDP43 (Fig. 3D, E), we have quantified total and phosphorylated TDP43. Here, we observe a six-fold increase in the levels of phosphorylated TDP43 without a significant change in total TDP43 protein levels.

      To avoid potential mis-interpretation of our results, we have now removed the previous Fig. 1G.

      (2) Additional images of nearly all microscopy data at higher magnifications would be required to better evaluate TDP-43 localization. Ideally including images for each channel in addition to merged images, and especially for key figures such as Figure 1B, 3B, 3F.

      Better images have been provided.

      (3) No control images were shown for Figure 1F and 3F. It is unclear what the bright punctate spots of cytoplasmic TDP-43 GFP signal represent. Are these true aggregates? If so, additional characterization would be required before such conclusions can be made, beyond the relatively superficial western blot analysis that was done in Figure 1.

      Control images have now been provided (Figure 1E). As we mentioned above, immunostaining analysis to characterize whether the aggregates are phosphorylated failed to provide a clear signal. However, we have now confirmed that the mislocalized TDP43 is indeed hyper-phosphorylated (Figure 3D, E). We have acknowledged this in the main text, and have referred to these as puncta reminiscent of aggregates (Page 4, Page 6).

    1. Reviewer #1 (Public review):

      Summary:

      Wang et al. identify Hamlet, a PR-containing transcription factor, as a master regulator of reproductive development in Drosophila. Specifically, the fusion between the gonad and genital disc that is necessary for development of a continuous testes and seminal vesicle tissue essential for fertility. To do so, the authors generate novel Hamlet null mutants by CRISPR/Cas9 gene editing and characterize the morphological, physiological, and gene expression changes of the mutants using immunofluorescence, RNA-seq, cut-tag, and in-situ analysis. Thus, Hamlet is discovered to regulate a unique expression program, which includes Wnt2 and Tl, that is necessary for testis development and fertility.

      Strengths:

      This is a rigorous and comprehensive study that identifies the Hamlet dependent gene expression program mediating reproductive development in Drosophila. The Hamlet transcription targets are further characterized by Gal4/UAS-RNAi confirming their role in reproductive development. Finally, the study points to a role for Wnt2 and Tl as well as other Hamlet transcriptionally regulated genes in epithelial tissue fusion.

      Weaknesses:

      None noted.

    2. Reviewer #2 (Public review):

      Strengths:

      Wang and colleagues successfully uncovered an important function of the Drosophila PRDM16/PRDM3 homolog Hamlet (Ham) - a PR domain containing transcription factor with known roles in the nervous system in Drosophila. To do so, they generated and analyzed new mutants lacking the PR domain, and also employed diverse preexisting tools. In doing so, they made a fascinating discovery: They found that PR-domain containing isoforms of ham are crucial in the intriguing development of the fly genital tract. Wang and colleagues found three distinct roles of Ham: (1) Specifying the position of the testis terminal epithelium within the testis, (2) allowing normal shaping and growth of the anlagen of the seminal vesicles and paragonia and (3) enabling the crucial epithelial fusion between the seminal vesicle and the testis terminal epithelium. The mutant blocks fusion even if the parts are positioned correctly. The last finding is especially important, as there are few models allowing one to dissect the molecular underpinnings of heterotypic epithelial fusion in development. Their data suggest that they found a master regulator of this collective cell behavior. Further, they identified some of the cell biological players downstream of Ham, like for example E-Cadherin and Crumbs. In a holistic approach, they performed RNAseq and intersected them with the CUT&TAG-method, to find a comprehensive list of downstream factors directly regulated by Ham. Their function in the fusion process was validated by a tissue-specific RNAi screen. Meticulously, Wang and colleagues performed multiplexed in situ hybridization and analyzed different mutants, to gain a first understanding of the most important downstream-pathways they characterized - which are Wnt2 and Toll.

      This study pioneers a completely new system. It is a model for exploring a process crucial in morphogenesis across animal species, yet not well-understood. Wang and colleagues not only identified a crucial regulator of heterotypic epithelial fusion but took on the considerable effort of meticulously pinning down functionally important downstream effectors by using many state-of-the-art methods. This is especially impressive, as dissection of pupal genital discs before epithelial fusion is a time-consuming and difficult task. This promising work will be the foundation future studies build on, to further elucidate how this epithelial fusion works, for example on a cell biological and biomechanical level.

      Weaknesses:

      The developing testis-genital disc system has many moving parts. Myotube migration was previously shown to be crucial for testis shape. This means, that there is the potential of non-tissue autonomous defects upon knockdown of genes in the genital disc or the terminal epithelium, affecting myotube behavior which in turn affects epithelial fusion, as myotubes might create the first "bridge" bringing the two epithelia together. Nevertheless, this is outside the scope of this work and could be addressed in the future.

    3. Author response:

      The following is the authors’ response to the original reviews

      Reviewer #1 (Public review): 

      Summary: 

      Wang et al. identify Hamlet, a PR-containing transcription factor, as a master regulator of reproductive development in Drosophila. Specifically, the fusion between the gonad and genital disc is necessary for the development of continuous testes and seminal vesicle tissue essential for fertility. To do this, the authors generate novel Hamlet null mutants by CRISPR/Cas9 gene editing and characterize the morphological, physiological, and gene expression changes of the mutants using immunofluorescence, RNA-seq, cut-tag, and in-situ analysis. Thus, Hamlet is discovered to regulate a unique expression program, which includes Wnt2 and Tl, that is necessary for testis development and fertility. 

      Strengths: 

      This is a rigorous and comprehensive study that identifies the Hamlet-dependent gene expression program mediating reproductive development in Drosophila. The Hamlet transcription targets are further characterized by Gal4/UAS-RNAi confirming their role in reproductive development. Finally, the study points to a role for Wnt2 and Tl as well as other Hamlet transcriptionally regulated genes in epithelial tissue fusion. 

      We appreciate that the reviewer thinks our study is rigorous.

      Weaknesses: 

      The image resolution and presentation of figures is a major issue in this study. As a nonexpert, it is nearly impossible to see the morphological changes as described in the results. Quantification of all cell biological phenotypes is also lacking therefore reducing the impact of this study to those familiar with tissue fusion events in Drosophila development. 

      In the revised version, we have improved the image presentation and resolution. For all the images with more than two channels, we included single-channel images, changed the green color to lime and the red to magenta, highlighted the testis (TE) and seminal vescicles to make morphological changes more visible.  

      We had quantification for marker gene expression in the original version, and now also included quantification for cell biological phenotypes which are generally with 100% penetrance.  

      Reviewer #2 (Public review): 

      Strengths: 

      Wang and colleagues successfully uncovered an important function of the Drosophila PRDM16/PRDM3 homolog Hamlet (Ham) - a PR domain-containing transcription factor with known roles in the nervous system in Drosophila. To do so, they generated and analyzed new mutants lacking the PR domain, and also employed diverse preexisting tools. In doing so, they made a fascinating discovery: They found that PR-domain containing isoforms of ham are crucial in the intriguing development of the fly genital tract. Wang and colleagues found three distinct roles of Ham: (1) specifying the position of the testis terminal epithelium within the testis, (2) allowing normal shaping and growth of the anlagen of the seminal vesicles and paragonia and (3) enabling the crucial epithelial fusion between the seminal vesicle and the testis terminal epithelium. The mutant blocks fusion even if the parts are positioned correctly. The last finding is especially important, as there are few models allowing one to dissect the molecular underpinnings of heterotypic epithelial fusion in development. Their data suggest that they found a master regulator of this collective cell behavior. Further, they identified some of the cell biological players downstream of Ham, like for example E-Cadherin and Crumbs. In a holistic approach, they performed RNAseq and intersected them with the CUT&TAG-method, to find a comprehensive list of downstream factors directly regulated by Ham. Their function in the fusion process was validated by a tissue-specific RNAi screen. Meticulously, Wang and colleagues performed multiplexed in situ hybridization and analyzed different mutants, to gain a first understanding of the most important downstream pathways they characterized, which are Wnt2 and Toll. 

      This study pioneers a completely new system. It is a model for exploring a process crucial in morphogenesis across animal species, yet not well understood. Wang and colleagues not only identified a crucial regulator of heterotypic epithelial fusion but took on the considerable effort of meticulously pinning down functionally important downstream effectors by using many state-of-the-art methods. This is especially impressive, as the dissection of pupal genital discs before epithelial fusion is a time-consuming and difficult task. This promising work will be the foundation future studies build on, to further elucidate how this epithelial fusion works, for example on a cell biological and biomechanical level. 

      We appreciate that the reviewer thinks our study is orginal and important.

      Weaknesses: 

      The developing testis-genital disc system has many moving parts. Myotube migration was previously shown to be crucial for testis shape. This means, that there is the potential of non-tissue autonomous defects upon knockdown of genes in the genital disc or the terminal epithelium, affecting myotube behavior which in turn affects fusion, as myotubes might create the first "bridge" bringing the epithelia together. The authors clearly showed that their driver tools do not cause expression in myoblasts/myotubes, but this does not exclude non-tissue autonomous defects in their RNAi screen. Nevertheless, this is outside the scope of this work. 

      We thank the reviewer’s consideration of non-tissue autonomous defects upon gene knockdown. The driver, hamRSGal4, drives reporter gene expression mainly in the RS epithelia, but we did observe weak expression of the reporter in the myoblasts before they differentiate into myotubes. Thus, we could not rule out a non-tissue autonomou effect in the RNAi screen. So we now included a statement in the result, “Given that the hamRSGal4 driver is highly expressed in the TE and SV epithelia, we expect highly effective knockdown occurs only in these epithelial cells. However, hamRSGal4 also drives weak expression in the myoblasts before they differentiated into myotubes (Supplementary Fig. 5B), which may result in a non-tissue autonomous effect when knocking down the candidate genes expressed in myoblasts.”

      However, one point that could be addressed in this study: the RNAseq and CUT&TAG experiments would profit from adding principal component analyses, elucidating similarities and differences of the diverse biological and technical replicates. 

      Thanks for the suggestion. We now have included the PCA analyses in supplementary figure 6A-B and the corresponding description in the text. The PCA graphs validated the consistency between biological replicates of the RNA-seq samples. The Cut&Tag graphs confirm the consistency between the two biological replicates from the GFP samples, but show a higher variability between the w1118 replicates. Importantly, we only considered the overlapped peaks pulled by the GFP antibody from the ham_GFP genotype and the Ham antibody from the wildtype (w1118) sample as true Ham binding sites. 

      Recommendations for the authors:  

      Reviewer #1 (Recommendations for the authors): 

      Major Concern: 

      (1) The image resolution and presentation of figures (Figures 2, 5, 6, and 7) is a major issue in this study. As a non-expert, it is nearly impossible to see the morphological changes as described in the results. Images need to be captured at higher resolution and zoomed in with arrows denoting changes as described. Individual channels, particularly for intensity measurement need to be shown in black and white in addition to merged images. Images also need pseudo-colored for color-blind individuals (i.e. no red-green staining). 

      The images were captured at a high resolution, but somehow the resolution was drammaticlly reduced in the BioRxiv PDF. We try to overcome this by directly submitting the PDF in the Elife submission system. In the revised version, we have included single-channel images, changed the green and red colors to lime and magenta for color blindness. We also highlighted the testis (TE) and seminal vescicle structures in the images to make morphological changes more visible.  

      (2) The penetrance of morphological changes observed in RT development is also unclear and needs to be rigorously quantified for data in Figures 2, 5, and 7. 

      We now included quantification for cell biological phenotypes which are generally with 100% penetrance. The percentage of the penetrance and the number of animals used are indicated in each corresponding image.  

      Reviewer #2 (Recommendations for the authors): 

      Major Points 

      (1) Lines 193- 220 I would strongly suggest pointing out the obvious shape defects of the testes visible in Figure 2A ("Spheres" instead of "Spirals"). These are probably a direct consequence of a lack in the epithelial connection that myotubes require to migrate onto the testis (in a normal way) as depicted in the cartoons, allowing the testis to adopt a spiral shape through myotube-sculpting (Bischoff et al., 2021), further confirming the authors' findings! 

      Good point. In the revised text, we have added more description of the testis shape defects and pointed out a potential contribution from compromised myotube migration.   

      (2) Line 216: "Often separated from each other". Here it would be important to mention how often. If the authors cannot quantify that from existing data, I suggest carrying it out in adult/pharate adult genital tracts (if there is no strong survivor bias due to the lethality of stronger affected animals), as this is much easier than timing prepupae. This should be a quick and easy experiment. 

      Because it is hard to tell whether the separation of the SV and TE was caused by developmental defects or sometimes could be due to technical issues (bad dissection), we now change the description to, “control animals always showed connected TE and SV, whereas ham mutant TE and SV tissues were either separated from each other, or appeared contacted but with the epithelial tubes being discontinuous (Fig. 2B).” Additionally, we quantified the disconnection phenotype, which is 100% penetrance in 18 mutant animals. This quantification is now included in the figure. 

      (3) Lines 289-305, Figure 3. I could only find how many replicates were analyzed in the RNAseq/CUT&Tag experiments in the Material & Methods section. I would add that at least in the figure legends, and perhaps even in the main text. Most importantly, I would add a Principal Component Analysis (one for RNAseq and one for the CUT&TAG experiment), to demonstrate the similarity of biological replicates (3x RNaseq, 4x Cut&Tag) but also of the technical replicates (RNAseq: wt & wt/dg, ham/ham & ham/df, GD & TE; CUT&TAG: Antibody & GFP-Antibody, TG&TE...). This should be very easy with the existing data, and clearly demonstrate similarities & differences in the different types of replicates and conditions. 

      Principle component analysis and its description are now added to Supplementary Fig 6 and the main text respectively. 

      (4) Line 321; Supplementary Table 1: In the table, I cannot find which genes are down- or upregulated - something that I think is very important. I would add that, and remove the "color" column, which does not add any useful information. 

      In Supplementary table 1, the first sheet includes upregulated genes while the second sheet includes downregulated genes. We removed the column “color” as suggested.  

      (5) Line 409: SCRINSHOT was carried out with candidate genes from the screen. One gene I could not find in that list was the potential microtubule-actin crosslinker shot. If shot knockdown caused a phenotype, then I would clearly mention and show it. If not, I would mention why a shot is important, nonetheless. 

      shot is one of the candidate target genes selected from our RNA-seq and Cut&Tag data. However, in the RNAi screen, knocking down shot with the available RNAi lines did not cause any obvious phenotype. These could be due to inefficient RNAi knockdown or redundancy with other factors. We anyway wanted to examine shot expression pattern in the developing RS, give the important role of shot in epithelial fusion (Lee S., 2002). Using SCRINSHOT, we could detect epithelial-specific expression of shot, implying its potential function in this context. We now revised the text to clarify this point. 

      Minor points 

      (1) Cartoons in Figure 1: The cartoons look like they were inspired by the cartoon from Kozopas et al., 1998 Fig. 10 or Rothenbusch-Fender et al., 2016 Fig 1. I think the manuscript would greatly profit from better cartoons, that are closer to what the tissue really looks like (see Figure 1H, 2G), to allow people to understand the somewhat complicated architecture. The anlagen of the seminal vesicles/paragonia looks like a butterfly with a high columnar epithelium with a visible separation between paragonia/seminal vesicles (upper/lower "wing" of the "butterfly"). Descriptions like "unseparated" paragonia/seminal vesicle anlagen, would be much easier to understand if the cartoons would for example reflect this separation. It would even be better to add cartoons of the phenotypic classes too, and to put them right next to the micrographs. (Another nitpick with the cartoons: pigment cells are drastically larger and fewer in number (See: Bischoff et al., 2021 Figure 1E & MovieM1).) 

      Thanks for the suggestion. We have updated Figure 1 by adding additional illustrations showing the accessory gland and seminal vesicle structures in the pupal stage and changing the size of pigment cells.

      (2) Line 95-121 I would also briefly introduce PR domains, here. 

      We have added a brief descripition of the PR domains.

      (3) Line 152, 158, 160, 162. When first reading it, I was a bit confused by the usage of the word sensory organ. I would at least introduce that bristles are also known as external mechanosensory organs. 

      We have now revised the description to “mechano-sensory organ”.

      eg. Line 184, 194, and many more. Most times, the authors call testis muscle precursors "myoblasts". This is correct sometimes, but only when referring to the stage before myoblast-fusion, which takes place directly before epithelial fusion (28 h APF). Postmyoblast-fusion (eg. during migration onto the testis), these cells should be called myotubes or nascent myotubes, as the fly muscle community defined the term myoblast as the singlenuclei precursors to myotubes. 

      We have now revised the description accordingly.  

      (4) Line 217/Figure 2B. It looks like there is a myotube bridge between the testis and the genital disc. I would point that out if it's true. If the authors have a larger z-stack of this connection, I suggest creating an MIP, and checking if there are little clusters of two/three/four nuclei packed together. This would clearly show that the cells in between are indeed myotubes (granted that loss of ham does not introduce myoblast-fusion-defects). 

      We do not have a Z-stack of this connection, and thus can not confirm whether the cells in this image are myotubes. However, we found that mytubes can migrate onto the testis and form the muscular sheet in the ham mutant despite reduced myotube density. At the junction there are myotubes, suggesting that loss of ham does not introduce myoblast-fusion defects. These results are now included in the revised manuscript, supplementary Fig. 5 C-D.

      (5) Line 231/Supplementary Fig. 3C-G: I would add to the cartoons, where the different markers are expressed. 

      We have added marker gene expression in the cartoons.

      (6) Line 239. I don't see what Figure 1A/1H refers to, here. I would perhaps just remove it. 

      Yes, we have removed it.

      (7) Line 232. I would rephrase the beginning of the sentence to: Our data suggest Ham to be... 

      Yes, we have revised it.

      (8) Line 248-250/Figure 2F. Clonal analyses are great, but I think single channels should be shown in black and white. Also, a version without the white dashed line should be shown, to clearly see the differences between wt and ham-mutant cells. 

      Now single channel images from the green and red images are presented in Supplementary Figures. This particular one is in Supplementary Figure 3B. 

      (9) Line 490. The Toll-9 phenotype was identified on the sterility effect/lack-of-spermphenotype alone, and it was deduced, that this suggests connection defects. By showing the right focus plane in Fig S8B (lower right), it should be easy to directly show whether there is a connection defect or not. Also, one would expect clearer testis-shaping defects, like in ham-mutants, as a loss of connection should also affect myotube migration to shape the testis. This is just a minor point, as it only affects supplementary data with no larger impact on the overall findings, even if Toll-9 is shown not to have a defect, after all. 

      We find that scoring defects at the junction site at the adult stage is difficult and may not be always accurate. Instead, we score the presence of sperms in the SV, which indirectly but firmly suggests successful connection between the TE and SV. We have now included a quantification graph, showing the penetrance of the phentoype in the new Supplementary Fig.14C. There were indeed morphological defects of TE in Toll-9 RNAi animals. We now included the image and quantification in the new Supplementary Fig.14B.

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews: 

      Reviewer #1 (Public Review): 

      This study investigates the role of microtubules in regulating insulin secretion from pancreatic islet beta cells. This is of great importance considering that controlled secretion of insulin is essential to prevent diabetes. Previously, it has been shown that KIF5B plays an essential role in insulin secretion by transporting insulin granules to the plasma membrane. High glucose activates KIF5B to increase insulin secretion resulting in the cellular uptake of glucose. In order to prevent hypoglycemia, insulin secretion needs to be tightly controlled. Notably, it is known that KIF5B plays a role in microtubule sliding. This is important, as the authors described previously that beta cells establish a peripheral sub-membrane microtubule array, which is critical for the withdrawal of excessive insulin granules from the secretion sites. At high glucose, the sub-membrane microtubule array is destabilized to allow for robust insulin secretion. Here the authors aim to answer the question of how the peripheral array is formed. Based on the previously published data the authors hypothesize that KIF5B organizes the sub-membrane microtubule array via microtubule sliding. 

      General comment: 

      This manuscript provides data that indicate that KIF5B, like in many other cells, mediates microtubule sliding in beta cells. This study is limited to in vitro assays and one cell line. Furthermore, the authors provide no link to insulin secretion and glucose uptake and the overall effects described are moderate. Finally, the overall effect of microtubule sliding upon glucose stimulation is surprisingly low considering the tight regulation of insulin secretion. Moreover, the authors state "the amount of MT polymer on every glucose stimulation changes only slightly, often undetectable…. In fact, we observe a prominent effect of peripheral MT loss only after a long-term kinesin depletion (three-four days)". This challenges the view that a KIF5Bdependent mechanism regulating microtubule sliding plays a major role in controlling insulin secretion. 

      (1) Our initial study was indeed done in a cell line, which is a normal approach to addressing molecular mechanisms of a phenomenon in a challenging cell model: primary pancreatic beta cells are prone to rapidly dedifferentiate outside of the organism and are hard to genetically modify. To address this reviewer’s comment, in the revised manuscript we now confirm the phenotype in beta cells within intact pancreatic islets from a KIF5B KO mouse model (New Figure 2 – Supplemental Figure 1).

      (2) We agree that testing the effect of microtubule sliding on insulin secretion is an important question. Unfortunately, the experimental design needed to accomplish this task is not straighDorward. Importantly, besides microtubule sliding, KIF5B is heavily engaged in insulin granule transport, and GSIS deficiency upon KIF5B inactivation is well documented (e.g. Varadi et al 2002). In this study, we choose not to repeat this GSIS assay because of ample existing data. However, this reported GSIS deficiency could result from a combination of lack of insulin granule delivery to the periphery (previous data) and from the depletion of insulin granules from the periphery due to the loss of the submembrane MT bundle (this study and Bracey et al 2020).  In order to exclusively test the role of MT sliding in secretion, a significant investment in mutant tool development would be needed. Ideally, a new mutant mouse model where insulin granule transport is allowed by MT sliding in blocked must be developed to specifically address this question. To conclude, answering this question will be the subject for another, follow-up study. 

      (3) We respecDully disagree with the reviewer’s opinion that the effect of MT sliding in beta cells is moderate. As MT networks go, even a slight change in MT configuration often has dramatic consequences. For example, in mitotic spindles, a tiny overgrowth of microtubule ends during metaphase, which causes them to attach to both kinetochores rather than just one, is very significant for the efficiency of chromosome segregation, causing aneuploidy and cancer. The changes in beta-cell MT networks that we are reporting are much stronger: the effect on the peripheral MT network accumulated over three days of KIF5B depletion is dramatic (Fig 2 B, C). Short-term gross MT network configurations after a single glucose stimulation are harder to detect, but MTs at the cell periphery are, in fact, destabilized and fragmented, as we and others have previously reported (Ho et al 2020, Mueller et al 2021). Preventing this MT rearrangement completely blocks GSIS (Zhu et al 2015, Ho et al 2020). 

      One of the most fascinating features of insulin secretion regulation is that the amount of generated insulin granules significantly exceeds the normal physiological needs for insulin secretion (~100 times more than needed). At the same time, even slightly facilitated glucose depletion can be devastating. Accordingly, the excessive insulin content of a beta cell resulted in the development of multiple levels of control, preventing excessive secretion. Our previous data suggest that the peripheral MT array provides one of those mechanisms. This study indicates that microtubule sliding is necessary to form the proper peripheral network in the long term. Short-term glucose-induced changes in the peripheral MT array likely need to be subtle to prevent over-secretion. Thus, we are not surprised that a dramatic effect of sliding inhibition is only detectable by our approaches after the changes in the MT network accumulate over time. In the revised paper, we now discuss the potential impact of peripheral MT sliding on positive and negative regulation of secretion and add a schematic model illustrating these processes.

      Specific comments: 

      (1) Notably, the authors have previously reported that high glucose-induced remodeling of microtubule networks facilitates robust glucose-stimulated insulin secretion. This remodeling involves the disassembly of old microtubules and the nucleation of new microtubules. Using real-time imaging of photoconverted microtubules, they report that high levels of glucose induce rapid microtubule disassembly preferentially in the periphery of individual β-cells, and this process is mediated by the phosphorylation of microtubule-associated protein tau. Here, they state that the sub-membrane microtubule array is destabilized via microtubule sliding. What is the relevance of the different processes? 

      In this comment, the summary of our previous conclusions is correct, but the conclusion of this current study is re-stated incorrectly. Indeed, we have previously shown that in high glucose, MTs are destabilized at the cell periphery and nucleated in the cell interior. However, this current paper does not state that “the sub-membrane microtubule array is destabilized via microtubule sliding”. To answer this reviewer’s question, our data support a model where, during glucose stimulation, MT sliding within the peripheral bundle might move fragments of MTs severed by other mechanisms. Importantly, we propose that MT sliding restores the partially destabilized peripheral bundle by delivery of MTs that are nucleated at the cell interior and incorporating them into that bundle. In our overall model, three processes (destabilization, nucleation, and sliding to restore the bundle) are coordinated to maintain beta cell fitness on each GSIS cycle.

      (2) On one hand the authors describe how KIF5B depletion prevents sliding and the transport of microtubules to the plasma membrane to form the sub-membrane microtubule array. This indicates KIF5B is required to form this structure. On the other hand, they describe that at high glucose concentration, KIF5B promotes microtubule sliding to destabilize the sub-membrane microtubule array to allow robust insulin secretion. This appears contradictory. 

      We never intended to make an impression that MT sliding destabilized the sub-membrane bundle. Apologies if there was a reason in our wording that caused this misunderstanding of our model. We propose that while the bundle is destabilized downstream of glucose signaling (e.g. due to tau phosphorylation, please see Ho et al Diabetes 2020), MT sliding remodels the bundle and thereafter rebuilds it to prevent over-secretion. In the revised manuscript, we have doublechecked the whole text to make sure that such misunderstanding is avoided. 

      (3) Previously, it has been shown that KIF5B induces tubulin incorporation along the microtubule shaft in a concentration-dependent manner. Moreover, running KIF5B increases microtubule rescue frequency and unlimited growth of microtubules. Notably, KIF5B regulates microtubule network mass and organization in cells (PMID: 34883065). Consequently, it appears possible that the here observed phenomena of changes in the microtubule network might be due to alterations in these processes. 

      We thank the reviewer for proposing this alternative explanation to the observed change in microtubule networks after KIF5B depletion. We have now directly tested this possibility. Namely, we have re-expressed the kinesin-1 motor domain in MIN6 cells depleted of KIF5B. This motor domain construct by itself is not capable of driving microtubule sliding because it lacks the tail domain. At the same time, it is known to move very efficiently at microtubules and should provide the effects as reported in the article cited by the reviewer. We found that the reexpression of the kinesin motor domain does not rescue microtubule network defects in beta cells (see new Figure 2 – Supplemental Figure 2). Thus, we conclude that the effects of kinesin depletion on the microtubule network in beta cells are due to the lack of microtubule sliding, as reported here.

      (4) The authors provide data that indicate that microtubule sliding is enhanced upon glucose stimulation. They conclude that these data indicate that microtubule sliding is an integral part of glucose-triggered microtubule remodeling. Yet, the authors fail to provide any evidence that this process plays a role in insulin secretion or glucose uptake. 

      We would like to point out that we do not “fail” but rather choose not to overload our study by repeating insulin secretion assays in KIF5B-inactivated cells because this would not have been very informative. It has been found previously that kinesin-1 inactivation or knockout significantly attenuates insulin secretion because kinesin-1 is actively transporting insulin granules and kinesin-1 activity is enhanced under high glucose conditions (e.g. Varadi et al 2002, Cui et al., 2011, Donelan et al, 2002). That said, our current finding is very much in line with these previous data. When kinesin is depleted, two things would be happening at the same time: in the absence of sub-membrane microtubule bundle pre-existing insulin granules would be over-secreted, and new insulin would not be delivered to the periphery, both decreasing GSIS. Unfortunately, we do not have tools yet that would allow us to dissect which part of the insulin secretion defect is due to prior over-secretion (the consequence of deficient MT sliding) and which part is due to the lack of new granule delivery. We plan to develop such tools in the future and elaborate on them in a follow-up study. Here, our goal is to understand microtubule organization principles in beta cells, and we choose not to extend the scope of the current study to metabolic assays.  

      (5) The authors speculate that the sub-membrane microtubule array prevents the over-secretion of insulin. Would one not expect in this case a change in the distribution of insulin granules at the plasma membrane when this array is affected? Or after glucose stimulation? Notably, it has been reported that "the defects of β-cell function in KIF5B mutant mice were not coupled with observable changes in islet morphology, islet cell composition, or β-cell size" and "the subcellular localization of insulin vesicles was found to not be affected significantly by the decreased Kif5b level. The cytoplasm of both wild-type and mutant β-cells was filled with insulin vesicles. Insulin vesicle numbers per square μm were determined by counting all insulin vesicles in randomly photographed β-cells. More insulin granules were found in Kif5b knockout β-cells compared with control cells. This phenomenon is consistent with the observation that insulin secretion by β-cells is affected" whereby "Insulin vesicles (arrowheads) were distributed evenly in both mutant and control cells" (PMID: 20870970).  

      Quantitative analyses in the study cited by the reviewer do not include assays that would be relevant to our study. Particularly, in that study neither the amount of insulin granules at the cell periphery nor the ratio between the number of granules at the periphery and the beta cell interior has been analyzed. In addition, in our preliminary observations not shown here, insulin content in beta cells in KIF5B KO mice is highly heterogeneous, with a subpopulation of cells severely depleted of insulin. This opens a new avenue of investigation into beta cell heterogeneity, which is out of the scope of this current study. Thus, we chose to restrict this current study to microtubule organization data.   

      (6) Does the sub-membrane microtubule array exist in primary beta cells (in vitro and/or in vivo) and how it is affected in KIF5B knockout mice?  

      Yes, it does exist. In fact, we have first reported it in mouse islets (Bracey et al 2020, Ho et al 2020). Now, we report that the sub-membrane bundle is defective, and microtubules are misaligned in KIF5B KO mice (new Figure 2 – Supplemental Figure 1).

      Reviewer #2 (Public Review): 

      In this article, Bracey et al. provide insights into the factors contributing to the distinct arrangement observed in sub-membrane microtubules (MTs) within mouse β-cells of the pancreas. Specifically, they propose that in clonal mouse pancreatic β-cells (MIN6), the motor protein KIF5B plays a role in sliding existing MTs towards the cell periphery and aligning them with each other along the plasma membrane. Furthermore, similar to other physiological features of β-cells, this process of MTs sliding is enhanced by a high glucose stimulus. Because a precise alignment of MTs beneath the cell membrane in β-cells is crucial for the regulated secretion of pancreatic enzymes and hormones, KIF5B assumes a significant role in pancreatic activity, both in healthy conditions and during diseases. 

      The authors provide evidence in support of their model by demonstrating that the levels of KIF5B mRNA in MIN6 cells are higher compared to other known KIFs. They further show that when KIF5B is genetically silenced using two different shRNAs, the MT sliding becomes less efficient. Additionally, silencing of KIF5A in the same cells leads to a general reorganization of MTs throughout the cell. Specifically, while control cells exhibit a convoluted and non-radial arrangement of MTs near the cell membrane, KIF5B-depleted cells display a sparse and less dense sub-membrane array of MTs. Based on these findings, the Authors conclude that the loss of KIF5B strongly affects the localization of MTs to the periphery of the cell. Using a dominant-negative approach, the authors also demonstrate that KIF5B facilitates the sliding of MTs by binding to cargo MTs through the kinesin-1 tail binding domain. Additionally, they present evidence suggesting that KIF5B-mediated MT sliding is dependent on glucose, similar to the activity levels of kinesin-1, which increase in the presence of glucose. Notably, when the glucose concentrations in the culturing media of MIN6 cells are reduced from 20 mM to 5 mM, a significant decrease in MT sliding is observed. 

      Strengths:

      This study unveils a previously unexplained mechanism that regulates the specific rearrangement of MTs beneath the cell membrane in pancreatic β-cells. The findings of this research have implications and are of significant interest because the precise regulation of the MT array at the secretion zone plays a critical role in controlling pancreatic function in both healthy and diseased states. In general, the author's conclusions are substantiated by the provided data, and the study demonstrates the utilization of state-of-the-art methodologies including quantification techniques, and elegant dominant-negative experiments. 

      Weaknesses:

      A few relatively minor issues are present and related to data interpretation and the conclusions drawn in the study. Namely, some inconsistencies between what appears to be the overall and sub-membrane MT array in scramble vs. KIF5B-depleted cells, the lack of details about the sub-cellular localization of KIF5B in these cells and the physiological significance of the effect of glucose levels in beta-cells of the pancreas. 

      We thank the reviewer for this insighDul review. In the revised version, we provided re-worded and extended interpretations and conclusions to prevent any issues or misunderstandings.  We trust that while some noted apparent inconsistencies may reflect the intrinsic heterogeneity of the beta cell population, all data presented here indicate the same trend in phenotypes.  In the revised version, we have provided additional cell views and, in places, alternative representative images and videos, to clear out any apparent inconsistencies. We also would like to point out that we in fact reported KIF5B localization: not surprisingly, KIF5B predominantly localized to insulin granules and the punctate staining fills the whole cytoplasm (Figure 2A, bottom panel). However, as pointed out in detail in our response to reviewer 1, we choose to leave out an extensive study of the physiological and metabolic consequences of the reported microtubule network dynamics to a follow-up study. 

      Reviewer #3 (Public Review): 

      Prior work from the Kaverina lab and others had determined that beta-cells build a microtubule network that differs from the canonical radial organization typical in most mammalian cell types and that this organization facilitates the regulated secretion of insulin-containing secretory granules (IGs). In this manuscript, the authors tested the hypothesis that kinesin-driven microtubule sliding is an underlying mechanism that establishes a sub-membranous microtubule array that regulates IG secretion. They employed knock-down and dominant-negative strategies to convincingly show microtubule sliding does, in fact, drive the assembly of the sub-membranous microtubule band. They also used live cell imaging assays to demonstrate that kinesin-mediated microtubule sliding in beta-cells is triggered by extracellular high glucose. Overall, this is an interesting and important study that relates microtubule dynamics to an important physiological process. The experiments were rigorous and well-controlled. 

      We truly appreciate this reviewer’ opinion. 

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors): 

      Figures: 

      (1) Figure 1: 

      a) Why can one not see here, and in most following images, the peripheral sub-membrane microtubule array? One can also not see an accumulation of microtubules in the cell interior. 

      Microtubule pattern in beta cells is variable, and the sub-membrane array is seen in the whole population to a variable extent (see directionality histogram in Figure 2E for statistics). In fact, an array of peripheral MTs parallel to the cell border is present in the example shown in Figure 1 and in all following control images. To make it clearer, we now show the pre-bleach images in Figure 1 D-F at a lower magnification, so that the differences in MT density at the cell periphery and cell center are more clearly seen: MTs lack at the periphery in KF5B-depleted but not the control cells.  

      b) 5 min appears to be a long time and enough time to polymerize a significant number of new microtubules. 

      We interpret this comment as the reviewer’s concern that in FRAP assays, fluorescently-labeled MTs moving into the bleached area might be newly polymerizing MTs rather than preexisting MT relocated into that area. However, this is not the case because newly polymerized MTs contain predominantly quenched “dark” tubulin molecules and only a small percent of fluorescent tubulin. These dim MTs are not included in MT sliding assay analysis, where a threshold for bright MTs is introduced. Now, we added more details for the quantification of these data to Materials and Methods section.

      c) The overall effects appear minor. It is unclear how Fig. 1-Suppl-Fig.1, where no significant difference is shown, is translated into Figure 1 J and K showing a significant difference. 

      With all due respect, we do not agree that the effect is minor. Please see our response to the Public Review where we discuss the major consequences of MT defects in detail. 

      To answer this specific comment, we show that there are significant differences in the number of rapidly moving MTs (5-sec displacement over 0.3 µm) and in the amount of stationary MTs (5sec displacement is below 0.15 µm). There is no significant difference in the amount of slightly displaced MTs (displacements between 0.15 and 0.3 µm; the central part of the histogram). This might indicate that these slight displacements do not depend on kinesin-1 motor but rather are caused by experimental noise, pushing by moving organelles, and/or myosin-dependent forces in the cell. In the revised manuscript, we have this quantification more clearly detailed in Methods and included in Figure legends.

      d) The authors utilize single molecule tracking to further strengthen their conclusion that KIF5B promotes microtubule sliding. The observed effects are weaker than the data obtained from photobleaching experiments. The videos clearly show that there is still significant movement also in KIF5B-depleted cells. If K560RigorE236A binds irreversibly to a microtubule and this microtubule is growing (not only by the addition of tubulin dimers to the plus end; see PMID: 34883065) wouldn't that also result in movement of the tagged K560RigorE236A? As KIF5B is also required in the transport of insulin granules, it should also label "interior microtubules". And in Video 2 it appears that pretty much all "labeled" microtubules are moving. 

      K560RigorE236A forms fiducial marks along the whole MTs lattice, as previously shown in (Tanenbaum et al., 2014). When it is bound to MT lattice, K560RigorE236A moves with the whole MT if it is being relocated. The mechanism described in (PMID: 34883065) appears to be absent or minor in beta cells (see Figure 2- Supplemental Figure 2), thus, even if this mechanism would displace already polymerized MTs, this is not happening in this cell type.

      The reviewer is correct, K560RigorE236A does mark all MTs throughout a beta cell. All MTs are moving slightly in a living cell because they are pushed around by moving organelles, actin contractility, etc. MTs may also be slid by other MT-dependent motors (dynein against the membrane and such). So, it is not surprising that the MT network is “breezing,” and kinesindependent sliding is only a part of MT movement. What we show here is that the KIF5Bdependent MT sliding is responsible for a relatively “long-distance” relocation of MTs manifested in long, directional displacement of fiducial marks.  This does not exclude other movements. This makes extraction of kinesin-dependent MT movements somewhat challenging, of course, that is why we needed to do those extensive analyses. 

      e) Figure 1 G to K is misleading, at least in the context of the provided videos. There are several microtubules that move extensively in shRNA#2-treated cells and overall there appears more movement in this cell as in the control cell. Figure 1I is clearly not representative of the movement shown in Video 2. 

      We apologize if our selection of representative movies/figures for this experiment was imperfect. Indeed, in all depleted cells, SunTag puncta still move to a certain extent, either due to incomplete depletion or to alternative intracellular forces dislocating microtubules. However, there is a clear difference in the fraction of persistently moving puncta (please see Figure 1K and  histogram in Figure 1 - Supplemental Figure 1B). Unfortunately, when the number of SunTag puncta per a cell is variable, it sometimes prevents a good visual perception of the actual distribution of moving versus stationary microtubules. We now show an alternative representative movie for the Figure 1I and the corresponding Video 2, with a goal to compare cells with more consistent numbers of Sun-Tag puncta.

      (2) Figure 2A. 

      a) This is the only image that clearly shows the existence of a sub-membrane microtubule array and the concentration of microtubules in the cell interior. The differences are unclear between the experimental setups including the length of cultivation and knockdown of KIF5B or expression of mutants. 

      We now provide a more detailed description of each image acquisition and processing in Materials and Methods. In brief, while the morphology of MT patterns is intrinsically variable in beta cells, all control cells have populated peripheral MTs that exhibit a more parallel configuration as compared to depletions and mutants.

      b) The authors state "While control cells had convoluted non-radial MTs with a prominent sub-membrane array, typical for beta cells (Fig. 2A), KIF5B-depleted cells featured extra-dense MTs in the cell center and sparse reseeding MTs at the periphery (Fig. 2B, C)". Could that not be explained with the observation that "Kinesin-1 controls microtubule length" (PMID: 34883065)? 

      Thank you for this interesting alternative idea. It does not appear to be the case for beta cells.

      Please see Figure 2-Supplemental Figure 2  and our response to Public Review Comment #3.

      Also, our apologies for the typo in the original manuscript: this is “receding” nor “reseeding”.

      (3) Figure 3: 

      a) This is an elegant way to determine whether KIF5B is involved in microtubule sliding independent of the fact that the effect appears very small. 

      Thank you!            

      b) The assay depends on ectopic expression of a dominant negative mutant. It appears important to show that KIFDNwt is high enough expressed to indeed block the binding of endogenous KIF5B. The authors need to provide a control for this. Furthermore, authors need to provide evidence that other functions of KIF5B are not impaired such as transport of insulin granules and tubulin incorporation or microtubule stability and length.

      Expression of cargo-binding motor domains routinely causes a dominant-negative effect of their cargo transport. This exact construct has been used for the purpose of dominant-negative action previously (Ravindran et al., 2017). It does prevent the membrane cargo binding of KIF5B (Ravindran et al., 2017), thus the transport of insulin granules is also impaired in overexpression cells. Confirming this fact would not influence our study conclusions, so we chose not to repeat these assays for the sake of time.

      c) N-numbers should be similar. The data for KIFDNmut are difficult to interpret with possibly 2 experiments showing little to no displacement and 3 showing displacement. 

      In the revised manuscript, additional data have been added to increase N-numbers.

      (4) Figure 4 and supplements: The morphology of the KIFDNwt cells is greatly affected and this makes it difficult to say whether the effect on microtubules at the cell periphery is a direct or indirect effect. 

      Yes, these cells often have less spread appearance, obscuring visual perception of MT distribution. We have now replaced the image of KIFDNwt cell (Figure 4, Supplemental Figure 1 A) to a more visually representative example.

      Things to do: 

      (1) Notably, the authors have previously reported that high glucose-induced remodeling of microtubule networks facilitates robust glucose-stimulated insulin secretion. This remodeling involves the disassembly of old microtubules and the nucleation of new microtubules. Here, they state that the sub-membrane microtubule array is destabilized via microtubule sliding. What is the relevance of the different processes? Please discuss these in the manuscript. 

      Thank you, we have now extended our discussion of these points and our prior findings. We have also added a schematic model figure for clarity (Figure 7).  

      (2) 5 min appears to be a long time and enough time to polymerize a significant number of new microtubules. Do the authors have any information about the speed of MT formation in MIN6 cells? Can the authors repeat this experiment by preventing MT polymerization? Or repeat the experiment with EB1/EB3 reporter to visualize microtubule growth in the same experimental setting? 

      While some MT polymerization will happen in this timeframe, newly polymerized MTs contain predominantly quenched “dark” tubulin molecules and only a small percent of fluorescent tubulin. These dim MTs are not included in MT sliding assay analysis, where a threshold for bright MTs is introduced. We apologize for initially omitting certain details from the FRAP assay analysis. Now these details have been added.   

      Are the microtubules shown on the cell surface (TIRF microscopy) or do we see here all microtubules? 

      Please see Materials and Methods for microscopy methods and image processing for each figure. Specifically, FRAP assays show a maximum intensity projection of spinning disk confocal stacks over 2.4µm in height (approximately the ventral half of a cell).

      (3) Previously, it has been shown that KIF5B induces tubulin incorporation along the microtubule shaft in a concentration-dependent manner. Moreover, running KIF5B increases microtubule rescue frequency and unlimited growth of microtubules. Notably, KIF5B regulates microtubule network mass and organization in cells (PMID: 34883065). Consequently, it appears possible that the here observed phenomena of changes in the microtubule network might be due to alterations in these processes. Authors need to exclude these possibilities and discuss them. 

      Thank you for this interesting alternative idea. It does not appear to be the case for beta cells. Please see Figure 2-Supplemental Figure 2  and our response to Public Review Comment #3.

      (4) It is important that the authors describe in the text and possibly in the figure legends the differences between the experimental set-ups including the length of cultivation and knock down of KIF5B or expression of mutants. 

      Thank you, please see these details in the text (Materials and Methods section).

      (5) Figure 5: Does KIF5B depletion rescue the kinesore-induced defects 

      Thank you for suggesting this control. We have now conducted corresponding experiments. The answer is yes, it does. Kinesore does not induce detectable changes in MT patterns in KIF5Bdepleted cells (new Figure 5-Supplemental Figure 2). 

      (6) Can the authors block kinesin-1 resulting in microtubule accumulation in the cell center and then release the block, and best inhibiting microtubule formation, to see whether the microtubules accumulated in the cell center will be transported to the periphery? 

      This proposed experiment would have been a nice illustration to the study, however it has proven to be too challenging. Unfortunately we have to leave it for the future studies. However,  the experiments already included in the paper are sufficient to prove our conclusions. 

      Minor comments: 

      (1) The English needs to be improved. Oaen it is unclear what the authors try to convey. The manuscript is difficult to read and contains several overstatements. 

      The revised manuscript has been through several rounds of proof-reading for clarity.

      (2) It is important to describe in more detail in the introduction what is known about KIF5B in beta cells. Previously, it has been demonstrated that silencing, or inactivation by a dominant negative form of KIF5B, blocks the sustained phase of glucose-stimulated insulin secretion (PMID: 9112396, PMID: 12356920, PMID: 20870970). 

      Yes, this is of course very important and have been cited in the original manuscript. Now, we have expanded the discussion on the matter.

      (3) Figure 1B and Fig. 1 Suppl Fig.1: Please provide band sizes and provide information on the size of KIF5B. 

      We have replaced Fig. 1B and Suppl Fig 1A with quantitative analysis of KIF5B depletion, not found in new Fig. 1B and Suppl Fig. 1A-C. 

      (4) It is important to state the used glucose concentrations in Figure 1D (based on the methods section it is probably 25 mM glucose) and all subsequent experiments. Is this correct and comparable to Figure 6A or B? For the non-specialized reader, more information should be provided on why initial glucose starvation is performed.  

      Cell culture models of pancreatic beta cells are routinely maintained at glucose levels that at considered “high”, or stimulatory for secretion. This is needed to prevent the loss of cells’ capacity to respond to glucose stimulation over generations. In order to test GSIS, cells need to be equilibrated at low (fasting, standardly 2.8mM) glucose levels for several hours, so that they are capable of secreting insulin upon glucose addition. 25mM glucose is normally used to stimulate GSIS in cell culture models of beta cells, like MIN6. This is a higher concentration as compared to what is needed to stimulate primary beta cells in islets.

      Reviewer #2 (Recommendations For The Authors): 

      I have the following specific questions that pertain to data interpretation and the conclusions drawn.

      (1) The morphology of the overall MT array before the bleach treatment in both control cells and KIF5B-KD cells depicted in Figure 1D-F and Figure 2A-C appears to be distinct. In Figure 1, it seems that the absence of KIF5B results in a general augmentation of MT mass, whereas the arrangement presented in Figure 2 indicates the contrary. Even in the sub-membrane areas, this phenomenon appears to hold true. However, the images used in this study, which depict entire cells or a significant portion of cells, may not be ideal for visualizing the sub-membrane regions.

      It would be beneficial if the author could offer some explanations for this apparent inconsistency. 

      While beta cell population is intrinsically heterogeneous, all data presented here indicate the same trend in phenotypes. Possibly, some apparent inconsistency between figure 1 and 2 appeared because in the original manuscript we did not show the pre-bleach whole-cell overview in Figure 1. In the revised version, we now show the whole cells for pre-bleach so that MT organization at the cell periphery can be assessed. Please note that in the control cell, MTs are more or less equally distributed over the cell, while in KIF5B depletions the cell periphery is significantly less populated than the cell center. Furthermore, we did not detect MT mass augmentation or increase in KIF5B depletions. One possible explanation for such reviewer’s impression from Figure 2 is that Figure 2 F-H shows thresholded images where threshold was adjusted to highlight peripheral MTs in each cell. Please note that this is not the same threshold for each cell (see Figure 2 - Supplemental Figure 2 and 3). Thus, KIF5B-depleted cells that have fewer MTs at the periphery appear brighter in these thresholded images. For the true comparison of MT intensity, please see Figure 2 A-C (grayscale image, not the threshold).

      (2) It would be helpful if the author could provide a visual representation or comment on the sub-cellular localization of KIF5B in MIN6 cells. Is it predominantly localized in the submembrane region, or is it more evenly distributed throughout the cytoplasm? 

      Please see Fig 2A, lower panel. KIF5B is seen across the cell as a punctate staining, in agreement with previous findings that it mostly localize at IGs.

      (3) The alteration in microtubule (MT) organization and sliding in the absence of KIF5B seems to initiate in proximity to the apparent microtubule organizing center (MTOC) depicted in Figure 2A, and then "simply" extends towards the sub-membrane region. Although the authors acknowledge it, it would be advantageous for the readers to have a clearer indication that the sub-membrane microtubule (MT) reorganization in the absence of KIF5B is a result of a broader MT reorganization rather than a specific occurrence restricted to the sub-membrane regions. 

      Thank you for this comment. We now extend our discussion to clearer state our conclusions and interpretations of this point. We also have added a schematic Figure 7 as an illustration. 

      (4) Regarding the "glucose experiments," it is common to add 20-25 mM glucose to culture media, but physiological concentrations of glucose typically hover around 5 mM. Therefore, it is somewhat unclear what the implications are when investigating the impact of KIF5B depletion on MT sliding at 2.8 mM of glucose. It would be helpful if the authors could provide some commentary on this matter, particularly in relation to physiological and pathological conditions. 

      2.8 mM glucose is a standard low glucose condition used to model glucose deprivation/fasting. For functional primary beta cells within pancreatic islets, GSIS can be triggered by glucose stimulation as low as 8-12 mM glucose. However, for glucose stimulation of cultured beta cells such as MIN6 used in this paper, 20-25 mM glucose is standardly used because these cell lines have a higher threshold of stimulation compared to primary beta cells and whole islets.

      (5) In supplementary Figure 1A, it would be helpful if the lanes in the WB were marked indicating what is what. In my observation, it appears that Supplementary Figure 1A, particularly lanes #2, 3, and 4, display the GAPDH protein (MW 36 kDa) (or is it alpha-tubulin, as mentioned in the Material and Methods section and indicated in lane #409?) relative to Figure 1A. I am curious about KIF5B (MW 108 kDa). Is it represented by the upper band? Did the author probe the same membrane simultaneously with two different primary antibodies? This should be clarified, and the author should indicate the molecular weight of the ladder. 

      Indeed, in the original WB two antibodies have been used together, due to a challenge in collecting a sufficient number of shRNA-expressing beta cells. It caused a confusion and improper interpretation of the loading control. We thank the reviewer for catching this.  We have now replaced old Fig. 1B and Suppl. Fig. 1A with quantitative analysis of KIF5B depletion based on single-cell immunofluorescent staining. It is now found in new Fig. 1B and Suppl Fig. 1A-C.  

      Reviewer #3 (Recommendations For The Authors): 

      In all of the figures that present microtubule orientations (e.g. Figure 2E) the error bars obscure the vertical bins making them difficult to read or interpret. If they were rendered at a larger scale, it would be easier to read and interpret these results. 

      Thank you pointing this out. We now show these histograms with a different format of error bars and without outliers that obscure the view. A variant with outliers is now shown in the supplement. 

      Some of the callouts to the videos in the paper are inaccurate. Perhaps the authors reordered sections of the paper but failed to correctly renumber the video citations? 

      Thank you for this comment, we have corrected all callouts now.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):*

      Summary: Chitin is a critical component of the extracellular matrix of arthropods and plays an essential role in the development and protection of insects. There are two chitin synthases in insects: Type A (exoskeletons) and Type B (for the peritrophic matrix in the gut). The study aims to investigate the specificity and mechanisms of the two chitin synthases in D. melanogaster and to clarify whether they are functionally interchangeable. Various genetic manipulations and fluorescence-based labeling were used to analyze the expression, localization, and function of Kkv and Chs2 in different tissues. Chs2 is expressed in the PR cells of the proventriculus and is required for chitin deposition in the peritrophic matrix. Kkv can deposit chitin in ectodermal tissues but not in the peritrophic matrix, whereas Chs2 can deposit chitin in the peritrophic matrix but not in ectodermal tissues. The subcellular localization of chitin synthases is specific to the tissues in which they are expressed. Kkv localizes apically in ectodermal tissues, whereas Chs2 localizes apically in the PR cells of the proventriculus. Altogether, Kkv and Chs2 cannot replace each other. The specificity of chitin synthases in D. melanogaster relies on distinct cellular and molecular mechanisms, including intracellular transport pathways and the specific molecular machinery for chitin deposition.*

      • *

      Congratulations on this incredible story and manuscript, which is straightforward and well-written. However, I have some comments that may help to improve it.

      We thank the reviewer for this very positive comment. We have addressed all comments to clarify and improve our manuscript.

      Major comments: 1.) Funny thing: the Chs2 mutant larva shows a magenta staining below the chitin accumulation of the esophagus, which looks like a question mark in 1H but cannot be found in control. Is that trachea reaching the pv?

      We assume that the reviewer refers to Fig 1N. As the reviewer suspects, this corresponds to a piece of trachea. Figure 1N shows a single section, making it difficult to identify what this staining corresponds to. We are providing below a projection of several sections where it is easier to identify the staining as tracheal tissue (arrow).

      We are now marking this pattern as trachea (tr) in the manuscript Figure 1N

      2.) Also, though it is evident that the PM chitin is lost in Ch2 mutants, could it be that the region is disturbed and cells express somewhere else chitin? There are papers by Fuß and Hoch (e.g., Mech of Dev, 79, 1998; Josten, Fuß et al., Dev. Biol.267, 2004) using markers such as Dve, Fkh, Wg, Delta, and Notch, etc. for precisely marking the endodermal/ectodermal region in the embryonic foregut/proventriculus. It would be beneficial to show, along with chitin and Chs expression patterns, the ectoderm/endoderm cells. This is particularly important as the authors report endodermal expression of Chs2 in embryos but don't use co-markers of the endodermal cells.

      We agree with the reviewer that this is an important issue and we note that Reviewer 2 also raised the same point. Therefore, we have addressed this issue.

      We obtained an antibody against Dve, kindly provided by Dr. Hideki Nakagoshi. Dve marks the endodermal region in the proventriculus (Fuss and Hoch, 1998, Fuss et al., 2004, Nakagoshi et al., 1998).This antibody worked nicely in our dissected L3 digestive tracts and allowed us to mark the endodermal region. We also obtained an antibody against Fkh, kindly provided by Dr. Pilar Carrera. Fkh marks the ectodermal foregut cells (Fuss and Hoch, 1998, Fuss et al., 2004). While, in our hands, this antibody performed well in embryonic tissues, we observed no staining in our dissected L3 digestive tracts. The reason for this is unclear, but we suspect technical limitations may be responsible (the ectodermal region of the proventriculus is very internal, potentially hindering antibody penetration). To circumvent this inconvenience, we tested a FkhGFP tagged allele available in Bloomington Stock Center. Fortunately, we were able to detect GFP in ectodermal cells of L3 carrying this allele. Using this approach, we conducted experiments to detect Fkh and Dve in the wild type or in Df(Chs2) conditions (Fig S1). In addition, we used these markers to map the expression of Kkv and Chs2 in the proventriculus (Fig 4).

      Altogether the results using these endodermal/ectodermal markers confirmed the presence of a cuticle adjacent to the FkhGFP-positive cells and a PM adjacent to the PR cells, marked by Dve. This PM is absent in Df(Chs2) L3 escapers, however, the general pattern of Fkh/Dve expression is not affected. Finally, we show that Chs2-expressing cells are positive for Dve while Kkv-expressing cells are not. We were unable to conduct an experiment demonstrating Kkv and Fkh co-expression due to technical incompatibilities, as both genes require the use of GFP-tagged alleles to visualise their expression. However, we believe that our imaging of Dve/Kkv clearly shows that Kkv expressing cells lack Dve expression and are localised in the internal (ectodermal) region of the proventriculus (Fig 4E).

      3.) The origin of midgut chitin accumulation is unclear. Chitin can come from yeast paster. Can the authors check kkv and chs2 mutants for food passage and test starving L1 larvae to detect chitin accumulation in the midgut without feeding them?

      This is a very interesting point that has also intrigued us.

      We observed that, in addition to the PM layer lining the midgut epithelium, CBP staining also revealed a distinct luminal pattern. Our initial hypothesis was that this pattern corresponded to the PM. However, its presence in Df(Chs2) larval escapers clearly indicates that this is not the case. Unfortunately, we cannot assess this pattern in kkv mutants, as these die at eclosion and do not proceed to larva stages.

      As the reviewer suggests, a likely possibility is that the luminal pattern originates from components in the food. These could correspond to yeast, as suggested by the reviewer, or possibly remnants of dead larvae present in the media (although Drosophila is considered herbivore in absence of nutritional stress).

      To assess whether the luminal pattern originates from the food we conducted two independent experiments. In experiment 1, we collected larvae reared under normal food conditions. Newly emerged L3 larvae were transferred in small numbers to minimise cannibalism (Ahmad et al., 2015) to new Petri plates containing moist paper. Larvae were starved for 3,4 or 5 days. Larvae starved for more than 5 days did not survive. We then dissected the guts and analysed CBP staining. We observed the presence of luminal CBP staining in these larvae, along with the typical PM signal in the proventriculus and along the midgut. In experiment 2, we collected larvae directly on agar plates containing only agar (without yeast or any other nutrients). We allowed the larvae to develop. These larvae showed minimal growth. We dissected the guts of these small larvae (which were challenging to dissect) and analysed CBP staining. Again, we detected presence of luminal CBP staining.

      These experiments indicate that, despite starvation, a luminal chitin pattern is still detected, suggesting that it is unlikely to originate from food. However, we cannot unequivocally rule out the possibility that the cannibalistic, detrivorous or carnivorous behavior of the nutrionally stressed larvae (Ahmad et al., 2015) in our experiments may influence the results. Therefore, more experiments would be required to address this point.

      In summary, while we cannot provide a definitive answer to the reviewer's question, nor fully satisfy our own curiosity, we would like to note that this specific observation is unrelated to the main focus of our study, as we have confirmed that the luminal pattern is not dependent on Chs2 function.

      Portions of midgut of starved larvae under the regimes indicated, stained for chitin (CBP, magenta). Note the presence of the luminal chitin pattern in the midgut

      4.) Subcellular localization assays require improved analysis, such as a co-marker for the apical membrane and statistical analysis with co-localization tools, showing the overlap at the membrane and intracellularly with membrane co-markers and KDEL.

      We have addressed the point raised by the reviewer. To analyse and quantify Chs2 subcellular localisation, particularly considering the observed pattern, we decided to use both a membrane and an ER marker. As a membrane marker we used srcGFP expressed in tracheal cells (see answer to point 7 of Reviewer 1) and as an ER marker we used KDEL. In this analysis, tracheal cells also expressed Chs2, which was visualised using the Chs2 antibody generated in the lab.

      To assess the colocalisation of Chs2 with each marker we used the JaCop pluggin in Fiji. We analysed individual cells from different embryos stained for membrane/ER/Chs2 using single confocal sections (to avoid artificial colocalisation). Images were processed as described in Materials and Methods. We obtained the Pearson's correlation coefficient (r), which measures the degree of colocalisation, for Chs2/srcGFP and Chs2/KDEL, n=36 cells from 9 different embryos. The average r value for Chs2/srcGFP was 0,064, while the average for Chs2/KDEL was around 0,7. r ranges between -1 and 1, where 1 indicates perfect correlation, 0 no correlation, and -1 perfect anti-correlation. Typically, an r value of 0.7 and above is considered a strong positive correlation, whereas a value below 0,1 is regarded as very weak or no correlation. Thus, our colocalisation analysis supports the hypothesis that Chs2 is primarily retained in the ER when expressed in non-endogenous tissues, likely unable to reach the membrane.

      We have reorganised the figures and now present an example of Chs2/srcGFP/KDEL subcellular localisation in tracheal cells and the colocalisation analysis in Fig 5H. The colocalisation analysis is described in the Materials and Methods section.

      Minor comments:

      5.) The authors used "L3 larval escapers." It would be interesting to know if the lack of Chs2 and the peritrophic matrix cause any physiological defects or lethality.

      The point raised by the reviewer is very interesting and relevant. The peritrophic matrix is proposed to play several important physiological roles, including the spatial organisation of the digestive process, increasing digestive efficiency, protection against toxins and pathogens, and serving as a mechanical barrier. Therefore, it is expected that the absence of chitin in the PM of the Df(Chs2) larval escapers may cause various physiological effects.

      Analysing these effects is a complex task, and it constitutes an entire research project on its own. In addressing the physiological requirements of the PM, we aim to analyse adult flies and assess various parameters, including viability, digestive transit dynamics, gut integrity, resistance to infections, fitness and fertility.

      A critical initial challenge in conducting a comprehensive analysis of the physiological requirements of the PM is identifying a suitable condition to evaluate the absence of Chs2. In this work we are using a combination of two overlapping deficiencies that uncover Chs2, along with a few additional genes (as indicated in Fig S1F). This deficiency condition presents two major inconveniences: first, the observed defects could be caused or influenced by the absence of genes other than Chs2, preventing us from conclusively attributing the defects to Chs2 loss (unless we rescued the defects by adding Chs2 back as we did in the manuscript). Second, the larva escapers, which are rare, do not survive to adulthood (indicating lethality but preventing us from analysing specific physiological aspects).

      To overcome these limitations, we are currently working to identify a genetic condition in which we can specifically analyse the absence of Chs2. We have identified several available RNAi lines and we are testing their efficiency in preventing chitin deposition in the PM. Additionally, we are characterising a putative null Chs2 allele, Chs2CR60212-TG4.0. This stock contains a Trojan-GAL4 gene trap sequence in the third intron, inserted via CRISPR/Cas9. As described in Flybase (https://flybase.org/), the inserted cassette contains a 'Trojan GAL4' gene trap element composed of a splice acceptor site followed by the T2A peptide, the GAL4 coding sequence and an SV40 polyadenylation signal. When inserted in a coding intron in the correct orientation, the cassette should result in truncation of the trapped gene product and expression of GAL4 under the control of the regulatory sequences of the trapped gene. We already know that, when crossed to a reporter line (e.g. UAS-GFP or UAS-nlsCherry) this line reproduces the Chs2 expression pattern, suggesting that the insertion may generate a truncated Chs2 protein. This line would represent an ideal tool to assess the absence of Chs2, and we are currently characterising it for further analysis

      In summary, we fully agree with the reviewer that investigating the physiological requirements of the PM is a compelling area of research, and we are actively addressing this question. However, this investigation constitutes a substantial and independent research effort that we believe is beyond the scope of the current manuscript at this stage.

      6.) The order identifiers are missing for materials and antibodies, e.g., anti-GFP (Abcam), but Abcam provides several ant-GFP; which was used? Please provide order numbers that guarantee the repeatability for others.

      We have now added all identifiers for materials and reagents used, in the materials and methods section.

      7.) Figure S5C, C', what marks GFP (blue) in the trachea? Maybe I have overlooked the description. What is UASsrcGFP? What is the origin of this line?

      We apologise for not providing a more detailed description of the UASsrcGFP line. This line corresponds to RRID BDSC#5432, as now indicated in Materials and Methods section.

      In this transgene, the UAS regulatory sequences drive the expression of GFP fused to Tag:Myr(v-src). As described in Flybase (https://flybase.org/), the P(UAS-srcEGFP) construct contains the 14 aa myristylation domain of v-src fused to EGFP. This tag is commonly used to target proteins of interest to the plasma membrane. The construct was generated by Eric Spana and is available in Drosophila stock centers.

      We typically use this transgene as a plasma membrane marker to outline cell membrane contours. In our experiments, srcGFP, under the control of the btlGal4 promoter, was used to visualise the membrane of tracheal cells in relation to Chs2 accumulation. As indicated in point 4, we have now transferred the images of srcGFP/Chs2/KDEL to the main Figures and used it for colocalisation analyses.

      8.) The authors claim that they validated the anti-Chs2 antibody. However, they show only that it recognizes a Cht2 epitope via ectopic expression. For more profound validation, immune staining is required in deletion mutants, upon knockdown, or upon expression of recombinant proteins, which is not shown.

      We generated an antibody against Chs2. We found that the antibody does not reliably detect the endogenous Chs2 protein, and so we find no pattern in the proventriculus or any other tissue in our immunostainings. It is very possible that the combination of low endogenous levels of Chs2 with a sub-optimal antibody (or low titer) leads to this result. In any case, as the antibody does not detect endogenous Chs2, it cannot be validated by analysing the expression upon Chs2 knockdown. In contrast, our antibody clearly detects specific staining in various tissues (e.g. trachea, salivary glands, gut) when Chs2 is expressed using the Gal4/UAS system, confirming its specificity for Chs2. It is worth to point that it is not unusual to find antibodies that are not sensitive enough to detect endogenous proteins but can detect overexpressed proteins (e.g

      (Lebreton and Casanova, 2016)).

      As an additional way to validate the specificity of our antibody, we have used the chimeras generated, as suggested by the reviewer. As indicated in the Materials and Methods section, the Anti-Chs2 was generated against a region comprising 1222-1383 aa in Chs2, with low homology to Kkv. This region is present in the kkv-Chs2GFP chimera but absent in Chs2-KkvGFP (see Fig 7A). Accordingly, our antibody recognises kkv-Chs2GFP but does not recognise Chs2-KkvGFP (Fig S7).

      We have revised the text in chapter 6 (6. Subcellular localisation of Chs2 in endogenous and ectopic tissues) to clarify these points and we have added the validation of the antibody using the chimeras in chapter 8 (8. Analysis of Chs2-Kkv chimeras) and Fig S7

      9) The legend and text explaining Fig. 4 D-E' can be improved. The authors used the Crimic line, which is integrated into the third ("coding") intron. This orientation can lead to the expression of Gal4 and cause a truncated version of the protein (according to Flybase). Is Chs2 expression reduced in the crimic mutant? If the mutation causes expression of a truncated version, the Chs2 antibody may not be able to detect it as it recognizes a fragment between 1222 and 1383 aa? Also, I'm unsure whether the Chs2 antibody or GFP was used to detect expression in PR cells. The authors describe using Ch2CR60212>SrcGFP together with Chs2+ specific antibodies.

      We apologise for the confusion.

      As the reviewer points, Chs2CR60212-TG4.0 contains a Trojan-GAL4 gene trap sequence in the third intron, inserted via CRISPR/Cas9. As described in Flybase (https://flybase.org/), the inserted cassette contains a 'Trojan GAL4' gene trap element composed of a splice acceptor site followed by the T2A peptide, the GAL4 coding sequence and an SV40 polyadenylation signal. When inserted in a coding intron in the correct orientation, the cassette should result in truncation of the trapped gene product and expression of GAL4 under the control of the regulatory sequences of the trapped gene.

      We found that when crossed to UAS-GFP or UAS-nlsCherry, this line reproduces a expression pattern that must correspond to Chs2. As the antibody that we generated is not suitable for detecting Chs2 endogenous expression, we resorted to using this combination, Chs2CR60212-TG4.0 crossed to a reporter line (such asUAS-GFP or UAS-nlsCherry), to visualise Chs2 expression by staining for GFP/Cherry in the intestinal tract and in the embryo (Figures 4 and S4).

      We realise that the Figure labelling we used in our original submission is very misleading, and we apologise for this. In the original figures we had labelled the staining combination with Kkv, Chs2, Exp as if we had used these antibodies. However, in all cases, we used GFP to visualise the pattern of these proteins in the genetic combinations indicated in the figures. We have corrected this in our revised version. We have also updated the text (Chapter 5), figures and figure legends.

      As the reviewer points, the insertion in Chs2CR60212-TG4.0 is likely to generate a truncated Chs2 protein. We cannot confirm this using the Chs2 antibody we generated because it does not recognise the endogenous Chs2 pattern. Nevertheless, as indicated in point 5, we are currently characterising this line. Our preliminary results indicate a high complexity of effects from this allele that require thorough analysis, as it may be acting as a dominant negative.

      Reviewer #1 (Significance (Required)):

      Significance: The manuscript's strength and most important aspects are the genetic analysis, expression, and localization studies of the two Chitin synthases in Drosophila embryos and larvae. However, beyond this manuscript, the development of mechanistic details, such as interaction partners that trigger secretion and action at the apical membranes and the role of the coiled-coil domain, will be interesting.

      The manuscript uses "first-class" genetics to describe the different roles of the two Chitin synthases in Drosophila, comparing ectodermal chitin (tracheal and epidermal chitin) with endodermal (midgut) chitin. Such a precise analysis has not been investigated before in insects. Therefore, the study deeply extends knowledge about the role of Chitin synthases in insects.

      The audience will specialize in basic research in zoology, developmental biology, and cell biology regarding - how the different Chitin synthases produce chitin. Nevertheless, as chitin is relevant to material research and medical and immunological aspects, the manuscript will be fascinating beyond the specific field and thus for a broader audience.

      I'm working on chitin in the tracheal system and epidermis in Drosophila.

      __Reviewer #2 (Evidence, reproducibility and clarity (Required)): __ Drosophila have two different chitin synthase enzymes, Kkv and Chs2, and due to unique expression patterns and mutant phenotypes, it is relatively clear that they have different functions in producing either the cuticle-related chitin network (Kkv) or the chitin associated with the peritrophic matrix (PM). However, what is unknown is whether the different functions in making cuticle vs PM chitin is related to differences in cellular expression and/or enzyme properties within the cell. The authors exploit the genetic tractability of Drosophila and their ability to image cuticle vs PM chitin production to examine whether these 2 enzymes can substitute each other. They conclude that these two proteins are not equivalent in their capacity to generate chitin. The data are convincing; however, it is currently presented in a subjective fashion, which makes it difficult to interpret. Additionally, in my opinion there is some interpretation that requires softening or alternatively interpreted.

      We are pleased that the reviewer finds our data convincing. However, we acknowledge the reviewer's concern that our data was presented in a subjective manner, and we apologise for this. In response, we have carefully reviewed the entire manuscript and revised our data presentation to ensure a more objective tone. Numerous changes (including additional quantifications, new experiments and clarifications) have been incorporated throughout the text. These revisions are highlighted in the marked-up version. We hope that this revision provides a more accurate and objective presentation of our work.

      Major Comments:

      1- While the imaging is lovely, there are some things that are difficult to see in the figures. For example, the "continuous, thin and faint 'chitin' layer that lined the gut epithelium" is very difficult to visualise in the control images. Can they increase the contrast to help the reader appreciate this layer? This is particularly important as we are asked to appreciate a loss of this layer in the absence of Chs2.

      We have tried to improve the figures so that the PM layer in the midgut region is more clearly visible. We have added magnifications of small sections at the midgut lumen/epithelium border in grey to help visualise the PM. These improvements have been made in Figures 1,2,S1,S2,S3 and we believe that they better illustrate our results.

      2- All the mutant analysis is presented subjectively. For example, the authors state that they "found a consistent difference of CBP staining when they compared the 'Chs2' escapers to the controls". How consistent is consistent? Can this be quantified? What is the penetrance of this phenotype? They say that the thin layer is absent in the midgut and the guts are thinner. Could they provide more concrete data?

      As indicated above, we have reviewed the text to provide a more objective description of the phenotypes.

      We have quantified the defects in the Df(Chs2) mutant conditions. For this quantification we dissected intestinal tracts of control and Df(Chs2) larva escapers. We fixed, stained and mounted them together. The control guts expressed GFP in the midgut region as a way to distinguish control from mutants. We analysed the presence or absence of chitin in the PM. We found absence of chitin in the proventricular lumen and in the midgut in all Df(Chs2) guts and presence of chitin there in all control ones (n=12 Df(Chs2) guts, n=9 control guts, from 5 independent experiments). The results indicate a fully penetrant phenotype of lack of chitin in Df(Chs2) larva escapers (100% penetrance). We have added this quantification in the text, chapter 2 (2. Chs2 deposits chitin in the PM).

      To quantify the thickness of the guts, we took measurements of the diameter in control and Df(Chs2) guts at two comparable distance positions from the proventriculus (position 1, position 2, see image). Our quantifications indicated thinner tubes in mutant conditions.

      Image shows the anterior part of the intestinal tract, with the proventriculus encircled in white. Positions 1 and 2 indicate where the diameter quantifications were taken. Scatter plots quantifying the diameter at the two different positions in control and Chs2 larval escapers. Bars show mean {plus minus} SD. p=p value of unpaired t test two-tailed with Welch's correction.

      However, we are aware that our analysis of the thickness of the gut is not accurate, because we have not used markers to precisely measure at the same position in all guts and because we have not normalised the measurement position in relation to the whole intestinal tract (mainly due to technical issues).

      In relation to the fragility, we noticed that the guts of Chs2 larval escapers tended to break more easily during dissection than control guts, however, we have not been able to quantify this parameter in a reliable and objective manner.

      Since we consider that the requirement of Chs2 for PM deposition is sufficiently demonstrated, and that aspects such as gut morphology or fragility relate to the physiological requirements of the PM, which we are beginning to address as a new independent project (see our response to point 5 of Reviewer 1), we have decided to remove the sentence 'We also noticed that the guts of L3 escapers were thinner and more fragile at dissection." from the manuscript to avoid subjectivity.

      3- They state that Chs2 was able to restore accumulation of chitin in the PM of the proventriculus and the midgut. Please quantify. Additionally, does this restore the morphology of the guts (related to the comment above on the thinner guts in the absence of Chs2)?

      We have quantified the rescue of chitin deposition in the PM when Chs2 is expressed in PR cells in a Df(Chs2) mutant background. For this quantification we used the following genetic cross: PRGal4/Cyo; Df(Chs2)/TM6dfdYFP (females) crossed to UASChs2GFP or UASChs2/Cyo; Df(Chs2)/TM6dfdYFP. We selected Df(Chs2) larval escapers by the absence of TM6 (recognisable by the body shape). Among these larval escapers, we identified the presence of Chs2 in PR cells by the expression of GFP or Chs2. We found absence of chitin in the proventriculus and in the midgut in all Df(Chs2) guts that did not express Chs2 in PR cells (n=8/8 Df(Chs2)). In contrast, chitin was present in those intestinal tracts where Chs2 expression was detected in PR cells (n=8/8 PRGal4-UASChs2; Df(Chs2) guts, from 5 independent experiments). The results indicate a full rescue of chitin deposition by Chs2 expression in PR cells in Df(Chs2) mutant larvae. We have added this quantification in the text, chapter 2 (2. Chs2 deposits chitin in the PM).

      As requested by the reviewer, we have also conducted measurements to quantify gut thickness. We performed an analysis similar to the one described in point 2, this time comparing the diameter of Df(Chs2) and PRGal4-UASChs2;Df(Chs2) guts at positions 1 and 2 (see image in point 2 of Reviewer 2). Our quantifications indicated that guts were thicker when Chs2 is expressed in the PR region in Df(Chs2) larval escapers.

      As discussed in point 2, we have decided not to include these results in the manuscript, as this type of analysis requires a more comprehensive investigation.

      Scatter plots quantifying the diameter at the two different positions in Chs2 larval escapers and Chs2 larval escapers expressing Chs2 in PR cells. Bars show mean {plus minus} SD. p=p value of unpaired t test two-tailed with Welch's correction.

      4- This may be beyond the scope of this paper, but I find it interesting that the PM chitin is deposited in the proventricular lumen. Yet it forms a thin layer that lines the entire midgut? Any idea how this presumably dense chitin network gets transported throughout the midgut to line the epithelium? I imagine that this is unlikely due to diffusion, especially if they see an even distribution across the midgut. Do they see any evidence of a graded lining (i.e. is it denser in the midgut towards the proventriculus and does this progressively decrease as you look through the midgut?)?

      Insect peritrophic matrices have been classified into Type I and II (with some variations) depending on their origin (extensively reviewed in (Peters, 1992, Hegedus et al., 2019). Type I PMs are typically produced by delamination as concentric lamellae along the length of the midgut. Type II PMs, in contrast, are produced in a specialised region of the midgut that corresponds to the proventriculus and are typically more organised than Type I. In Type II PMs, distinct layers originate from distinct cell clusters in the proventriculus. It has been proposed that as food passes, it becomes encased by the extruded PM, which then slides down to ensheath the midgut. Drosophila larvae have been proposed to secrete a type II PM: through PM implantation experiments, Rizki proposed that the proventriculus is required to generate the PM in Drosophila larvae (Rizki, 1956). Our experiments confirmed this hypothesis: we show that expressing Chs2 exclusively in PR cells is sufficient to produce a PM along the midgut. Furthermore, we also show that expressing Chs2 in the midgut is not sufficient to produce a PM layer lining the midgut, at least at larval stages.

      The type II PM in Drosophila is proposed to be fully organised into four layers in the proventricular region (also referred as PM formation zone) before reaching the midgut (Peters, 1992, King, 1988, Rizki, 1956, Zhu et al., 2024). However, the mechanism by which the PM is subsequently transported into the midgut remains unclear. PM movement posteriorly is thought to depend on to the pressure exerted by continuous secretion of PM material (Peters, 1992). Early work by Wigglesworth (1929, 1930) proposed that the PM is secreted into the proventricular lumen, becomes fully organised, and is then pushed down by a press mechanism involving the aposed ectodermal/endodermal walls of the proventriculus. Rizki suggested that muscular contractions of the proventriculus walls may play a role, and that peristaltic movements of the gut add a pulling force to push the PM into the midgut (Rizki, 1956). Nevertheless, to our knowledge, the exact mechanism is still not fully understood.

      In response to the reviewer's question, the level of resolution of our analysis does not allow us to determine whether there is a graded PM lining along the midgut. However, available data using electron microscopy approaches suggest that the PM is a fully organised structure composed of four layers that is secreted and transported to line the midgut (King, 1988, Zhu et al., 2024).

      5- The authors state that expression of kkv in tracheal cells of kkv mutants perfectly restores accumulation of chitin in the luminal filaments. Is this really 100% restoration? They also reference a paper here, which may have quantified this result.

      We previously reported that the expression of kkv in tracheal cells restores chitin deposition in kkv mutants (Moussian et al,2015). However, our previous study did not quantify this rescue. As requested by the reviewer, we have now quantified the extent of the rescue.

      To perform this quantification, we used the following genetic cross:

      btlGa4/(Cyo); kkv/TM6dfdYFP (females) crossed to +/+; kkv UASkkvGFP/TM6dfdYFP (males)

      We stained the resulting embryos with CBP (to detect chitin) and GFP. GFP staining allowed us to identify the kkv mutants (by the absence of dfdYFP marker) and to simultaneously identify the embryos that expressed kkvGFP in tracheal cells (through btlGal4-driven expression). Since btlGal4 is homozygous viable, most females carried two copies of btlGal4.

      We compared the following embryo populations across 4 independent experiments:

      1. Cyo/+; kkv/kkv UASkkvGFP (kkv mutants not expressing kkv in the trachea)
      2. btlGal4/+; kkv/kkv UASkkvGFP (kkv mutants expressing kkv in the trachea) Results:

      3. Cyo/+; kkv/kkv UASkkvGFP ---- 0/6 embryos deposited chitin in trachea

      4. btlGal4/+; kkv/kkv UASkkvGFP ---- 27/27 embryos deposited chitin in trachea These results indicate complete restauration of chitin deposition in kkv mutants when kkv is expressed in tracheal cells (100% rescue).

      To further investigate whether Chs2 can compensate for kkv function in ectodermal tissues, we performed a similar quantification using the following genetic cross:

      btlGa4/(Cyo); kkv/TM6dfdYFP (females) crossed to UASChs2GFP/UASChs2GFP; kkv UASkkvGFP/TM6dfdYFP (males)

      We compared the following embryo populations across 2 independent experiments:

      1. Cyo/UASChs2GFP; kkv/kkv (kkv mutants not expressing Chs2 in the trachea)
      2. btlGal4/ UASChs2GFP; kkv/kkv (kkv mutants expressing Chs2 in the trachea) Results:

      3. Cyo/UASChs2GFP; kkv/kkv ---- 0/4 embryos deposited chitin in trachea

      4. btlGal4/ UASChs2GFP; kkv/kkv ---- 0/16 embryos deposited chitin in trachea These results indicate no restauration of chitin deposition in kkv mutants expressing Chs2 in the trachea (0% rescue).

      We have now incorporated these quantifications in the text, chapter 4 (4. Chs2 cannot replace Kkv and deposit chitin in ectodermal tissues.)

      6- They ask whether Kkv overexpression in the proventriculus can rescue Chs2 mutants... and vice versa, whether Chs2 overexpression in ectodermal cells can rescue kkv mutants. They show that kkv overexpression leads to an intracellular accumulation of chitin in the proventriculus. However, Chs2 overexpression in the trachea did not lead to any accumulation of chitin in the cells. They tailored their experiments and the associated discussion to address the hypothesis that there is potentially some difference in trafficking of these components. However, another possibility, which they have not ruled out, is that the different ability of kkv and Chs2 to produce chitin inside cells of the proventriculus and ectoderm, respectively, is potentially related to different enzymatic activities and cofactors required for chitin formation in these different cell types. Is this another potential explanation for the differences that they observe?

      We note that Kkv overexpression in any cell type (e.g. ectoderm, endoderm) consistently leads to chitin polymerisation. In ectodermal tissues, Kkv expression, in combination with Exp/Reb activity, results in extracellular chitin deposition. In the absence of Exp/Reb, Kkv expression leads to the accumulation of intracellular chitin punctae (De Giorgio et al., 2023, Moussian et al., 2015); this work). This correlates with the accumulation of Kkv at the apical membrane and presence of Kkv-containing vesicles, regardless of the presence of Exp/Reb (De Giorgio et al., 2023, Moussian et al., 2015); Figure 6, S6). In endodermal tissues, regardless of the presence of Exp/Reb, Kkv cannot deposit chitin extracellularly and instead produces intracellular chitin punctae. This correlates with a diffuse accumulation of Kkv in the endodermal cells (PR cells, or gut cells in the embryo) but presence of Kkv-containing vesicles (Figure 6, S6).

      In previous work we showed that Kkv's ability to polymerise chitin is completely abolished when it is retained in the ER. Indeed, we found that a mutation in a conserved WGTRE region leads to ER retention, the absence of Kkv-containing vesicles in the cell, and absence of intracellular chitin punctae or chitin deposition (De Giorgio et al., 2023).

      These findings indicate a correlation between Kkv subcellular localisation and chitin polymerisation/extrusion. Therefore, we hypothesise that intracellular trafficking and subsequent subcellular localisation play a crucial role in regulating Kkv activity (De Giorgio et al., 2023; this work).

      We find that Chs2 is expressed in PR cells (Figure 4) and observe that only in these PR cells does Chs2 localise apically (Fig 5A-D, S5A,B). This localisation correlates with the ability of Chs2 to deposit chitin in the PM and the presence of intracellular chitin punctae in PR cells (Fig 1F). When Chs2 is expressed in other cells types, we detect it primarily in the ER and observed no Chs2-containing vesicles (vesicles are suggestive of trafficking). This localisation correlates with the inability of Chs2 to produce intracellular chitin punctae or extracellular chitin deposition.

      Again, these results suggest a correlation between Chs2 subcellular localisation and chitin polymerisation/extrusion, aligning with the results observed for Kkv. Therefore, we hypothesise in this work that the intracellular trafficking and subsequent subcellular localisation of Chs2 play a crucial role in regulating its activity.

      Our hypothesis is consistent with seminal work in yeast chitin synthases, which has demonstrated the critical role of intracellular trafficking, and particularly ER exit, in regulating chitin synthase activity (reviewed in (Sanchez and Roncero, 2022).

      That said, we cannot exclude other explanations that are also compatible with the observed results. As pointed out by the reviewer, it is possible that Chs2 and Kkv require different enzymatic activities and/or cofactors for chitin polymerisation/deposition, which may be specific to different cell types. Indeed, we know that the auxiliary proteins Exp/Reb are specifically expressed in certain ectodermal tissues (Moussian et al., 2015). These mechanisms could act jointly or in parallel with the regulation of intracellular trafficking, or could even regulate this intracellular trafficking itself.

      Identifying the exact mechanisms controlling Kkv and Chs2 intracellular trafficking would be necessary to determine whether additional mechanisms (specific cofactors or enzymatic activities) are also involved or even serve as the primary regulatory elements.

      We have introduced these additional possibilities in the discussion section.

      7- They co-express Chs2 and Reb and show that this does not lead to chitin production or secretion. In the discussion they conclude that Chs2 does not "seem to be dependent on 'Reb' activity". I think that this statement potentially needs softening. They show that Reb is not sufficient in to induce Chs2 chitin production in cells that do not normally make a PM. However, they do not show that it is not essential in cells that normally express Chs2 and make PM.

      We fully agree with the reviewer's observation and thank her/him for pointing it out.

      As indicated by the reviewer, we show that co-expression of Reb and Chs2 in different tissues does not lead to an effect distinct from that observed with Chs2 expression alone. In addition, in the discussion we mention that we could not detect expression of reb/exp in PR cells, which aligns with the findings from Zhu et al, 2024, indicating no expression of reb/exp in the midgut cells of the adult proventriculus, as assessed by scRNAseq. We found that exp is expressed in the ectodermal cells of the larval proventriculus (Fig S4D), correlating with kkv expression in this region and cuticle deposition. These findings led us to propose that Chs2 does not seem to be dependent on Exp/Reb activity.

      However, in our original manuscript, we did not directly address whether Exp/Reb are required in the cells that normally express Chs2. As a result, we could not conclude that Chs2 relies on a set of auxiliary proteins different from Exp/Reb, and therefore a different molecular mechanism to that of Kkv in regulating chitin deposition.

      To address this specific point, we have conducted a new experiment to test Exp/Reb requirement in PR cells. We co-expressed RNAi lines for Exp/Reb in these cells and found that chitin deposition in the PM was not prevented. This further supports the hypothesis that Exp/Reb activity is not necessary for Chs2 function. We have added this experiment to Chapter 4 and Fig S3I,J.

      8- They looked at the endogenous expression pattern of kkv and Chs2 and say that they found accumulation of Kkv in the proventriculus and no accumulation in the midgut. Siimilarly, they look at the expression of Chs2 and detect it in cells of the proventriculus. Are there markers of these different cell types that they could use to colocalize these enzymes?

      We agree with the reviewer that this is an important issue and we note that Reviewer 1 also raised the same point. Therefore, we have addressed this issue.

      We obtained an antibody against Dve, kindly provided by Dr. Hideki Nakagoshi. Dve marks the endodermal region in the proventriculus (Fuss and Hoch, 1998, Fuss et al., 2004, Nakagoshi et al., 1998).This antibody worked nicely in our dissected L3 digestive tracts and allowed us to mark the endodermal region. We also obtained an antibody against Fkh, kindly provided by Dr. Pilar Carrera. Fkh marks the ectodermal foregut cells (Fuss and Hoch, 1998, Fuss et al., 2004, Nakagoshi et al., 1998). While, in our hands, this antibody performed well in embryonic tissues, we observed no staining in our dissected L3 digestive tracts. The reason for this is unclear, but we suspect technical limitations may be responsible (the ectodermal region of the proventriculus is very internal, potentially hindering antibody penetration). To circumvent this inconvenience, we tested a FkhGFP tagged allele available in Bloomington Stock Center. Fortunately, we were able to detect GFP in ectodermal cells of L3 carrying this allele. Using this approach, we conducted experiments to detect Fkh and Dve in relation to chitin accumulation in the wild type (Fig S1). In addition, we used these markers to map the expression of Kkv and Chs2 in the proventriculus (Fig 4). Our results using these endodermal/ectodermal markers confirmed the presence of a cuticle adjacent to the FkhGFP-positive cells and a PM adjacent to the PR cells, marked by Dve. Additionally, we show that Chs2-expressing cells are positive for Dve while Kkv-expressing cells are not. We could not conduct an experiment showing Kkv and Fkh co-expression due to technical incompatibilities, as we have to use GFP tagged alleles for both Kkv and Fkh to reveal their expression. However, we believe that our imaging of Dve/Kkv clearly shows that Kkv expressing cells lack Dve expression and localise in the internal (ectodermal) region of the proventriculus (Fig 4E).

      9- They overexpress Chs2 in cells of the midgut and see that it colocalises with an ER marker. They conclude that it is retained in the ER, which again, for them suggests that it has a trafficking problem in these cells. However, they are overexpressing it in these cells and this strong accumulation that they observe in the ER could simply be due to the massive expression levels. Additionally, they cannot conclude that it doesn't get out of the ER at all. They could be correct in thinking that there may be a trafficking issue, but this experiment does not conclusively show that Chs2 is entirely retained in the ER when expressed in ectopic tissues. I wonder if their interpretation needs softening or whether they should potentially address alternative hypotheses.

      The reviewer raises two distinct issues: 1) the localisation of overexpressed proteins 2) Chs2 ER retention.

      We agree that massive overexpression can lead to artifactual subcellular localisation due to saturation of the secretory pathway, causing ER accumulation. In our experiments, we overexpressed Kkv and Chs2 in different tissues (trachea, salivary glands, embryonic gut, and larval proventriculus), inducing high levels of both chitin synthases.

      For Kkv, we observed distinct subcellular localisation patterns in ectodermal versus endodermal tissues (illustrated in new Fig S6). In ectodermal tissues such as the trachea, large amounts of KkvGFP were detected, most of it localising apically. We also detected a more general KkvGFP distribution throughout the cell, including the ER, particularly at early stages. Additionally, we observed many KkvGFP-positive vesicles, reflecting exocytic and endocytic trafficking, as described previously (De Giorgio et al., 2023). The presence of these vesicles (as well as the apical localisation) indicates that KkvGFP is able to exit the ER. Indeed, our previous work demonstrated that when Kkv is retained in the ER, it does not localise apically or appear in vesicles (De Giorgio et al, 2023). In endodermal tissues, as described in our manuscript, KkvGFP did not exhibit polarised apical localisation and instead showed a diffuse pattern with some cortical enrichment. However, the presence of KkvGFP-containing vesicles still suggests that the protein is capable of exiting the ER also in these endodermal tissues.

      We observed a different subcellular pattern when we overexpressed Chs2GFP. In tissues where Chs2 is not normally expressed (e.g., trachea, salivary gland, embryonic gut), we did not detect apical or membrane accumulation (see Fig. 5,S5, S6 and response to point 4 of Reviewer #1). Nor did we observe accumulation of Chs2GFP in intracellular vesicles. Instead, Chs2GFP showed strong colocalisation with an ER marker (see Fig. 5,S5, S6 and response to point 4 of Reviewer #1). In contrast, when overexpressed in PR cells, we detected apical enrichment (Fig 5A-D, S5A,B). This indicates that despite massive expression levels, Chs2 can exit the ER in particular tissues.

      Taken together, our results strongly suggest that overexpressed Kkv can exit the ER in the different tissues analysed, whereas most Chs2GFP is retained in the ER in tissues other than PR cells. This correlates with the ability of overexpressed KkvGFP to polymerise chitin (either in intracellular puncta or deposited extracellularly depending on the presence of Exp/Reb) in all analysed tissues. Conversely, Chs2 was unable to polymerise chitin (either in intracellular puncta or extracellularly regardless of Exp/Reb presence) in tissues other than PR cells.

      Nevertheless, we acknowledge that we cannot definitively conclude that all Chs2 protein is entirely retained in the ER. We have included this caveat in our revised manuscript (Chapter 6 and Discussion section).

      Minor Comments: - No mention of Fig 3I in the results section and the order discussed in the results does not match the order in the figure.

      We apologise for these inconsistencies. We have addressed this issue in the text, figure legend, and the image order in Figure 3 and Figure S3.

      • In the results please provide some information on what the CRIMIC collection is and how it allows you to see Chs2 expression for non-experts.

      We have addressed this point in chapter 5 in the revised version, and we now provide a more detailed explanation of the CRIMIC Chs2CR60212-TG4.0 allele.

      Further details of this allele are also provided in our responses to points 5 and 9 of Reviewer 1.

      Reviewer #2 (Significance (Required)):

      Drosophila produce different types of chitinous structures that are required for either the exoskeleton of the animal or for proper gut function (peritrophic matrix). Additionally, most insects have two enzymes involved in the production of chitin and current data suggests that they have unique roles in producing either the exoskeleton or the peritrophic matrix. However, it is unclear whether their different functions are due to differences in cell type expression or differences in physiological activity of the enzymes. The authors exploit Drosophila to drive these 2 enzymes in different cell types that are known to produce the exoskeleton or the peritrophic matrix to determine whether they can functionally substitute mutant backgrounds. Their results give us a hint that these enzymes are not equivalent. What the authors were unable to address is why they are not equivalent. They hypothesise that the different physiological functions of the enzymes may be related to trafficking differences within their respective cell types. While this is an interesting hypothesis, the date are not really clear yet to make this conclusion.

      This work will be of interest to anyone interested in chitinous structures in insects and the cell biology of chitin-related enzymes.

      Literature


      AHMAD, M., CHAUDHARY, S. U., AFZAL, A. J. & TARIQ, M. 2015. Starvation-Induced Dietary Behaviour in Drosophila melanogaster Larvae and Adults. Sci Rep, 5__,__ 14285.

      DE GIORGIO, E., GIANNIOS, P., ESPINAS, M. L. & LLIMARGAS, M. 2023. A dynamic interplay between chitin synthase and the proteins Expansion/Rebuf reveals that chitin polymerisation and translocation are uncoupled in Drosophila. PLoS Biol, 21__,__ e3001978.

      FUSS, B. & HOCH, M. 1998. Drosophila endoderm development requires a novel homeobox gene which is a target of Wingless and Dpp signalling. Mech Dev, 79__,__ 83-97.

      FUSS, B., JOSTEN, F., FEIX, M. & HOCH, M. 2004. Cell movements controlled by the Notch signalling cascade during foregut development in Drosophila. Development, 131__,__ 1587-95.

      HEGEDUS, D. D., TOPRAK, U. & ERLANDSON, M. 2019. Peritrophic matrix formation. J Insect Physiol, 117__,__ 103898.

      KING, D. G. 1988. Cellular organization and peritrophic membrane formation in the cardia (proventriculus) of Drosophila melanogaster. J Morphol, 196__,__ 253-82.

      LEBRETON, G. & CASANOVA, J. 2016. Ligand-binding and constitutive FGF receptors in single Drosophila tracheal cells: Implications for the role of FGF in collective migration. Dev Dyn, 245__,__ 372-8.

      MOUSSIAN, B., LETIZIA, A., MARTINEZ-CORRALES, G., ROTSTEIN, B., CASALI, A. & LLIMARGAS, M. 2015. Deciphering the genetic programme triggering timely and spatially-regulated chitin deposition. PLoS Genet, 11__,__ e1004939.

      NAKAGOSHI, H., HOSHI, M., NABESHIMA, Y. & MATSUZAKI, F. 1998. A novel homeobox gene mediates the Dpp signal to establish functional specificity within target cells. Genes Dev, 12__,__ 2724-34.

      PETERS, W. 1992. Peritrophic Membranes, Springer Berlin, Heidelberg.

      RIZKI, M. T. M. 1956. The secretory activity of the proventriculus of Drosophila melanogaster. Journal of Experimental Zoology, 131__,__ 203-221.

      SANCHEZ, N. & RONCERO, C. 2022. Chitin Synthesis in Yeast: A Matter of Trafficking. Int J Mol Sci, 23.

      ZHU, H., LUDINGTON, W. B. & SPRADLING, A. C. 2024. Cellular and molecular organization of the Drosophila foregut. Proc Natl Acad Sci U S A, 121__,__ e2318760121.

    1. Author response:

      The following is the authors’ response to the original reviews

      Public reviews:

      Reviewer #1:

      The authors attempted to replicate previous work showing that counterconditioning leads to more persistent reduction of threat responses, relative to extinction. They also aimed to examine the neural mechanisms underlying counterconditioning and extinction. They achieved both of these aims and were able to provide some additional information, such as how counterconditioning impacts memory consolidation. Having a better understanding of which neural networks are engaged during counterconditioning may provide novel pharmacological targets to aid in therapies for traumatic memories. It will be interesting to follow up by examining the impact of varying amounts of time between acquisition and counterconditioning phases, to enhance replicability to real-world therapeutic settings.

      Major strengths

      · This paper is very well written and attempts to comprehensively assess multiple aspects of counterconditioning and extinction processes. For instance, the addition of memory retrieval tests is not core to the primary hypotheses but provides additional mechanistic information on how episodic memory is impacted by counterconditioning. This methodical approach is commonly seen in animal literature, but less so in human studies.

      · The Group x Cs-type x Phase repeated measure statistical tests with 'differentials' as outcome variables are quite complex, however, the authors have generally done a good job of teasing out significant F test findings with post hoc tests and presenting the data well visually. It is reassuring that there is a convergence between self-report data on arousal and valence and the pupil dilation response. Skin conductance is a notoriously challenging modality, so it is not too concerning that this was placed in the supplementary materials. Neural responses also occurred in logical regions with regard to reward learning.

      · Strong methodology with regards to neuroimaging analysis, and physiological measures.

      ·The authors are very clear on documenting where there were discrepancies from their pre-registration and providing valid rationales for why.

      We thank reviewer 1 for the positive feedback and for pointing out the strengths of our work. We agree that future research should investigate varying times between acquisition and counterconditioning to assess its success in real-life applications.

      Major Weaknesses

      (1) The statistics showing that counterconditioning prevents differential spontaneous recovery are the weakest p values of the paper (and using one-tailed tests, although this is valid due to directions being pre-hypothesized). This may be due to a relatively small number of participants and some variability in responses. It is difficult to see how many people were included in the final PDR and neuroimaging analyses, with exclusions not clearly documented. Based on Figure 3, there are relatively small numbers in the PDR analyses (n=14 and n=12 in counterconditioning and extinction, respectively). Of these, each group had 4 people with differential PDR results in the opposing direction to the group mean. This perhaps warrants mention as the reported effects may not hold in a subgroup of individuals, which could have clinical implications.

      General exclusion criteria are described on page 17. We have added more detailed information on the reasons for exclusion (see page 17). All exclusions were in line with pre-registered criteria. For the analysis, the reviewer is referring to (PDR analysis that investigated whether CC can prevent the spontaneous recovery of differential conditioned threat responses), 18 participants were excluded from this analysis: 2 participants did not show evidence for successful threat acquisition as was already indicated on page 17, and 16 participants were excluded due to (partially) missing data. We now explicitly mention the exclusion of the additional 16 participants on page 7 and have updated Figure 3 to improve visibility of the individual data points. Therefore, for this analysis both experimental groups consisted of 15 participants (total N=30).

      It is true that in both groups a few participants show the opposite pattern. Although this may also be due to measurement error, we agree that it is relevant to further investigate this in future studies with larger sample sizes. It will be crucial to identify who will respond to treatments based on the principles of standard extinction or counterconditioning. We have added this point in the discussion on page 14.

      Reviewer #2:

      Summary:

      The present study sets out to examine the impact of counterconditioning (CC) and extinction on conditioned threat responses in humans, particularly looking at neural mechanisms involved in threat memory suppression. By combining behavioral, physiological, and neuroimaging (fMRI) data, the authors aim to provide a clear picture of how CC might engage unique neural circuits and coding dynamics, potentially offering a more robust reduction in threat responses compared to traditional extinction.

      Strengths:

      One major strength of this work lies in its thoughtful and unique design - integrating subjective, physiological, and neuroimaging measures to capture the various aspects of counterconditioning (CC) in humans. Additionally, the study is centered on a well-motivated hypothesis and the findings have the potential to improve the current understanding of pathways associated with emotional and cognitive control. The data presentation is systematic, and the results on behavioral and physiological measures fit well with the hypothesized outcomes. The neuroimaging results also provide strong support for distinct neural mechanisms underlying CC versus extinction.

      We thank reviewer 2 for the feedback and for valuing the thoughtfulness that went into designing the study.

      Weaknesses:

      (1) Overall, this study is a well-conducted and thought-provoking investigation into counterconditioning, with strong potential to advance our understanding of threat modulation mechanisms. Two main weaknesses concern the scope and decisions regarding analysis choices. First, while the findings are solid, the topic of counterconditioning is relatively niche and may have limited appeal to a broader audience. Expanding the discussion to connect counterconditioning more explicitly to widely studied frameworks in emotional regulation or cognitive control would enhance the paper's accessibility and relevance to a wider range of readers. This broader framing could also underscore the generalizability and broader significance of the results. In addition, detailed steps in the statistical procedures and analysis parameters seem to be missing. This makes it challenging for readers to interpret the results in light of potential limitations given the data modality and/or analysis choices.

      In this updated version of the manuscript, we included the notion that extinction has been interpreted as a form of implicit emotion regulation. In addition to our discussion on active coping (avoidance), we believe that our discussion has an important link to the more general framework of emotion regulation, while remaining within the scope of relevance. Please see pages 14 and 15 for the changes. In addition to being informative to theories of emotion regulation, our findings are also highly relevant for forms of psychotherapy that build on principles of counterconditioning (e.g. the use of positive reinforcement in cognitive behavioral therapy), as we point out in the introduction. We believe this relevance shows that counterconditioning is more than a niche topic. In line with the recommendation from reviewer 2, we added more details and explanations to the statistical procedures and analyses where needed (see responses to recommendations).

      Reviewer #3:

      Summary:

      In this manuscript, Wirz et al use neuroimaging (fMRI) to show that counterconditioning produces a longer lasting reduction in fear conditioning relative to extinction and appears to rely on the nucleus accumbens rather than the ventromedial prefrontal cortex. These important findings are supported by convincing evidence and will be of interest to researchers across multiple subfields, including neuroscientists, cognitive theory researchers, and clinicians.

      In large part, the authors achieved their aims of giving a qualitative assessment of the behavioural mechanisms of counterconditioning versus extinction, as well as investigating the brain mechanisms. The results support their conclusions and give interesting insights into the psychological and neurobiological mechanisms of the processes that underlie the unlearning, or counteracting, of threat conditioning.

      Strengths:

      · Mostly clearly written with interesting psychological insights

      · Excellent behavioural design, well-controlled and tests for a number of different psychological phenomena (e.g. extinction, recovery, reinstatement, etc).

      · Very interesting results regarding the neural mechanisms of each process.

      · Good acknowledgement of the limitations of the study.

      We thank reviewer 3 for the detailed feedback and suggestions.

      Weaknesses:

      (1) I think the acquisition data belongs in the main figure, so the reader can discern whether or not there are directional differences prior to CC and extinction training that could account for the differences observed. This is particularly important for the valence data which appears to differ at baseline (supplemental figure 2C).

      Since our design is quite complex with a lot of results, we left the fear acquisition results as a successful manipulation check in the Supplementary Information to not overload the reader with information that is not the main focus of this manuscript. If the editor would like us to add the figure to the main text, we are happy to do so. During fear acquisition, both experimental groups showed comparable differential conditioned threat responses as measured by PDRs and SCRs. Subjective valence ratings indeed differed depending on CS category. Importantly, however, the groups only differed with respect to their rating to the CS- category, but not the CS+ category, which suggests that the strength of the acquired fear is similar between the groups. To make sure that these baseline differences cannot account for the differences in valence after CC/Ext, we ran an additional group comparison with differential valence ratings after fear acquisition added as a covariate. Results show that despite the baseline difference, the group difference in valence after CC/Ext is still significant (main effect Group: F<sub>(1,43)</sub>=7.364, p=0.010, η<sup>2</sup>=0.146). We have added this analysis to the manuscript (see page 7).

      (2) I was confused in several sections about the chronology of what was done and when. For instance, it appears that individuals went through re-extinction, but this is just called extinction in places.

      We understand that the complexity of the design may require a clearer description. We therefore made some changes throughout the manuscript to improve understanding. Figure 1 is very helpful in understanding the design and we therefore refer to that figure more regularly (see pages 6-7). We also added the time between tasks where appropriate (e.g. see page 7). Re-extinction after reinstatement was indeed mentioned once in the manuscript. Given that the reinstatement procedure was not successful (see page 9), we could not investigate re-extinction and it is therefore indeed not relevant to explicitly mention and may cause confusion. We therefore removed it (see page 12).

      (3) I was also confused about the data in Figure 3. It appears that the CC group maintained differential pupil dilation during CC, whereas extinction participants didn't, and the authors suggest that this is indicative of the anticipation of reward. Do reward-associated cues typically cause pupil dilation? Is this a general arousal response? If so, does this mean that the CSs become equally arousing over time for the CC group whereas the opposite occurs for the extinction group (i.e. Figure 3, bottom graphs)? It is then further confusing as to why the CC group lose differential responding on the spontaneous recovery test. I'm not sure this was adequately addressed.

      Indeed, reward and reward anticipation also evoke an increase in pupil dilation. This was an important reason for including a separate valence-specific response characterization task. Independently from the conditioning task, this task revealed that both threat and reward-anticipation induced strong arousal-related PDRs and SCRs. This was also reflected in the explicit arousal ratings, which were stronger for both the shock-reinforced (negative valence) and reward-reinforced (positive valence) stimuli. Therefore, it is not surprising that reward anticipation leads to stronger PDRs for CS+ (which predict reward) compared to CS- stimuli (which do not predict reward) during CC, but is reduced during extinction due to a decrease in shock anticipation. During the spontaneous recovery test, a return of stronger PDRs for CS+ compared to CS- stimuli in the standard extinction group can only reflect a return of shock anticipation. Importantly, the CC group received no rewards during the spontaneous recovery task and was aware of this, so it is to be expected that the effect is weakened in the CC group. However, CS+ and CS- items were still rated of similar valence and PDRs did not differ between CS+ and CS- items in the CC group, whereas the Ext group rated the CS+ significantly more negative and threat responses to the CS+ did return. It therefore is reasonable to conclude that associating the CS+ with reward helps to prevent a return of threat responses. We have added some clarifications and conclusions to this section on page 8.

      (4) I am not sure that the memories tested were truly episodic

      In line with previous publications from Dunsmoor et al.[1-4], our task allows for the investigation of memory for elements of a specific episode. In the example of our task, retrieval of a picture probes retrieval of the specific episode, in which the picture was presented. In contrast, fear retrieval relies on the retrieval of the category-threat association, which does not rely on retrieval of these specific episodic elements, but could be semantic in nature, as retrieval takes place at a conceptual level. We have added a small note on what we mean with episodic in this context on page 4. We do agree that we cannot investigate other aspects of episodic memories here, such as context, as this was not manipulated in this experiment.

      (5) Twice as many female participants than males

      It is indeed unfortunate that there is no equal distribution between female and male participants. Investigating sex differences was not the goal of this study, but we do hope that future studies with the appropriate sample sizes are able to investigate this specifically. We have added this to the limitations of this study on page 17.

      (6) No explanation as to why shocks were varied in intensity and how (pseudo-randomly?)

      The shock determination procedure is explained on pages 18-19 (Peripheral stimulation). As is common in fear conditioning studies in humans (see references), an ascending staircase procedure was used. The goal of this procedure is to try and equalize the subjective experience of the electrical shocks to be “maximally uncomfortable but not painful”.

      Recommendations for the authors:

      Reviewer #1:

      Very well written. No additional comments

      We thank reviewer 1 for valuing our original manuscript version. To further improve the manuscript, we adapted the current version based on the reviewer’s public review (see response to reviewer #1 public review comment 1).

      Reviewer #2:

      (1) I feel that more justification/explanation is needed on why other regions highly relevant to different aspects of counterconditioning (e.g., threat, memory, reward processing) were not included in the analyses.

      We first performed whole-brain analyses to get a general idea of the different neural mechanisms of CC compared to Ext. Clusters revealing significant group differences were then further investigated by means of preregistered ROI analyses. We included regions that have previously been shown to be most relevant for affective processing/threat responding (amygdala), memory (hippocampus), reward processing (NAcc) and regular extinction (vmPFC). We restricted our analyses to these most relevant ROIs as preregistered to prevent inflated or false-positive findings[5]. Beyond these preregistered ROIs, we applied appropriate whole-brain FEW corrections. The activated regions are listed in Supplementary Table 1 and include additional regions that were expected, such as the ACC and insula.

      (2) Were there observed differences across participants in the experiment? Any information on variance in the data such as how individual differences might influence these findings would provide a richer understanding of counterconditioning and increase the depth of interpretation for a broad readership.

      We agree that investigating individual differences is crucial to gain a better understanding of treatment efficacy in the framework of personalized medicine. Specifically, future research should aim to identify factors that help predict which treatment will be most effective for a particular patient. The results of this study provide a good basis for this, as we could show that the vmPFC in contrast to regular extinction, is not required in CC to improve the retention of safety memory. Therefore, this provides a viable option for patients who are not responding to treatments that rely on the vmPFC. In addition, as noted by Reviewer 1, in both groups a few participants show the opposite pattern (see Figure 3). It will be crucial to identify who will respond to treatments based on the principles of standard extinction or counterconditioning. We have added this point in the discussion on page 14.

      (3) While most figures are informative and clear, Figure 3 would benefit from detailed axis labels and a more descriptive caption. Currently, it is challenging to navigate the results presented to support the findings related to differential PDRs. A supplementary figure consolidating key patterns across conditions might also further facilitate understanding of this rather complicated result.

      We have made some changes to the figure to improve readability and understanding. Specifically, we changed the figure caption to “Change from last 2 trials CC/Ext to first 2 trials Spontaneous recovery test”, to give more details on what exactly is shown here. We also simplified the x-axis labels to “counterconditioning”, “recovery test” and “extinction”. With the addition of a clearer figure description, we hope to have improved understanding and do not think that another supplemental figure is needed.

      (4) Additional details on the statistical tests are needed. For example, please clarify whether p-values reported were corrected across all experimental conditions. Also, it would be helpful for the authors to discuss why for example repeated measures ANOVA or mixed-effects conditions were not used in this study. Might those tests not capture variance across participants' PDRs and SCRs over time better?

      We added that significant interactions were followed by Bonferroni-adjusted post-hoc tests where applicable (see page 21). We have used repeated measures ANOVAs to capture early versus late phases of acquisition and CC/extinction, as well as to compare late CC/extinction (last 2 trials) compared to early spontaneous recovery (first 2 trials) as is often done in the literature. A trial-level factor in a small sample would cost too many degrees of freedom and is not expected to provide more information. We have added this information and our reasoning to the methods section on page 21.

      Reviewer #3:

      (1) Suggest putting acquisition data into the main figures. In fact many of the supplemental figures could be integrated into the main figures in my opinion.

      See response to reviewer #3 public review comment 1.

      (2) Include explanations for why shock intensity was varied

      See response to reviewer #3 public review comment 6.

      (3) Include a better explanation for the change in differential responding from training to spontaneous recovery in the CC group (I think the loss of such responding in extinction makes more sense and is supported by the notion of spontaneous recovery, but I'm not sure about the loss in the CC group. There is some evidence from the rodent literature - which I am most familiar with - regarding a loss in contextual gradient across time which could account for some loss in specificity, could it be something like this?).

      See response to reviewer #3 public review comment 3.

      If we understand the reviewer correctly in that the we see a loss of differential responding due to a generalization to the CS-, this would imply an increase in responding to the CS-, which is not what we see. Our data should therefore be correctly interpreted as a loss of the specific response to the CS+ from the CC phase to the recovery test. Therefore, there is no spontaneous recovery in the CC group, and also not a non-specific recovery. To clarify this we relabeled Figure 3 by indicating “recovery test” instead of “spontaneous recovery”.

      (4) Is there a possibility that baseline differences, particularly that in Supplemental Figure 2C, could account for later differences? If differences persist after some transformation (e.g. percentage of baseline responding) this would be convincing to suggest that it doesn't.

      See response to reviewer #3 public review comment 1.

      (5) As I mentioned, I got confused by the chronology as I read through. Maybe mention early on when reporting the spontaneous recovery results that testing occurred the next day and that participants were undergoing re-extinction when talking about it for the second time.

      See response to reviewer #3 public review comment 2.

      (6) Page 8 - I was confused as to why it is surprising that the CC group were more aroused than the extinction group, the latter have not had CSs paired with anything with any valence, so doesn't this make sense? Or perhaps I am misunderstanding the results - here in text the authors refer back to Figure 2B, but I'm not sure if this is showing data from the spontaneous recovery test or from CC/extinction. If it is the latter, as the caption suggests, why are the authors referring to it here?

      Participants in the CC group showed increased differential self-reported arousal after CC, whereas arousal ratings did not differ between CS+ and CS- items after extinction. We interpret this in line with the valence and PDR results as an indication of reward-induced arousal. At the start of the next day, however, participants from the CC and extinction groups gave comparable ratings. It may therefore be surprising why participants in the CC group do not still show stronger ratings since nothing happened between these two ratings besides a night’s sleep (see design overview in Figure 1A). We removed the “suprisingly” to prevent any confusion.

      (7) I suggest that the authors comment on whether there were any gender differences in their results.

      See response to reviewer #3 public review comment 5.

      (8) The study makes several claims about episodic memory, but how can the authors be sure that the memories they are tapping into are episodic? Episodic has a very specific meaning - a biographical, contextually-based memory, whereas the information being encoded here could be semantic. Perhaps a bit of clarification around this issue could be helpful.

      See response to reviewer #3 public review comment 4.

      References

      (1) Dunsmoor, J. E. & Kroes, M. C. W. Episodic memory and Pavlovian conditioning: ships passing in the night. Curr Opin Behav Sci 26, 32-39 (2019). https://doi.org/10.1016/j.cobeha.2018.09.019

      (2) Dunsmoor, J. E. et al. Event segmentation protects emotional memories from competing experiences encoded close in time. Nature Human Behaviour 2, 291-299 (2018). https://doi.org/10.1038/s41562-018-0317-4

      (3) Dunsmoor, J. E., Murty, V. P., Clewett, D., Phelps, E. A. & Davachi, L. Tag and capture: how salient experiences target and rescue nearby events in memory. Trends Cogn Sci 26, 782-795 (2022). https://doi.org/10.1016/j.tics.2022.06.009

      (4) Dunsmoor, J. E., Murty, V. P., Davachi, L. & Phelps, E. A. Emotional learning selectively and retroactively strengthens memories for related events. Nature 520, 345-348 (2015). https://doi.org/10.1038/nature14106

      (5) Gentili, C., Cecchetti, L., Handjaras, G., Lettieri, G. & Cristea, I. A. The case for preregistering all region of interest (ROI) analyses in neuroimaging research. Eur J Neurosci 53, 357-361 (2021). https://doi.org/10.1111/ejn.14954

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Dear Editor,

      Thank you for reviewing our article. We are happy to see that the reviewers are positive on our manuscript. We have tried to address nearly all their comments. Find below a point-by-point answer.

      With best regards,

      Bruno Lemaitre and Asya Dolgikh

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      This work defines NimB1 protein as a PS binding bridging molecule but with a negative regulatory role in efferocytosis. Specifically, the authors demonstrate via a variety of genetic, cell biological, and other approaches that loss of NimB1 leads to Drosophila macrophages being more adherent to apoptotic targets and engulf them more robustly. The authors also nicely demonstrate that the function of NimB1 differs from NimB4, and the double mutant demonstrating PS-binding yet, distinct roles. Further, the authors show that NimB1 does not affect bacterial phagocytosis.

      Overall, this is a well-done study. The authors have already done a very thorough job addressing the key points and I congratulate the authors.

      My only minor comment is that the authors could try to make the comment better about whether or not such a 'negative regulatory' bridging molecules may exist in other species, and particularly mammals. If so, this is quite novel. The authors refer to CD47 but this is a membrane protein. The other minor comment is whether the authors ever tried express the PS binding domains as a fusion protein - this would provide a more direct evidence for the binding to PS (although the authors do competitive inhibition with Annexin V). This could be commented upon although testing this is not necessary if they have not already done so.

      We greatly appreciate the reviewer’s positive feedback. In the revised manuscript, we have now included a more detailed discussion of mammalian proteins with analogous roles, specifically referencing Draper isoforms (I and II), the CD300 receptor family, and surfactant proteins A and B (see page 16).

      Reviewer #1 (Significance (Required)):

      The identification of the negative regulator bridging protein NimB1 is novel and could be broadly interesting to those studying efferocytosis.

      Regarding the suggestion to overexpress just the putative PS-binding domain of NimB1, we agree this could strengthen the evidence for its PS-binding function. However, generating a new transgenic fly line would require significant additional time. Moreover, the presence of a PS-binding motif was also proposed in the recent study on Orion (Ji et al., 2023), which we have cited in our manuscript. The Orion binds PS through a conserved RRY motif. This motif is critical for Orion’s ability to directly interact with PS and facilitate its secretion. Mutagenesis experiments disrupting the RRY motif—specifically substituting arginine residues with alanines—abolished Orion’s PS-binding capacity, demonstrating the essential role of this sequence. Functional assays also validated that Orion competes with Annexin V, a well-established PS-binding protein, for access to PS-exposing surfaces (Ji et al., 2023).

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      Summary:

      In this study, Dolgikh and colleagues propose a first investigation about the role of the drosophila Nimrod protein NimB1. Although the role of several members of the family in phagocytosis has been explored, the function of Nimrod type B proteins is less addressed. Within silico analysis, they first see a strong similarity between NimB1 and NimB4. They show that NimB1 is primarily expressed in phagocytes, and as NimB4 can bind phosphatidylserines (PS), leading to a possible shared role in efferocytosis. Using transgenic and null drosophila models, the authors then compare the impact of NimB1 overexpression or deficiency. They compare the effects shown to NimB4 and Draper deficient lines, as these two proteins were previously shown to play a role in efferocytosis. They propose that NimB1 is a secreted protein that binds apoptotic cells. They show that NimB1 deficiency changes the adhesion properties of macrophages. The major finding is that NimB1 delays the early stages of efferocytosis, contrary to NimB4 and Draper that on the contrary facilitate efferocytosis. In contrast, the authors propose that NimB1 increases the formation of phagosomes.

      We appreciate the reviewer’s acknowledgment that our key discovery centered around NimB1 functioning as a negative regulator of efferocytosis. This finding highlights NimB1’s distinct role compared to NimB4 and Draper, which instead promote the process.

      Major comments:

      One of the major technical challenges here was to generate models to allow the detection of the protein in cellulo and in vivo. Although the results are convincing in transgenic lines NimB1 expression is driven by the endogenous promoter, one could still argue that the GFP tags would lead to changes in the localization of the protein.

      We understand the concern regarding potential localization changes introduced by GFP tags. However, in previous studies, the same fosmid construct was applied to NimB4-sGFP, and produced a distinctly different expression pattern—NimB4-sGFP expression was more pronounced and clearly present in the glial cells in the brain (Petrignani et al, 2021: Figure EV1A). The fact that the NimB1-sGFP and NimB4-sGFP fosmids localized to different tissues suggests that possible any mis-localization changes due to the GFP tag do not override localization properties intrinsic to the proteins.

      In line with the previous comment, to show that NimB1 is a secreted protein, the authors use an overexpression model. How to be sure, that overexpression itself does not lead to increased secretion, or shedding from the membrane?

      The observation that uas-NimB1-RFP accumulates in the nephrocytes upon Lpp-Gal4 (fat body) expression, and the presence of a signal peptide suggests that this protein can be secreted.

      We cannot exclude that in endogenous condition, NimB1, remains attached to hemocytes. We have confirmed that the Lpp driver is not expressed in nephrocytes.

      Would an experiment with a control consisting in a known protein secreted by macrophages lead to the same staining pattern (positive control)? Could another methodology like a Western Blot on supernatants from hemocyte cell culture (over)expressing NimB1, with an anti-RFP staining, be envisaged?

      We have already performed similar experiment with other secreted proteins such as NimB4-GFP (Petrignani et al., 2021: Figure: 1B). In the revised article, we have added Viking-RFP as a positive control of a secreted protein (Figure S1F). Figure S2 shows a Western blot with hemolymph extract. We detected NimB1-RFP at its expected molecular weight of 44 kDa, verifying that is present into the hemolymph (Supplementary Document S2 C).

      It sems counterintuitive that phagocytes from Draper and NimB4 null mutants with defects in efferocytosis show increased load of apoptotic cells (Figure 6C and D in both unchallenged and injury condition). Do the authors have precedent data to cite going to the same direction? Are cell debris engulfed but not degraded efficiently?

      The observation that Draper and NimB4 null mutants have an increased load of apoptotic cells has already been reported in the literature. Several studies have now shown that Draper is not always required for the initial uptake of apoptotic corpses but is critical for phagosome maturation (Meehan et al., 2016; Serizier et al., 2022; Serizier & McCall, 2017). In our article on NimB4 (Petrignani et al., 2021), we have previously shown that the accumulation of immature phagosomes that are not properly eliminated indirectly impairs the uptake of new apoptotic corpses. This explains why efferocytosis is then impaired only at late time points, when unresolved phagosomes have accumulated to the threshold that prevents further phagocytosis.

      In Figure 6D it seems indeed that NimB4, NimB1/NimB4 and Draper mutants do not accumulate more apoptotic material upon injury. However, levels for NimB4 is close to the one obtained with NimB1 mutants. Is it statistically true? If yes, what could be the reason for this similarity? In any case, as some important conclusion relies on the comparison between UC and injury conditions, adequate statistics and representations could be proposed.

      We thank the reviewer for this pertinent observation and the opportunity to clarify. In the unchallenged (UC) condition, NimB4sk2 and draperΔ5 mutants indeed exhibit significantly elevated levels of apoptotic cell (AC) content in macrophages compared to wild-type and NimB1 mutant genotypes (****p crimic and NimB1229/NimB1crimic* mutants show significantly lower levels in the UC condition, consistent with a role for NimB1 in early recognition or regulation of phagocytic initiation, not in corpse degradation.

      In contrast, upon injury (90 minutes post-challenge) we observe a statistically significant increase in apoptotic material in NimB1 mutants compared to UC hemocytes of the same genotype (****p sk2 and draperΔ5* mutants between the UC and 90 min conditions (ns for NimB4). This is consistent with their known defect in corpse degradation, which results in saturation of phagocytic capacity at baseline, and an inability to respond further upon challenge with apoptotic cells.

      While the absolute levels of apoptotic material in injured NimB1 and UC NimB4 mutants appear similar at first glance, statistical testing confirms that they are significantly different. NimB4 mutant macrophages retain apoptotic debris due to defective degradation, whereas NimB1 mutants have an increase in newly acquired apoptotic content due to enhanced uptake.

      Additionally, NimB161, NimB4sk2 double mutants display a partial increase in apoptotic load upon injury (****p To directly address the reviewer’s suggestion, we have now recalculated and visualized key comparisons with appropriate statistical testing, as shown in Revision Figure 1. All statistical analyses were conducted using unpaired two-tailed Student’s t-tests. This additional figure allows clearer evaluation of genotype-specific differences at both baseline and post-injury conditions and supports our conclusions that NimB1 and NimB4 regulate distinct stages of phagocytosis. We have also clarified the text to better explain that both NimB4 and Draper mutants accumulate unresolved apoptotic material under baseline conditions, and do not accumulate further material upon challenge, due to a block in phagosome maturation.

      Revisions Figure 1.

      __Quantification of phagocytic events in wild-type and mutant macrophages under unchallenged and post-injury conditions __

      (A) Comparison of phagocytic events per frame in w1118 (wild-type), NimB1crimic, NimB1229/NimB1crimic, NimB4sk2, NimB161,NimB4 sk2, and draperΔ5 larvae under unchallenged conditions (UC) and 90 minutes after injury (90 min). Data are presented as individual data points with means. Statistical significance was determined using Student's t-test (*P (B) Direct comparison of phagocytic events between NimB1crimic (red) and NimB4sk2 (gray), and between NimB1229/crimic (dark red) and NimB4sk2 (gray) under both unchallenged (UC) and post-injury (90 min) conditions.

      The authors claim with analyses of Figure 8C and D, that NimB1 mutants show acidic vehicles normal in size and fluorescence intensity. However, statistical differences are still observed compared to control condition, which is also seen in representative images shown.

      In Figure 8C and D, we provide two quantitative measures to clarify the size and intensity of acidic vesicles. First, we show that mean fluorescence in hemocytes is elevated for all NimB and draper mutants compared to wild type, indicating an overall increase in internalized material. However, we also quantified the number of vesicles per hemocyte and found that NimB1 mutants exhibit significantly more vesicles. Despite this increase, the representative images do not show an obvious enlargement of individual vesicles, suggesting that while more material is being taken up, the vesicles themselves are not enlarged. The enlarged vesicles in case of NimB4 or draper mutant would result from the unresolved cargo (Petrignani et al., 2021). This distinction underscores that higher fluorescence values reflect increased cargo internalization, rather than the larger vesicular structures that result from impaired degradation as in NimB4 or draper mutants.

      Minor comments:

      In figure 2D, what allows to say the expression is restricted in macrophages? Is it the colocalization with SIMU being a macrophage-specific marker?

      In Figure 2D, we relied on SIMU as a macrophage-specific marker in Drosophila embryos to determine that NimB1 expression is restricted to macrophages. Previous research has demonstrated that SIMU is predominantly expressed in embryonic macrophages (where it is essential for apoptotic cell clearance) (Kurant et al., 2008; Roddie et al., 2019). Consequently, the colocalization of NimB1 signal with SIMU-positive cells strongly indicates that NimB1 is confined to macrophages during this developmental stage.

      In figure S3B and C, it appears that double NimB1/NimB4 mutants exhibit less spreading than single ones (especially NimB4). Is it the case (statistical significance). If yes what could be the explanation?

      Yes, the double NimB1, NimB4 mutants exhibit higher number of hemocytes and significantly reduced cell spreading compared to single mutants. The phenotype is similar to NimC1, eater double mutants (Melcarne et al., 2019) which also show higher number of hemocytes, reduced cell spreading and also diminished capacity to phagocytose apoptotic cells (and, in the case of NimC1, Eater, bacteria as well) (Melcarne et al., 2019). A likely explanation lies in impaired membrane remodeling critical for pseudopod extension and phagosome formation. Studies have shown that defects in actin polymerization or membrane tension can hinder pseudopod extension, reducing phagocytic efficiency (Lee et al., 2007; Masters et al., 2013). Same for the decreased ability of these mutants to form filopodium, a process essential for effective target engagement and engulfment. Filopodia play a significant role in capturing particles and directing them toward the macrophage body for engulfment (Horsthemke et al., 2017). Disruptions in these pathways lead to reduced phagocytic efficiency and a more rounded macrophage morphology, as the cells fail to spread properly (Horsthemke et al., 2017; Lillico et al., 2018). Other than these general observations, we do not have an explanation as to why NimB1, NimB4 double mutants specifically show a higher number of hemocytes and reduced cell spreading.

      Several graphs are identical between figure 4 and S4. It is probably not useful and complicates reading.

      We agree that duplicating these graphs complicates the presentation. Therefore, we have removed the redundant graphs in the supplementary materials, ensuring the data are shown only once to maintain clarity and ease of reading

      As TEM images shown in Figure 8B do not lead to quantitative data, I would put it as supplementary file.

      We agree that the TEM images in Figure 8B do not provide strictly quantitative data. To streamline the main manuscript, we have relocated these images to the supplementary section in the revised version

      Reviewer #2 (Significance (Required)):

      This study uses several approaches and models to address the role of NimB1 in efferocytosis. Both In Vitro and In Vivo approaches are proposed. They give insight into the role of this protein with unknown function so far. Some statistical analysis could be performed to improve the clarity of conclusions. One of the important aspects is the secreted nature of NimB1.However, additional approaches could be proposed to confirm this.

      Basic immunologists and cell biologists would be interested in reading this article that highlights the delicate equilibrium between pro and anti-efferocytosis molecules.

      I am an immunologist/cell biologist with expertise in lysosomal catabolism. As I work on mouse models or Human samples, my mastering of drosophila as a model is limited.

      We thank the reviewer for the positive evaluation of our work. In this revision, we have added further detail to clarify the properties of NimB1 as a secreted protein and strengthen our data presentation. By providing additional clarity on methods and interpretations, we hope immunologists and cell biologists—including those who do not routinely work with Drosophila—will find our findings more accessible.

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      This paper investigates the role of NimB1, a secreted member of the Nimrod family in Drosophila, in the process of efferocytosis, the clearance of apoptotic cells by macrophages. Previous studies have identified NimB4, another secreted Nimrod protein, as a positive regulator of efferocytosis, enhancing both apoptotic cell binding and phagosome maturation. In contrast, the authors propose that NimB1 functions as a negative regulator, slowing down the early stages of apoptotic cell binding and internalization. This regulatory balance is suggested to fine-tune efferocytosis to maintain homeostasis.

      The primary aim of this study was to characterize the function of NimB1 to better understand the roles of proteins within the NimB family.

      This study identifies a novel function for NimB1 in modulating the early stages of efferocytosis, adding to our understanding of how Nimrod proteins fine-tune apoptotic cell clearance. The authors establish a clear phenotypic contrast between NimB1 and NimB4, which provides a compelling framework for understanding how positive and negative regulators coordinate phagocytosis. It also highlights the multiple roles of the secreted members of the Nimrod scavenger receptor family, which have remained so far poorly investigated.

      This is an interesting study that could be strengthened by additional validation and broader experimental support. As the authors point out in the discussion, it is known that PS bridging molecules contribute to phagocytosis and that the contribution of positive and negative players finely tune phagocytosis in flies and mammals. Clarifying the mode of action of NimB1 in those processes would higher the impact of this interesting piece of work. For example, does NimB1 interact with NimB4 and if so, what is the role of this interaction? How does NimB1 integrate in the signaling cascade that allows scavenger receptors to bind PS? Does it act similar to Orion by enhancing the PS binding of a scavenger receptor?

      Key Findings • NimB1 and NimB4 are structurally similar, as supported by AlphaFold2 modeling, suggesting functional relatedness. • NimB1 is expressed in macrophages, secreted into the hemolymph, and binds apoptotic cells in a phosphatidylserine (PS)-dependent manner. • NimB1 is induced by challenge. • NimB1 mutants display a hyper-phagocytic phenotype, with faster recognition and internalization of apoptotic cells. • NimB1 loss enhances macrophage adhesion and actin remodeling, while bacterial phagocytosis remains unaffected, suggesting a specific role in apoptotic clearance. • NimB1 acts early in the phagocytic process, while NimB4 functions at later stages, particularly in phagosome maturation.

      We thank the reviewer for their positive assessment and are pleased that our findings identify NimB1 as a novel secreted negative regulator of efferocytosis, underscoring a greater level of regulatory complexity in apoptotic cell clearance.

      Unfortunately, attempts to produce functional NimB1 protein were not successful, limiting our ability to address some of the reviewer’s suggestions experimentally. Despite these challenges, the evidence we present—particularly from our genetic assays—clearly indicates that NimB1 exerts an inhibitory influence during the early steps of apoptotic cell binding, distinguishing it from the late-stage promoting function of NimB4.

      Major comments:

      Figure 1: AlphaFold is a valuable tool for generating hypotheses, however predicted structures should not be presented as definitive evidence of similarity, particularly without complementary experimental validation. This section would be stronger if the structural predictions were explicitly framed as predictions. In the absence of such data, the interpretation should be toned down.

      We agree with the reviewer and we have now framed our observation as prediction and toned down our interpretation. We also note that the similarities between NimB4 and NimB1 are also underlined by the phylogenetic analysis and expression pattern.

      Figure 2DE: Given its basal level in homeostatic conditions, it would have been useful to look at the NimB1-GFP upon challenge. Also, the authors show only a single larval macrophage with no comparison point. To strengthen this result, the authors could include another protein quantification method, such as western blotting. Alternatively, labelling of NimB1>UASmRFP in embryo that present the highest expression levels would also strengthen this result.

      Unfortunately, we cannot currently perform additional experiments on embryos within the scope of this project because those experiments were performed by our collaborators in Haifa (Estee Kurant Lab). Repeating them would require sending the lines to their lab and accommodating their experimental schedule and manpower constraints.

      In supplementary Figure S1F: the authors overexpress NimB1-RFP using the fat body driver Lpp-Gal4 and show larvae with RFP in the nephrocyte. Could filet preparations be shown? Could the authors present evidence that the Lpp driver is not expressed in the nephrocytes (or refer to literature)?

      The Lpp-Gal80 driver is described as fat body-specific and has been used to manipulate gene expression in the fat body in many other studies. We have checked Lpp-Gal80>UAS-GFP expression in larvae and did not observe expression in larval nephrocytes. The whole live larvae were observed under the microscope with no prior filet preparations. To provide the evidence that Lpp is not expressed in the nephrocytes we are providing the images of the whole larvae expressing GPF from the Lpp, as per genotype: Lgg-Gal80>UAS-GFP (see below, Revisions Figure 2).


      Revisions Figure 2.

      __Expression pattern of Lpp-Gal80>UAS-GFP in Drosophila larvae __

      Representative fluorescence microscopy images showing GFP expression driven by the Lpp-Gal80 system in Drosophila larvae. The images display dorsal (top) and ventral (bottom) views of the same larva, demonstrating the pattern of expression throughout the fat body tissue. Green fluorescence indicates cells expressing the GFP reporter under the control of the Lpp promoter, which is predominantly active in the larval fat body.

      The results on the increased number of hemocytes observed in the double NimB1, NimB4 mutant animals (Figure S3A) remains not only disconnected from the rest of the data but also unexplained. Providing a mechanistic view may require a significant amount of work that may indicate an additional role of the two NimBs but will not add to our understanding of the role of NimB1 in phagocytosis. Nevertheless, it would be at least useful to know whether in the double mutant the lymph gland is still intact, as its precocious histolysis could account for the elevated number of hemocytes. If that were the case, that could indicate that lacking the two NimBs triggers an inflammatory state that affects the lymph gland, meaning that the pathway controlling phagocytosis also has a systemic impact on development. When checking the representative Figure S4D, it seems that very large cells are present in the double mutants, even larger than in the single mutants. These could be (pre)lamellocytes, which constitute activated hemocytes, known to impact the status of the lymph gland. If the enhanced number of hemocytes does not depend on lymph gland histolysis, a simple immunolabeling with the anti-PH3 antibody would assess the proliferative phenotype of the double mutant hemocytes. At least this piece of data would provide a better explanation for the observed phenotype.

      We thank the reviewer for this interesting comment. We cannot explain why NimB1, NimB4 double mutants have more hemocytes. It is unclear to us if this is a secondary consequence of defects in efferocytosis or linked to another function of these two NimBs, such as a role in adhesion. We did look at the lymph gland and our preliminary observations suggest that NimB1, NimB4 double mutants have an easily ruptured or fragile lymph gland, which could explain the higher number and the roundish shape of hemocytes in circulation as proposed by the reviewer. Lacking expertise on lymph gland, we prefer not to include this data, as they are not central to the main message of this article on role of NimB1 on efferocytosis. We have also noted the presence of lamellocytes in unchallenged NimB1, NimB4 double mutant larvae, as well as excessive lamellocyte production compared to controls upon clean injury (see below, Revisions Figure 3). We have mentioned the presence of lamellocytes in NimB1, NimB4 double mutants in the revised version. We prefer not include this new data directly in the article because this not central to the main message of the article.


      __Revisions Figure 3. __

      A.

      B.

      Lamellocyte recruitment following a clean injury in L3 Drosophila larvae:

      (A) Quantification of lamellocytes per 50 frames of x63 microscopy lens in w1118 (wild-type), NimB1crimic, NimB4sk2, NimB161, NimB4sk2, and draperΔ5 larvae under unchallenged conditions (UC) and 3 hours after clean injury (3h). Arrowheads indicate lamellocytes.

      (B) Representative confocal microscopy images of hemocytes isolated from challenged NimB161, NimB4sk2 larvae. Cells were fixed and stained with Phalloidin (green) to label F-actin and DAPI (blue) to visualize nuclei. The smaller inset (40x magnification) shows a detailed view of individual lamellocytes with characteristic morphology, while the larger field (20x magnification) displays the overall view on the hemocytes. Scale bar = 50 μm.

      Figure 6: The connection between the ex-vivo (Figure 5) and in vivo (Figure 6) assays should be clarified. In the first type of assay, the lack of NimB4 results in reduced internalization (while lack of NimB1 enhances it). In the in vivo assay, more fragments are seen within the cell (hence internalized), using the NimB4 mutant. Also, in the ex-vivo assay, the lack of NimB1 does not affect the first steps ('attachment' and 'membrane'), while NimB4 does, yet it is proposed that NimB1 acts in the early steps (page 11-12). In that case, wouldn't we expect the double mutant NimB1 NmB4 to have the NimB1 phenotype?

      The apparent discrepancy between our ex vivo and in vivo assays reflects the different methodologies and what each assay measures. In the ex vivo assay (Figure 4), we add exogenous fluorescently-labeled apoptotic cells to measure new engulfment events. Here, NimB4 mutant macrophages show reduced phagocytic index because they are already saturated with unresolved phagosomes, limiting their capacity to uptake additional corpses, as previously described by (Petrignani et al., 2021). This reduced uptake capacity is reflected in the decreased phagocytic index observed.

      In contrast, our in vivo assay (Figure 6) uses DAPI staining to visualize all internalized material, including previously engulfed debris. As expected, we observe accumulation of DAPI signals in NimB4 mutant macrophages under unchallenged conditions, reflecting their inability to process and clear phagosomes rather than enhanced engulfment. This phenotype highlights the role of NimB4 in phagosome maturation rather than initial uptake.

      Regarding the role of NimB1 in early phagocytic steps, while attachment and membrane measurements in the ex vivo assay don't show significant differences in NimBcrimic mutants individually, our other experiments demonstrate that NimB1 functions as a negative regulator during early recognition phases. The predominance of the NimB4 phenotype in the NimB1crimic, NimB4 double mutant parallels observations in draper mutants, where double mutants lacking both Draper I (positive regulator) and Draper II (negative regulator) display the Draper I phenotype (Logan et al., 2012). This suggests that phagosome maturation defects (the NimB4 phenotype) present a more severe bottleneck in the phagocytic process than enhanced early uptake (the NimB1crimic phenotype), explaining why the double mutant primarily exhibits accumulation of unresolved phagosomes rather than accelerated uptake. We have re-written this part of the article to clarify these points (see page 11).

      Figure 8A: a definition of the phagocytic cup mentioned in the text (page 12, 2nd paragraph) as well as the homogenization of the scale bars in Figure 8A would clarify the interpretation of Figure 8A. The structures shown for w1118 seem quite distant from the structures highlighted for NimB1crimic.

      According to reviewer 2, we have now moved this figure to the supplement. The reviewer is correct and we have modified the associated text to clarify the interpretation of the images (see page 12-13).

      The same scale should be used across different panels in Figure 8. This is particularly important since the authors mention the size of the lysotracker vesicles to conclude on their levels of maturity. This data and conclusions would be strengthened by a quantification of the vacuole sizes and the combination with markers of phagosome/lysosome maturation levels. It would help disentangling the complementary roles of NimB1 and NimB4.

      The scale bar has been homogenized.

      Minor comments:

      Figure 2BC: is there a particular reason to shift from Rp49 to Rpl32 as normalizing gene in Figure 2B and C? This prevents the comparison of NimB1 expression levels across the different graphs.

      We thank the reviewer for highlighting this point. We changed the housekeeping gene from Rp49 to RPL32 in Figure 2C to unify the normalization strategy across all experiments and allow comparisons throughout the manuscript.

      Page 9, 2nd paragraph and Figure S3C: the authors mention "Actin structure revealed an increased ratio of filopodia to lamellipodia across all mutants". A clear definition of the parameters defining filopodia and lamellipodia is required to fully appreciate the meaning of the ratio.

      We thank the reviewer for the comment. To address this comment, we have included a clear definition of the parameters used to distinguish filopodia and lamellipodia on page 9. In particular, in the revised version we now specify that filopodia were defined as thin, spike-like actin-rich protrusions, while lamellipodia were defined as broad, sheet-like structures at the cell periphery. These criteria were applied consistently for quantification.

      Figure S5B: a bar is missing in the right graph (% of cells containing AC, NimB1>UAS-NimB1-RFP). Page 10 2nd paragraph. The authors mention "draper mutants displayed impaired apoptotic cell binding and engulfment" referring to Figure 4. Figure S4 provide a more convincing illustration of this statement, since the decreased phagocytic index in Drpr KO is mostly due to less cells phagocytosing and not less material phagocytosed.

      We thank the reviewer for the careful examination. In Figure S5B, the missing bar was due to its color being too close to the background color, making it difficult to distinguish. We have now corrected this by adjusting the color to ensure it is clearly visible.

      Regarding the comment on page 10, we agree that Figure S4 more clearly illustrates the impaired apoptotic cell binding and engulfment observed in draper mutants, particularly through the reduced percentage of hemocytes engaging in phagocytosis. We have now clarified the statement in the text to ensure consistency and to guide the reader appropriately to Figure S4 (10).

      Figure 6: not easy to distinguish the DAPI labelling relative to the nucleus vs. that of apoptotic fragments.

      This is a good point. We have changed the images for clearer demonstration of the DAPI labelling. See Figure 6.

      Figure 7B: the number of cells used to generate the violin plot should be indicated in the legend or the method section.

      We have mentioned the number of cells used in the quantification (n-50 per genotype) in the figure legend.

      A schematic figure recapitulating the data would help

      We have added a schematic figure recapitulating the data. See Figure 9 with associated text.

      Page 11 last line: homeostatic rather than hemostatic.

      Thank you for this comment. We have changed it.

      Reviewer #3 (Significance (Required)):

      This study identifies a novel function for NimB1 in modulating the early stages of efferocytosis, adding to our understanding of how Nimrod proteins fine-tune apoptotic cell clearance. The authors establish a clear phenotypic contrast between NimB1 and NimB4, which provides a compelling framework for understanding how positive and negative regulators coordinate phagocytosis. It also highlights the multiple roles of the secreted members of the Nimrod scavenger receptor family, which have remained so far poorly investigated.

      This is an interesting study that could be strengthened by additional validation and broader experimental support. As the authors point out in the discussion, it is known that PS bridging molecules contribute to phagocytosis and that the contribution of positive and negative players finally tune phagocytosis in flies and mammals. Clarifying the mode of action of NimB1 in those processes would higher the impact of this interesting piece of work. For example, does NimB1 interact with NimB4 and if so, what is the role of this interaction? How does NimB1 integrate in the signaling cascade that allows scavenger receptors to bind PS? Does it act similar to Orion by enhancing the PS binding of a scavenger receptor?

      We thank the reviewer for the insightful comments and suggestions. Indeed, understanding the mode of action of NimB1 in the regulation of efferocytosis would significantly strengthen the impact of our findings. Our data, supported by structural and phylogenetic analyses, indicate that NimB1 and NimB4 share a conserved phosphatidylserine (PS)-binding motif, suggesting that these proteins may interact functionally. Preliminary biochemical observations, together with structural predictions, raise the possibility of a direct or indirect interaction between NimB1 and NimB4, although this remains to be experimentally confirmed.

      Our observations from NimB1 and NimB4 double mutants reveal that the phenotype closely resembles that of NimB4 single mutants, indicating that NimB4 plays a dominant role in the downstream maturation steps of phagosome processing. These findings are consistent with a model in which NimB1 may modulate early phagocytic uptake, possibly by competing with NimB4 for PS binding or by limiting NimB4 accessibility to apoptotic cells, thereby fine-tuning the rate of efferocytosis.

      Regarding the integration into the signaling cascade, while NimB1 and Orion both recognize PS, our data suggest that they function through distinct mechanisms. Orion enhances PS binding to Draper receptor isoforms to promote apoptotic corpse recognition. In contrast, NimB1 appears to act as an inhibitory modulator, potentially masking PS or limiting receptor engagement, thus slowing the phagocytic response. Further functional studies, including receptor-binding assays, will be important to determine whether NimB1 acts by altering receptor-ligand interactions or through a different regulatory pathway.

      Future experiments investigating the potential direct interactions between NimB1 and NimB4, their respective affinities for PS, and their influence on phagocytic receptor dynamics will be necessary to better understand NimB1’s precise mode of action. Such studies will help clarify how secreted regulators fine-tune efferocytosis in Drosophila and may offer broader insights into conserved principles of phagocytic regulation across species.

      __ __

      List of References:

      Horsthemke, M., Bachg, A. C., Groll, K., Moyzio, S., Müther, B., Hemkemeyer, S. A., Wedlich-Söldner, R., Sixt, M., Tacke, S., Bähler, M., & Hanley, P. J. (2017). Multiple roles of filopodial dynamics in particle capture and phagocytosis and phenotypes of Cdc42 and Myo10 deletion. The Journal of Biological Chemistry, 292(17), 7258–7273. https://doi.org/10.1074/jbc.M116.766923

      Ji, H., Wang, B., Shen, Y., Labib, D., Lei, J., Chen, X., Sapar, M., Boulanger, A., Dura, J.-M., & Han, C. (2023). The Drosophila chemokine–like Orion bridges phosphatidylserine and Draper in phagocytosis of neurons. Proceedings of the National Academy of Sciences, 120(24), e2303392120. https://doi.org/10.1073/pnas.2303392120

      Kurant, E., Axelrod, S., Leaman, D., & Gaul, U. (2008). Six-Microns-Under Acts Upstream of Draper in the Glial Phagocytosis of Apoptotic Neurons. Cell, 133(3), 498–509. https://doi.org/10.1016/j.cell.2008.02.052

      Lee, W. L., Mason, D., Schreiber, A. D., & Grinstein, S. (2007). Quantitative Analysis of Membrane Remodeling at the Phagocytic Cup. Molecular Biology of the Cell, 18(8), 2883–2892. https://doi.org/10.1091/mbc.E06-05-0450

      Lillico, D. M. E., Pemberton, J. G., & Stafford, J. L. (2018). Selective Regulation of Cytoskeletal Dynamics and Filopodia Formation by Teleost Leukocyte Immune-Type Receptors Differentially Contributes to Target Capture During the Phagocytic Process. Frontiers in Immunology, 9. https://doi.org/10.3389/fimmu.2018.01144

      Masters, T. A., Pontes, B., Viasnoff, V., Li, Y., & Gauthier, N. C. (2013). Plasma membrane tension orchestrates membrane trafficking, cytoskeletal remodeling, and biochemical signaling during phagocytosis. Proceedings of the National Academy of Sciences, 110(29), 11875–11880. https://doi.org/10.1073/pnas.1301766110

      Meehan, T. L., Joudi, T. F., Timmons, A. K., Taylor, J. D., Habib, C. S., Peterson, J. S., Emmanuel, S., Franc, N. C., & McCall, K. (2016). Components of the Engulfment Machinery Have Distinct Roles in Corpse Processing. PLOS ONE, 11(6), e0158217. https://doi.org/10.1371/journal.pone.0158217

      Melcarne, C., Ramond, E., Dudzic, J., Bretscher, A. J., Kurucz, É., Andó, I., & Lemaitre, B. (2019). Two Nimrod receptors, NimC1 and Eater, synergistically contribute to bacterial phagocytosis in Drosophila melanogaster. The FEBS Journal, 286(14), 2670–2691. https://doi.org/10.1111/febs.14857

      Petrignani, B., Rommelaere, S., Hakim-Mishnaevski, K., Masson, F., Ramond, E., Hilu-Dadia, R., Poidevin, M., Kondo, S., Kurant, E., & Lemaitre, B. (2021). A secreted factor NimrodB4 promotes the elimination of apoptotic corpses by phagocytes in Drosophila. EMBO Reports, 22(9), e52262. https://doi.org/10.15252/embr.202052262

      Roddie, H. G., Armitage, E. L., Coates, J. A., Johnston, S. A., & Evans, I. R. (2019). Simu-dependent clearance of dying cells regulates macrophage function and inflammation resolution. PLoS Biology, 17(5), e2006741. https://doi.org/10.1371/journal.pbio.2006741

      Serizier, S. B., & McCall, K. (2017). Scrambled Eggs: Apoptotic Cell Clearance by Non-Professional Phagocytes in the Drosophila Ovary. Frontiers in Immunology, 8, 1642. https://doi.org/10.3389/fimmu.2017.01642

      Serizier, S. B., Peterson, J. S., & McCall, K. (2022). Non-autonomous cell death induced by the Draper phagocytosis receptor requires signaling through the JNK and SRC pathways. Journal of Cell Science, 135(20), jcs250134. https://doi.org/10.1242/jcs.250134

    1. Once multiple accurate students enter the same tag for a new image, the system wouldbe confident that the tag is correct. In this manner, image tagging and vocabulary learning can becombined into a single activity.

      is this not how CAPTCHA is evaluated too?

  8. Apr 2025
    1. Allow you to save files from apps to any folder in drive

      That is quite something

      How would the code look like

      I am using "STORE_APP_DATA" permission so I can pass any path?

      Will try it straight away

    1. annotated tags point to a tag object in the object database. git tag -as -m msg annot cat .git/refs/tags/annot contains the SHA of the annotated tag object: c1d7720e99f9dd1d1c8aee625fd6ce09b3a81fef and then we can get its content with: git cat-file -p c1d7720e99f9dd1d1c8aee625fd6ce09b3a81fef
  9. social-media-ethics-automation.github.io social-media-ethics-automation.github.io
    1. We might want to avoid physical danger from a stalker, so we might keep our location private

      Keeping information private is vital but it is specifically interesting to see that having our location be private be interesting. I mention this as many of the people I know around me post where they are and tag their locations and have their social media accounts open to the public rather than having it private and closed only to their friends. People I believe do not realize how much they are exposing themselves by constantly posting their current or past locations on the internet which can later have issues be exposed (if they are like public figures) and have people attack them.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      We thank the reviewers for their thoughtful comments and suggestions. Our plans for revisions are first summarized. Below you can find the original reviews and our responses and detailed plans (indicated by "Response").

      Revision plan summary:

      1. Many of the concerns can be addressed by changes in the text and better explanations of how the experiments were done. These changes are detailed in the point-by-point responses.
      2. The reviewers suggested experiments such as ChIP-seq and immunoprecipitation which require collection of a large number of mutants. Since our mutants are sterile, the line needs to be maintained as heterozygotes, from which we can pick out individual mutant worms. Therefore, with the current reagents it is impossible to collect mutants in sufficient quantities for ChIP-seq or IP. We understand that it limits the conclusions that can be drawn.
      3. For some figures, additional quantification of fluorescence signal will be done to show differences between mutant and wild type.
      4. A few experiments will be repeated:
      5. We will repeat the ATPase assays shown on Fig 1 with additional independently prepared and purified protein samples.
      6. Additional replicates will be performed for the few immunofluorescence experiments that were only performed once. Point-by-point responses:

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      Dosage compensation (DC) in C. elegans involves halving the gene expression from the two hermaphrodite X chromosomes to match the output of the single X in male worms. The key regulator of this repression is a specialized condensin complex, which is defined by a dedicated SMC-4 paralog, termed DPY-27. SMC-4 in other animals is an ATPase that functions as a motor of loop extrusion in cohesion complexes. In their current manuscript, Chawla et al. assessed whether DPY-27 has ATPase function and whether this activity is required for dosage compensation. It had previously been shown that an ATPase-deficient 'EQ' mutant DPY-27 protein interacts with other DC complex members, yet fails to localize to the X. This observation was made with an extra copy of DPY-GFP expressed in addition to the endogenous wildtype protein [Ref 77]. No dominant negative effect was observed. The authors have now engineered the 'EQ' mutation into the endogenous gene locus and genetically generated hetero- and homozygous ATPase mutant worms. Their data suggest that the ATPase activity is required or X-chromosome localization, complex assembly, chromosome compaction as well as enrichment of H4K20me1 on the dampened X chromosome.

      Major comments: 1. ATPase assays, Figure 1.Preparations of individual recombinant proteins may vary significantly and may occasionally show much reduced enzymatic activity. A conclusion about the failure of an ATPase activity should not be concluded from a single preparation, but several protein preps need to be tested, which then serve as 'biological replicates' for the in vitro reaction. Apparently, the ATPase assays shown only involved technical replicates, which is not sufficient.

      Response: We will express and purify additional protein samples and will repeat the assay.

      CRISPR-mediated engineering may lead to unwanted reactions, exemplified by the 'indel' mutation that was recovered in one clone. As a good practice and important control, the sequences of the mutated alleles in the worms should be determined by sequencing of PCR products. Restrictions enzyme cleavage or gel electrophoresis of the PCR products is not sufficient to document the nature of the mutation.

      Response: The sequence of the edit was confirmed by Sanger sequencing. We will make it clear in the text.

      All IF data need to be collected from at least 2 biological replicates, i.e. the experiment must have been carried out independently on two different days. The replicates should deliver consistent results. The number of independent replicates should be mentioned in each figure legend.

      Response: Most of our experiments were performed multiple times. We will indicate the number of replicates in the figure legends. The one or two experiments that were only performed once, will be repeated an additional time.

      The expression levels of wildtype and mutant proteins are concluded from IFM. This is very qualitative; quantitative measurements would strengthen the paper.

      Response: We will quantify fluorescence intensity on our existing images to show differences between mutant and wild type.

      Figure 4B: What are the criteria for classification of the three classes of mutant nuclei? To the uninitiated eye they look very similar. I am a bit worried about the human bias, if such diffuse staining are to be categorized. The two categories of localization need be documented better.

      Response: We will provide more images to show the range of phenotypes and provide a better explanation of how they were classified. We will also try a few ways to quantify “diffuseness” to provide a numerical readout.

      Figure 5: volume of the X chromosome. Related to (5): Apparently, the mask that contains the X chromosome was drawn by hand on each individual nucleus? I find it very difficult to see how the X chromosomal territory would be assessed in the examples shown. I would be good to see a panel of nuclei, in which the masks are visible. I think the analysis should be blinded, in which a researcher not involved in the analysis draws masks on coded nuclei and their classes are only revealed later. The same concern holds for the FISH/IP overlaps or DPY-27/SDC-2 overlaps.

      Response: The masks used were not drawn by hand but were based on fluorescence intensity thresholds. We will make a supplementary figure that shows the masks used for quantification to help clarify how the experiment and quantification were performed.

      For figure 5, age-matched hermaphrodites were analyzed. How was the age determined and what would be the consequence of age-variations? What is the effect of the mutations on development?

      Response: For our staining experiments, we routinely use young adult which we define as 24 hr past larval L4 stage. At this stage, young adults have started laying eggs. We have unpublished data that shows that dosage compensation and chromosome compaction deteriorates with age. To avoid using old worms in our assays, we pick L4 larvae, and then use them for experiments the following day.

      Minor comments: 8. The labeling of p-values as a-f in the figures with the values listed in a supplemental table is not comfortable. The p-values corresponding to the letters should be listed in the corresponding legends.

      Response: p values can be added to the figure or the figure legend (they are currently in supplementary tables).

      How were the concentrations of the ATPase preparations determined? It would help to see a proteins gel in the supplement to assess their purity.

      Response: Concentrations were determined using a spectrometer. We can show protein gels of the preparations as a supplementary figure.

      In figure 1, heterodimers are assumed, but not shown. Do they dimerize under these conditions?

      Response: We can cite papers from others that show heterodimerization in these conditions (for example, Hassler et al, 2019).

      Reviewer #1 (Significance (Required)):

      Significance: The involvement of the ATPase function of DPY-27 was somewhat expected, in light of the earlier findings published in reference 77 using a transgene. The current study confirms and extends these earlier findings. In principle, the genetic experiment presented here is stronger, if documented better.

      Strengths: The study investigates endogenous proteins and measures different phenomena known to be correlated from previous work. The data are internally consistent.

      Limitations: The lack of biological replicates, and unclear procedures of how to draw the IF masks that underlie the conclusions about X chromosome (co)localization and nuclear volume determination render the argument less convincing. For this reviewer, who is not in the C. elegans field, the analysis of mutant phenotypes is difficult to follow. The conclusions are based on only one type of experiment. In reference 77, the X chromosome binding was done by ChIP-seq, clearly a superior, complementary method.

      Response: As explained above, since the strain has to be maintained as a heterozygote, we are unable to collect enough mutants for a ChIP-seq experiment. We can perform and better document the experimental replicates and we can better explain the quantification methods used.

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      Summary: The authors analyzed the ATPase function of an SMC-4 variant required for dosage compensation in C. elegans. They made a single amino acid mutation that significantly reduced ATPase activity of the protein as shown by in vitro ATP hydrolysis. They showed that the mutation results in the phenotypic consequences of those shown for other DC mutants, including viability assay, immunofluorescence and DNA FISH. These results demonstrate the important role of ATPase activity in transcription repression.

      Major comments: - Are the key conclusions convincing? The key conclusion that DPY-27 has ATPase activity and using a classic mutation that reduces it largely eliminates its function is convincing. The interpretation of the IF experiments to build the model in the final figure requires stronger evidence, as commented below in additional experiment section.

      • Should the authors qualify some of their claims as preliminary or speculative, or remove them altogether? Yes, as explained below.

      • Would additional experiments be essential to support the claims of the paper? Request additional experiments only where necessary for the paper as it is, and do not ask authors to open new lines of experimentation.

      The main issue with the current model is that the authors assume that the EQ proteins that they are analyzing is in complex with the rest of the condensin IDC subunits. However, there is no evidence in the paper suggesting that this occurs. The results are consistent with the possibility that a large portion of the DPY27-EQ is not in a complex.

      IP-western experiments comparing the proportion of other subunits pulled down by the wild type versus the EQ mutant (perhaps extract from ~50% EQ containing population could be reached) is needed to understand the incorporation of the EQ mutant in the complex. This is particularly important for the interpretation of the data in Figure 4A, where 70% of the nuclei show diffuse CAPG-1 and DPY-27 EQ. Is this signal due to disassembled subunits diffusing freely, or as depicted in the model figure, bound less stably everywhere? The immunofluorescence results are consistent with both EQ mutation 1) forming a full complex and unstably binding or 2) destabilizing the complex but incompletely assembled complexes sustaining a pool of free EQ detected by the immunofluorescence experiments.

      Response: We agree that to conclusively show interactions, an IP would be necessary. However, as explained above for ChIP, it is not possible to collect enough mutants to make enough protein extract for an IP. An IP in heterozygous worms is also not ideal, as it would be nearly impossible to distinguish wild protein from the mutant. The antibody we used recognizes the N terminus, which is identical in the two proteins. The only way to distinguish them would be mass spec. However, during the fragmentation process for mass spec, Q can deaminate to E, which would complicate interpretation of our data. To do this experiment properly, we would need to introduce a different tag into the mutant protein. With the current reagents, an IP is not possible.

      Instead, we have to rely on indirect evidence. The fact that DPY-27 and CAPG-1 colocalize (figure 4) does provide some support for the hypothesis. From previous studies,including our recent publication Trombley et al PLoS Genetics 2025, we know that the condensin IDC complex is not stable unless all subunits are present. It is therefore highly unlikely, although not impossible, that what we detect is diffuse individual subunits.

      We can make changes in the text to soften this claim and better discuss the caveats of the experiment and the conclusions.

      Along the same point, authors show that EQ protein that binds to the X is incapable of bringing H4K20me1, which is consistent with the possibility that a large portion of the EQ protein is not in a complex. : "To our surprise, we observed that there was no discernable enrichment of H4K20me1, even though there is discernable enrichment of DPY-27 EQ on the X chromosomes in the dpy-27 EQ mutants (Figure 8A).

      Response: There is an important difference. CAPG-1 and DPY-27 are both members of condensin IDC. The five subunits of this complex depend on each other for stability. DPY-21, the protein that introduces the H4K20me1 mark, also localizes to the X chromosomes, but is not part of condensin IDC. Condensin IDC is able to localize to the X chromosomes in the absence of DPY-21, and is not dependent on DPY-21 for stability. However, DPY-21 is dependent on condensin IDC for X localization (Yonker et al 2003). It is then possible that the mutant condensin IDC is X-bound, but it is unable to recruit DPY-21. We can clarify this in the text.

      • Are the suggested experiments realistic in terms of time and resources? It would help if you could add an estimated cost and time investment for substantial experiments. It is unclear how long it would take to collect enough het/mutant worms can be collected for IP-western. Without additional evidence, interpretation of the data would be affected.

      Response: As explained above, collecting enough mutant worms is essentially impossible. Collecting enough heterozygotes is possible, but distinguishing the mutant protein from the wild type in hets is not.

      • Are the data and the methods presented in such a way that they can be reproduced? Yes
      • Are the experiments adequately replicated and statistical analysis adequate? Yes, except the presentation of the test (see minor comment below)

      Minor comments: - Specific experimental issues that are easily addressable. The use of letters for statistical test result is confusing and the figure legend is not clear about what actual p values were produced "Letters represent multiple comparison p values, with different letters indicating statistically significant differences, and any repeated letter demonstrating no significance. " Providing the values at a reasonably concise manner in the legend will help the reader a lot.

      Response: P values can be added to the figures, or the legend

      • Are prior studies referenced appropriately? The authors state that "Surprisingly, this mutant did not phenocopy the transgenic EQ mutant in [77], .." however in the previous paragraph, the authors state that the transgenic was expressed in the presence of wild type copy. Therefore, the endogenous mutant showing phenotypes rather than the transgenic is rather expected.

      Response: What we referred to were ways in which the protein behaved (for example in ability to bind to the X at all), and not mutant phenotypes of worms. We can clarify this in the text.

      The authors state that "One possible explanation could be that mitotic condensation has multiple drivers of equal consequence including changes in histone modifications [129], whereas condensation of dosage compensated X chromosomes is predominantly dependent on the DCC. " In a dpy-21 mutant, X chromosome decondenses but DPY-27 stays on the chromosome. Therefore, the effect of the EQ mutation may be due to lack of H4K20me1 enrichment in addition to the lack of loop extrusion.

      Response: We can add the role of H4K20me1 to the discussion.

      • Are the text and figures clear and accurate? Yes
      • Do you have suggestions that would help the authors improve the presentation of their data and conclusions? The Pearson correlation coefficient for assessing colocalization between SDC-2 and DPY-27 was helpful for quantification, because there is a lot of background signal that makes the support for or lack of colocalization with the X in the other IF/FISH figures difficult to assess. Additionally, please provide information on how chromatic aberration was assessed when analyzing colocalization experiments.

      Response: Chromatic aberration was not considered for these experiments.

      Reviewer #2 (Significance (Required)):

      • Describe the nature and significance of the advance (e.g. conceptual, technical, clinical) for the field. Although long assumed to be a functional SMC, the demonstration of DPY-27 function depending on ATPase activity is important. This demonstrates that an X-specific condensin retained its SMC activity.

      • Place the work in the context of the existing literature (provide references, where appropriate). The authors do an adequate job in doing this in their discussion.

      • State what audience might be interested in and influenced by the reported findings. The field of 3D genome organization and function would be influenced by the reported findings.

      • Define your field of expertise with a few keywords to help the authors contextualize your point of view. Indicate if there are any parts of the paper that you do not have sufficient expertise to evaluate.

      Genomic analyses of 3D genome organization and gene expression.

    1. Reviewer #2 (Public review):

      Summary:

      In this manuscript, the authors investigated how the type-I interferon response (ISG) and antigen presentation (AP) pathways are repressed in luminal breast cancer cells and how this repression can be overcome. They found that a STING agonist can reactivate these pathways in breast cancer cells, but it also does so in normal cells, suggesting that this is not a good way to create a therapeutic window. Depletion of ADAR and inhibition of KDM5 also activate ISG and AP genes. The activation of ISG and AP genes is dependent on cGAS/STING and the JAK kinase. Interestingly, although both ADAR depletion and KDM5 inhibition activate ISG and AP genes, their effects on cell fitness are different. Furthermore, KDM5 inhibitor selectively activates ISG and AP genes in tumor cells but not normal cells, arguing that it may create a larger therapeutic window than the STING agonist. These results also suggest that KDM5 inhibition may activate ISG and AP genes in a way different from ADAR loss, and this process may affect tumor cell fitness independently of the activation of ISG and AP genes.

      The authors further showed that KDM5 inhibition increases R-loops and DNA damage in tumor cells, and XPF, a nuclease that cuts R-loops, is required for the activation of ISG and AP genes. Using H3K4me3 CUT&RUN, they found that KMD5 inhibition results in increased H3K4me3 not only at genes, but also at repetitive elements including SINE, LINE, LTR, telomeres, and centromeres. Using S9.6 CUT&TAG, they confirmed that R-loops are increased at SINE, LINE, and LTR repeated with increased H3K4me3. Together, the results of this study suggest that KMD5 inhibition leads to H3K4me3 and R-loop accumulation in repetitive elements, which induces DNA damage and cGAS/STING activation and subsequently activates AP genes. This provides an exciting approach to stimulate the anti-tumor immunity against breast tumors.

      KDM5 inhibition activates interferon and antigen presentation genes through R-loops.

      Strengths:

      Overall, this study was carefully designed and executed. This is a new approach to make breast tumors "hot" for anti-tumor immunity.

      Weaknesses:

      Future in vivo studies are needed to show the effects of KDM5 inhibitors on the immunotherapy responses of breast tumors.

    1. Have you witnessed different responses to trolling? What happened in those cases? What do you think is the best way to deal with trolling?

      I have witnessed trolling. I think in a day where social media is so popular trolling has become normalized because individuals can hide behind a username to make a comment about someone. Most trolling cases I see are with celebrities online because they have a large preseence and garner attention from trolls because of their following. Trolls will comment on their lifestyle choices in the comments of their posts or tag them in a video saying awful things about the individual. I think a good example of celebrities being trolled recently is a Blake Lively-Justin Baldoni drama. I agree with the rules of internet protocol to ignor trolls. Responding gives them attention which gives the trolls more power.

    1. If the immediate goal of the action of trolling is to cause disruption or provoke emotional reactions, what is it that makes people want to do this disruption or provoking of emotional reactions? Some reasons people engage in trolling behavior include: Amusement: Trolls often find the posts amusing, whether due to the disruption or emotional reaction. If the motivation is amusement at causing others’ pain, that is called doing it for the lulz [g6]. Gatekeeping: Some trolling is done in a community to separate out an ingroup from outgroup (sometimes called newbies or normies). The ingroup knows that a post is just trolling, but the outgroup is not aware and will engage earnestly. This is sometimes known as trolling the newbies. Feeling Smart: Going with the gatekeeping role above, trolling can make a troll or observer feel smarter than others, since they are able to see that it is trolling while others don’t realize it. Feeling Powerful: Trolling sometimes gives trolls a feeling of empowerment when they successfully cause disruption or cause pain.** Advance and argument / make a point: Trolling is sometimes done in order to advance an argument or make a point. For example, proving that supposedly reliable news sources are gullible by getting them to repeat an absurd gross story [g5]. Punish or stop: Some trolling is in service of some view of justice, where a person, group or organization is viewed as doing something “bad” or “deserving” of punishment, and trolling is a way of fighting back.

      I have always encountered such "trolling" online, some are for amusement purposes, but I felt like they have more kind than malice. Besides that, I believe it is also a way of gatekeeping, but as people "tag" their post, such gatekeeping post will only be pushed to the "ingroup" people.

    1. Welcome back, and in this video, I want to talk in general about application layer firewalls, also known as layer 7 firewalls, named after the layer of the OSI model that they operate at. I want to keep this video pretty generic and will talk about how AWS implements this within their product set in a separate video. So let's just jump in and get started.

      Before I talk about the high-level architecture and features of layer 7 firewalls, let's quickly refresh our knowledge of layers 3, 4, and 5. We start with a layer 3 and 4 firewall, which is helping to secure the Categorum application—now accessed by millions of people globally because it's that amazing. Because this is a layer 3 and 4 firewall, it sees packets and segments, IP addresses, and ports. It sees two flows of communication: requests from the laptop to the server, and then responses from the server back to the laptop. However, because this firewall is limited to layers 3 and 4 only, these are viewed as separate and unrelated streams of data—request and response—even though they’re part of the same communication from a human perspective.

      If we enhance the firewall by adding session capability, then the same communication between the laptop and server can be viewed as one. The firewall understands that the request and the response are part of the same session. This small difference reduces administrative overhead—allowing for one rule instead of two—and also lets you implement more contextual security, where you can treat response traffic in the context that it’s a response to an original request, rather than just arbitrary traffic in the same direction.

      Now, this next point is really important: in both cases, these firewalls don't understand anything above the layer at which they operate. The top firewall operates at layers 3 and 4, so it understands layers 1 through 4. The bottom firewall does this as well but additionally understands layer 5. What this means is that both firewalls can see IP addresses, ports, and flags, and the bottom one can also understand sessions. However, neither of them can understand the data that flows above this—they have no visibility into layer 7, such as HTTP. They can't see headers or any other data transferred over HTTP. To them, layer 7 traffic is opaque—a cat image is the same as a dog image or malware—and this is a significant limitation that exposes the systems we're protecting to a wide range of attacks.

      Layer 7 firewalls fix many of these limitations. Let’s consider the same architecture: a client on the left and a server or application on the right that we’re trying to protect. In the middle, we have a layer 7 firewall, and to help remember it, let’s add a smart robot to represent its capabilities. With this firewall, we still have the same flow of packets and segments, and a layer 7 firewall can understand all the lower layers—but it adds additional capabilities.

      Consider this example where the Categor application is connected using an HTTPS connection, which is encrypted HTTP, and HTTP is the layer 7 protocol. The first important thing to realize is that layer 7 firewalls understand various layer 7 protocols. In this example, we're focusing on HTTP, so the firewall understands how that protocol transfers data: its architecture, headers, data, hosts, and all other components happening at or below layer 7. This means it can identify normal or abnormal elements of a layer 7 connection and protect against various protocol-specific attacks or weaknesses.

      In the HTTPS connection to the Categor server, the HTTPS connection would be terminated at the layer 7 firewall. While the client believes it is connecting directly to the server, the firewall strips away the HTTPS tunnel, leaving plain HTTP, which it can analyze. Then, a new HTTPS connection is created between the layer 7 firewall and the backend server. From the server and client perspectives, this process is transparent. The crucial part is that, between the original and the new HTTPS connections, the firewall sees the unencrypted HTTP traffic in plain text. Because the firewall understands the layer 7 protocol, it can inspect, block, replace, or tag the data within that protocol stream.

      This inspection might involve protecting the integrity of the Categor application by logically allowing cat pictures while rejecting dog images or labeling sheep images as spam. You might choose to be inclusive and only block truly dangerous content such as malware or exploits. Because the firewall understands one or more application protocols, you can allow or block content with great precision. You can even replace content—for instance, adult images might be replaced with kitten pictures or baby animals. Moreover, you can block specific applications like Facebook or prevent business data from being uploaded to services such as Dropbox.

      The key thing to understand is that a layer 7 firewall retains all the capabilities of layers 3, 4, and 5 firewalls, but adds the ability to react to layer 7 elements. This includes DNS names, connection rates, content, headers—anything that exists in the specific layer 7 protocol that the firewall understands. Some layer 7 firewalls only support HTTP, while others might support SMTP, the protocol used for email delivery. The limit is defined only by what the firewall software is built to handle.

      That’s everything I wanted to cover at a high level. Coming up in future videos, I’ll discuss how AWS implements layer 7 firewall capability within its product set. For now, though, this high-level understanding is the main focus of this video. So go ahead and complete the video, and when you're ready, I’ll look forward to you joining me in the next.

    1. We established GapR-GFP, a prokaryotic DNA-binding protein that recognizes transcriptionally-induced overtwisted DNA, as a live visual fluorescent marker for quantitative analysis of rDNA organization in Schizosaccharomyces pombe.

      GapR-GFP marks overtwisted DNA and can be used to study rDNA morphology:

      GapR is a protein that binds to overtwisted DNA. It recruits a topoisomerase to release topological stress on DNA during transcription.

      When tagged with GFP, it functions as a fluorescent marker and tracker (live cell imaging) of overtwisted DNA.

      To identify overtwisted rDNA specifically, you can tag the nucleolus with a separate color and look at the merged fluorescent images of the nucleolus and overtwisted DNA. Alternatively, you could attach a nuclear localization sequence to GapR-GFP to primarily express it in the nucleus, increasing the probability of only marking rDNA.

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      In the manuscript entitled "Rtf1 HMD domain facilitates global histone H2B monoubiquitination and regulates morphogenesis and virulence in the meningitis-causing pathogen Cryptococcus neoformans" by Jiang et al., the authors employ a combination of molecular genetics and biochemical approaches, along with phenotypic evaluations and animal models, to identify the conserved subunit of the Paf1 complex (Paf1C), Rtf1, and functionally characterize its critical roles in mediating H2B monoubiquitination (H2Bub1) and the consequent regulation of gene expression, fungal development, and virulence traits in C. deneoformans or C. neoformans. Specially, the authors found that the histone modification domain (HMD) of Rtf1 is sufficient to promote H2B monoubiquitination (H2Bub1) and the expression of genes related to fungal mating and filamentation, and restores the fungal morphogenesis and pathogenicity defects caused by RTF1 deletion.

      Strengths:

      The manuscript is well-written and presents the findings in a clear manner. The findings are interesting and contribute to a better understanding of Rtf1-mediated epigenetic regulation of fungal morphogenesis and pathogenicity in a major human fungal pathogen, and potentially in other fungal species, as well.

      Weaknesses:

      A major limitation of this study is the absence of genome-wide information on Rtf1-mediated H2B monoubiquitination (H2Bub1), as well as a lack of detail regarding the function of the Plus3 domain. Although overexpression of HMD in the rtf1Δ mutant restored global H2Bub1 levels, it did not rescue certain critical biological functions, such as growth at 39 °C and melanin production (Figure 4C-D). This suggests that the precise positioning of H2Bub1 is essential for Rtf1's function. A comprehensive epigenetic landscape of H2Bub1 in the presence of HMD or full-length Rtf1 would elucidate potential mechanisms and shed light on the function of the Plus3 domain.

      We thank the reviewer (and other reviewers) for this excellent suggestion. We have conducted CUT&Tag assays with WT, _rtf1_Δ mutant, and complementary strains with the full length Rtf1 and only HMD domain cultured under 30 and 39 °C. We indeed found that the epigenetic landscape of H2Bub1 in the presence of HMD or full-length Rtf1 has variations. This results strongly suggest that the distribution of H2Bub1 is regulated by Rtf1, and H2B modifications at specific loci in the chromosome may contribute to thermal tolerance in C. neoformans. These new findings from CUT&Tag assays shed lights on understanding the mechanism of thermal tolerance, and we decided not to include these results in the current manuscript.

      Reviewer #2 (Public Review):

      Summary:

      The authors set out to determine the role of Rtf1 in Cryptococcal biology, and demonstrate that Rtf1 acts independently of the Paf1 complex to exert regulation of Histone H2B monoubiquitylation (H2Bub1). The biological impact of the loss of H2Bub1 was observed in defects in morphogenesis, reduced production of virulence factors, and reduced pathogenic potential in animal models of cryptococcal infection.

      Strengths:

      The molecular data is quite compelling, demonstrating that the Rtf1-depednent functions require only this histone modifying domain of Rtf1, and are dependent on nuclear localization. A specific point mutation in a residue conserved with the Rtf1 protein in the model yeast demonstrates the conservation of that residue in H2Bub1 modification. Interestingly, whereas expression of the HMD alone suppressed the virulence defect of the rtf1 deletion mutant, it did not suppress defects in virulence factor production.

      Weaknesses:

      The authors use two different species of Cryptococcus to investigate the biological effect of Rtf1 deletion. The work on morphogenesis utilized C. deneoformans, which is well-known to be a robust mating strain. The virulence work was performed in the C. neoformans H99 background, which is a highly pathogenic isolate. The study would be more complete if each of these processes were assessed in the other strain to understand if these biological effects are conserved across the two species of Cryptococcus. H99 is not as robust in morphogenesis, but reproducible results assessing mating and filamentation in this strain have been performed. Similarly, C. deneoformans does produce capsule and melanin.

      We thank the reviewer for the suggestion. We have conducted assays to quantify both capsule and melanin production in both C. neoformans and C. deneoformans strain background. We found that capsule production was affected in the same pattern in these two serotypes. Interestingly, we found the cell size was significantly affected by deletion of RTF1 in both serotypes. In addition, melanin production was reduced due to the deletion of RTF1 in both serotypes; However, complementation with Plus3 or mutated alleles of HMD gave different phenotypes in these two serotypes. These new findings were included Figure 4 in the revised manuscript.

      There are some concerns with the conclusions related to capsule induction. The images reported in Figure B are purported to be grown under capsule-inducing conditions, yet the H99 panel is not representative of the induced capsule for this strain. Given the lack of a baseline of induction, it is difficult to determine if any of the strains may be defective in capsule induction. Quantification of a population of cells with replicates will also help to visualize the capsular diversity in each strain population.

      We thank the reviewer for raising this concern. We have tested capsule production under capsule-inducing condition on 10% fetal bovine serum (FBS) agar medium [1]. Under this condition, the capsule layers surrounding the cells were obvious. We also included noncapsule-producing control in our assay to help the visualization of capsule. In addition, we quantified the ratio between diameters of capsule layer and cell body to show the capsular diversity in each strain population. The results were included in the Figure 4 in the revised manuscript.

      The authors demonstrate that for specific mating-related genes, the expression of the HMD recapitulated the wild-type expression pattern. The RNA-seq experiments were performed under mating conditions, suggesting specificity under this condition. The authors raise the point in the discussion that there may be differences in Rtf1 deposition on chromatin in H99, and under conditions of pathogenesis. The data that overexpression of HMD restores H2Bub1 by western is quite compelling, but does not address at which promoters H2Bub1 is modulating expression under pathogenesis conditions, and when full-length Rtf1 is present vs. only the HMD.

      We thank the reviewer for raising these concerns. Please see our response to Reviewer #1.

      Reviewer #3 (Public Review):

      Summary:

      In this very comprehensive study, the authors examine the effects of deletion and mutation of the Paf1C protein Rtf1 gene on chromatin structure, filamentation, and virulence in Cryptococcus.

      Strengths:

      The experiments are well presented and the interpretation of the data is convincing.

      Weaknesses:

      Yet, one can be frustrated by the lack of experiments that attempt to directly correlate the change in chromatin structure with the expression of a particular gene and the observed phenotype. For example, the authors observed a strong defect in the expression of ZNF2, a known regulator of filamentation, mating, and virulence, in the rtf1 mutant. Can this defect explain the observed phenotypes associated with the RTF1 mutation? Is the observed defect in melanin production associated with altered expression of laccase genes and altered chromatin structure at this locus?

      We completely agree with the reviewer. We have conducted CUT&Tag assay, and checked the Rtf1-mediated H2Bub1 at these particular gene loci. We found that the distribution of H2Bub1 at the promoter region of ZNF2 and the gene body of laccase-encoding gene varied possibly due to RTF1 mutation. We would like to save those preliminary findings for another story and not to include in this manuscript as we mentioned in the response to Reviewer #1.

      (1) Jang, E.-H., et al., Unraveling Capsule Biosynthesis and Signaling Networks in Cryptococcus neoformans. Microbiology Spectrum, 2022. 10(6): p. e02866-22.

    1. Author response:

      The following is the authors’ response to the original reviews

      Reviewer #1 (Public Review):

      (1) The rationale for performing genomics, transcriptional, and proteomics work in 293T cells is not discussed. Further, there are no functional readouts mentioned in the 293T cells with expression of the fusion-oncogenes. Did these cells have any phenotypes associated with fusion-oncogene expression (proliferation differences, morphological changes, colony formation capacity)? Further, how similar are the gene expression signatures from RNA-seq to rhabdomyosarcoma? This would help the reader interpret how similar these cell models are to human disease.

      We appreciate the reviewer’s comments and understand the limitation of HEK293T cell culture. HEK293T cells were used as a surrogate system that enabled us to systemically examine and compare the transcriptional activation mechanisms between VGLL2-NCOA2/TEAD1-NCOA2 and YAP/TAZ. HEK293T cells have previously been used as a model system to study the signaling and transcriptional mechanisms of the Hippo/YAP pathway (1,2). Our data also showed that the ectopic expression of VGLL2-NCOA2 and TEAD1-NCOA2 in HEK293 cells can promote proliferation (Figure 1-figure supplement 1B), consistent with their potential oncogenic function.

      (2) TEAD1::NCOA2 fusion-oncogene model was not credentialed past H&E, and expression of Desmin. Is the transcriptional signature in C2C12 or 293T similar to a rhabdomyosarcoma gene signature?

      We understand the reviewer’s concern. VGLL2-NCOA2 in vivo tumorigenesis model generated by C2C12 cell orthotopic transplantation has recently been reported, and it exhibits similar characteristics with zebrafish transgenic tumors as well as human scRMS samples that carry the VGLL2-NCOA2 fusion (3). Due to the similar transcriptional and oncogenic mechanisms employed by both VGLL2-NCOA2 and TEAD1-NCOA2 fusion proteins, we expect that the TEAD1-NCOA2 dependent C2C12 transplantation model will closely resemble that induced by VGLL2-NCOA2.

      (3) For the fusion-oncogenes, did the HA, FLAG, or V5 tag impact fusion-oncogene activity? Was the tag on the 3' or 5' of the fusion? This was not discussed in the methods.

      To address the reviewer’s concern, we carefully compared the transcriptional activity of the fusion proteins with the HA tag at the 5’ end or FLAG and V5 tag at the 3’ end. We found that neither the tag type nor its location significantly affects the ability of VGLL2-NCOA2 and TEAD1-NCOA2 to induce downstream gene transcription, measured by qPCR. The data is summarized in Figure 1-figure supplement 1 G-H.

      (4) Generally, the lack of details in the figures, figure legends, and methods make the data difficult to interpret. A few examples are below:

      a. Individual data points are not shown for figure bar plots (how many technical or biological replicates are present and how many times was the experiment repeated?).

      As requested, we have added the individual data points to the bar plots. The Method section now includes information on the number of biological replicates and the times the experiments were repeated.

      b. What exons were included in the fusion-oncogenes from VGLL2 and NCOA2 or TEAD1 and NCOA2?

      We have now included the exon structure organization of VGLL2-NCOA2 or TEAD1-NCOA2 fusions in Figure 1-figure supplement 1A.

      c. For how long were the colony formation experiments performed? Two weeks?

      We have included more detailed information about the colony formation assay in the Methods section.

      d. In Figure 2D, what concentration of CP1 was used and for how long?

      The CP1 concentration and treatment duration information has now been included in the figure legend and Methods section.

      e. How was A485 resuspended for cell culture and mouse experiments, what is the percentage of DMSO?

      The Methods section now includes detailed information on how A485 is prepared for in vitro and in vivo experiments.

      f. How many replicates were done for RNA-seq, CUT&RUN, and ATACseq experiments?

      RNA-seq was done with three biological replicates and CUT&RUN and ATAC-seq were performed with two biological replicates. This information is now included in the Methods section for clarification.

      Reviewer #2 (Public Review):

      In the manuscript entitled "VGLL2 and TEAD1 fusion proteins drive YAP/TAZ-independent transcription and tumorigenesis by engaging p300", Gu et al. studied two Hippo pathway-related gene fusion events (i.e., VGLL2-NCOA2, TEAD1-NCOA2) in spindle cell rhabdomyosarcoma (scRMS) and showed that their fusion proteins can activate Hippo downstream gene transcription independent of YAP/TAZ. Using the BioID-based mass spectrometry analysis, the authors revealed histone acetyltransferase CBP/p300 as specific binding proteins for VGLL2-NCOA2 and TEAD1-NCOA2 fusion proteins. Pharmacologically targeting p300 inhibited the fusion proteins-induced Hippo downstream gene transcription and tumorigenic events.

      Overall, this study provides mechanistic insights into the scRMS-associated gene fusions in tumorigenesis and reveals potential therapeutic targets for cancer treatment. The manuscript is well-written and easy to follow.

      Here, several suggestions are made for the authors to improve their study.

      Main points

      (1) The authors majorly focused on the Hippo downstream gene transcription in this study, while a significant portion of genes regulated by the VGLL2-NCOA2 and TEAD1-NCOA2 fusion proteins are non-Hippo downstream genes (Figure 3). The authors should investigate whether the altered Hippo pathway transcription is essential for VGLL2-NCOA2 and TEAD1-NCOA2-induced cell transformation and tumorigenesis. Specifically, they should test if treatment with the TEAD inhibitor can reverse the cell transformation and tumorigenesis caused by VGLL2-NCOA2 but not TEAD1-NCOA2. In addition, it is important to examine whether YAP-5SA expression can rescue the inhibitory effects of A485 on VGLL2-NCOA2 and TEAD1-NCOA2-induced colony formation and tumor growth. This will help clarify whether Hippo downstream gene transcription is important for the oncogenic activities of these two fusion proteins.

      We thank the reviewer for the comments. Although we have not tested the small molecular TEAD inhibitor on VGLL2-NCOA2 or TEAD1-NCOA2-induced cell transformation and tumorigenesis, we expect that TEAD inhibition will block VGLL2-NCOA2- but not TEAD1-NCOA2-induced oncogenic activity. It is because TEAD1-NCOA2 does not contain the auto-palmitoylation sites and the hydrophobic pocket in the C-terminal YAP-binding domain of TEAD1 that the TEAD small molecule inhibitor occupies (4). We also appreciate the reviewer’s suggestion of YAP5SA rescue experiments. However, due to its strong oncogenic activity, YAP5SA itself can induce robust downstream transcription and cell transformation with or without A485 treatment, as shown in Figure 5. Thus, it will be unlikely to address whether non-Hippo downstream genes induced by the fusions are important for cell transformation and tumorigenesis. Because of the distinct nature of transcriptional and chromatin landscapes controlled by VGLL2-NCOA2/TEAD-NCOA2 and YAP, we speculate that both Hippo and non-Hippo-related downstream genes contribute to the oncogenic activation and tumor phenotypes induced by the fusion proteins.

      (2) Rationale for selecting CBP/p300 for functional studies needs to be provided. The BioID-MS experiment identified many interacting proteins for VGLL2-NCOA2 and TEAD1-NCOA2 fusion proteins (Table S4). The authors should explain the scoring system used to identify the high-interacting proteins for VGLL2-NCOA2 and TEAD1-NCOA2 fusion proteins. Was CEP/p300 the top candidates on the list? Providing this information will help justify the focus on CBP/p300 and validate their importance in this study.

      We appreciate the reviewer’s point. CBP/P300 is among the top hits in our proteomics screens of both VGLL2-NCOA2 and TEAD1-NCOA2. Our focus on CBP/P300 is mainly due to the well-established interactions between CBP/P300 and the NCOA family transcriptional co-activators, in which the CBP/P300-NCOA complex plays a central role in mediating nuclear receptors-induced transcriptional activation (5). In addition, our data is consistent with another re-current Vgll2 fusion identified in scRMS, VGLL2-CITED2 (6) that has a C-term fusion partner from CITED2, which is a known CBP/P300 interacting protein (7).

      (3) p300 was revealed as a key driver for the VGLL2-NCOA2 and TEAD1-NCOA2 fusion proteins-induced transcriptome alteration and tumorigenesis. To strengthen the point, the authors should identify the p300 binding region on VGLL2-NCOA2 and TEAD1-NCOA2 fusion proteins. Mutants with defects in p300 binding/recruitment should be generated and included as a control in the related q-PCR and tumorigenic studies. This work will help confirm the crucial role of p300 in mediating the oncogenic effects of these two fusion proteins.

      We thank the reviewer for the suggestion. We have performed the co-immunoprecipitation assay using the deletion mutant form of VGLL2-NCOA2. We have performed additional co-immunoprecipitation experiments and demonstrated that the C-term NCOA2 part of the fusion is responsible for mediating the interaction between the fusion protein and CBP/P300. These results are now included in the new Figure 5A and are consistent with the reported structural analysis of CBP/P300-NCOA complex (8). In addition, our new data showed the inability of the VGLL2-NCOA2 ∆NCOA2 mutant to induce gene transcription (Figure 1-figure supplement 1D). Furthermore, our data using the small molecular CBP/P300 inhibitor clearly demonstrated that CBP/P300 is required to mediate cell transformation and tumorigenesis induced by the two fusion proteins in vitro and in vivo (Figure 5 and 6).

      (4) Another major issue is the overexpression system extensively used in this study. It is important to determine whether the VGLL2-NCOA2 and TEAD1-NCOA2 fusion genes are also amplified in cancer. If not, the expression levels of the VGLL2-NCOA2 and TEAD1-NCOA2 fusion proteins should be adjusted to endogenous levels to assess their oncogenic effects on gene transcription and tumorigenesis. This approach would make the study more relevant to the pathological conditions observed in scRMS cancer patients.

      We appreciate the reviewer’s input and acknowledge the limitation of the HEK293T and C2C12 cell-based models that rely on ectopic expression of VGLL2-NCOA2 and TEAD1-NCOA2 fusion proteins. It is currently unclear whether the VGLL2-NCOA2 and TEAD1-NCOA2 fusion genes are also amplified in sarcoma. As mentioned before, these surrogate cell culture systems allowed us to systemically compare the transcriptional regulation by the fusion proteins and YAP/TAZ and elucidate the molecular mechanism underlying the Hippo/YAP-independent oncogenic transformation induced by VGLL2-NCOA2 and TEAD1-NCOA2.

      References:

      (1) Genes Dev . 2007 Nov 1;21(21):2747-61. doi: 10.1101/gad.1602907. Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control

      (2) Genes Dev . 2010 Jan 1;24(1):72-85. doi: 10.1101/gad.1843810. A coordinated phosphorylation by Lats and CK1 regulates YAP stability through SCF(beta-TRCP)

      (3) VGLL2-NCOA2 leverages developmental programs for pediatric sarcomagenesis. Watson S, LaVigne CA, Xu L, Surdez D, Cyrta J, Calderon D, Cannon MV, Kent MR, Cell Rep. 2023 Jan 31;42(1):112013.

      (4) Lats1/2 Sustain Intestinal Stem Cells and Wnt Activation through TEAD-Dependent and Independent Transcription. Cell Stem Cell. 2020 May 7;26(5):675-692.e8.

      (5) Yi, P., Yu, X., Wang, Z., and O’Malley, B.W. (2021). Steroid receptor-coregulator transcriptional complexes: new insights from CryoEM. Essays Biochem. 65, 857–866.

      (6) A Molecular Study of Pediatric Spindle and Sclerosing Rhabdomyosarcoma: Identification of Novel and Recurrent VGLL2-related Fusions in Infantile Cases. Am J Surg Pathol . 2016 Feb;40(2):224-35. doi: 10.1097/

      (7) CITED2 and the modulation of the hypoxic response in cancer. Fernandes MT, Calado SM, Mendes-Silva L, Bragança J.World J Clin Oncol. 2020 May 24;11(5):260-274.

      (8) Yu, X., Yi, P., Hamilton, R.A., Shen, H., Chen, M., Foulds, C.E., Mancini, M.A., Ludtke, S.J., Wang, Z., and O’Malley, B.W. (2020). Structural insights of transcriptionally active, full-length Androgen receptor coactivator complexes. Mol. Cell 79, 812–823.e4.

    1. Reviewer #3 (Public review):

      Summary

      This work investigated the immune response in the murine retina after focal laser lesions. These lesions are made with close to 2 orders of magnitude lower laser power than the more prevalent choroidal neovascularization model of laser ablation. Histology and OCT together show that the laser insult is localized to the photoreceptors and spares the inner retina, the vasculature and the pigment epithelium. As early as 1-day after injury, a loss of cell bodies in the outer nuclear layer is observed. This is accompanied by strong microglial proliferation to the site of injury in the outer retina where microglia do not typically reside. The injury did not seem to result in the extravasation of neutrophils from the capillary network, constituting one of the main findings of the paper. The demonstrated paradigm of studying the immune response and potentially retinal remodeling in the future in vivo is valuable and would appeal to a broad audience in visual neuroscience.

      Strengths

      Adaptive optics imaging of murine retina is cutting edge and enables non-destructive visualization of fluorescently labeled cells in the milieu of retinal injury. As may be obvious, this in vivo approach is a benefit for studying fast and dynamic immune processes on a local time scale - minutes and hours, and also for the longer days-to-months follow-up of retinal remodeling as demonstrated in the article. In certain cases, the in vivo findings are corroborated with histology.

      The analysis is sound and accompanied by stunning video and static imagery. A few different sets of mouse models are used, a) two different mouse lines, each with a fluorescent tag for neutrophils and microglia, b) two different models of inflammation - endotoxin-induced uveitis (EAU) and laser ablation are used to study differences in the immune interaction.

      One of the major advances in this article is the development of the laser ablation model for 'mild' retinal damage as an alternative to the more severe neovascularization models. This model would potentially allow for controlling the size, depth and severity of the laser injury opening interesting avenues for future study.

      The time-course, 2D and 3D spatial activation pattern of microglial activation are striking and provide an unprecedented view of the retinal response to mild injury.

      Weaknesses

      Generalization of the (lack of) neutrophil response to photoreceptor loss - there is ample evidence in literature that neutrophils are heavily recruited in response to severe retinal damage that includes photoreceptor loss. Why the same was not observed here in this article remains an open question. One could hypothesize that neutrophil recruitment might indeed occur under conditions that are more in line with the more extreme damage models, for example, with a stronger and global ablation (substantially more photoreceptor loss over a larger area). This parameter space is unwieldy and sufficiently large to address the question conclusively in the current article, i.e. how much photoreceptor loss leads to neutrophil recruitment? By the same token, the strong and general conclusion in the title - Photoreceptor loss does not recruit neutrophils - cannot be made until an exhaustive exploration be made of the same parameter space. A scaling back may help here, to reflect the specific, mild form of laser damage explored here, for instance - Mild photoreceptor loss does not recruit neutrophils despite...

      EIU model - The EIU model was used as a positive control for neutrophil extravasation. Prior work with flow cytometry has shown a substantial increase in neutrophil counts in the EIU model. Yet, in all, the entire article shows exactly 2 examples in vivo and 3 ex vivo (Figure 7) of extravasated neutrophils from the EIU model (n = 2 mice). The general conclusion made about neutrophil recruitment (or lack thereof) is built partly upon this positive control experiment. But these limited examples, especially in the case where literature reports a preponderance of extravasated neutrophils, raise a question on the paradigm(s) used to evaluate this effect in the mild laser damage model.

      Overall, the strengths outweigh the weaknesses, provided the conclusions/interpretations are reconsidered.

    2. Author response:

      The following is the authors’ response to the previous reviews

      Reviewer #1 (Public review):

      Summary:

      The authors aimed to investigate the interaction between tissue-resident immune cells (microglia) and circulating systemic neutrophils in response to acute, focal retinal injury. They induced retinal lesions using 488 nm light to ablate photoreceptor (PR) outer segments, then utilized various imaging techniques (AOSLO, SLO, and OCT) to study the dynamics of fluorescent microglia and neutrophils in mice over time. Their findings revealed that while microglia showed a dynamic response and migrated to the injury site within a day, neutrophils were not recruited to the area despite being nearby. Post-mortem confocal microscopy confirmed these in vivo results. The study concluded that microglial activation does not recruit neutrophils in response to acute, focal photoreceptor loss, a scenario common in many retinal diseases.

      Strengths:

      The primary strength of this manuscript lies in the techniques employed.

      In this study, the authors utilized advanced Adaptive Optics Scanning Laser Ophthalmoscopy (AOSLO) to document immune cell interactions in the retina accurately. AOSLO's micron-level resolution and enhanced contrast, achieved through near-infrared (NIR) light and phase-contrast techniques, allowed visualization of individual immune cells without extrinsic dyes. This method combined confocal reflectance, phase-contrast, and fluorescence modalities to reveal various cell types simultaneously. Confocal AOSLO tracked cellular changes with less than 6 μm axial resolution, while phase-contrast AOSLO provided detailed views of vascular walls, blood cells, and immune cells. Fluorescence imaging enabled the study of labeled cells and dyes throughout the retina. These techniques, integrated with conventional histology and Optical Coherence Tomography (OCT), offered a comprehensive platform to visualize immune cell dynamics during retinal inflammation and injury.

      Thank you!

      Weaknesses:

      One significant weakness of the manuscript is the use of Cx3cr1GFP mice to specifically track GFP-expressing microglia. While this model is valuable for identifying resident phagocytic cells when the blood-retinal barrier (BRB) is intact, it is important to note that recruited macrophages also express the same marker following BRB breakdown. This overlap complicates the interpretation of results and makes it difficult to distinguish between the contributions of microglia and infiltrating macrophages, a point that is not addressed in the manuscript.

      We agree that greater emphasis is required that CX3CR1 mice exhibit fluorescence in not only microglia, but also other cells of macrophage origin including monocytes, perivascular macrophages and some hyalocytes.

      Through the advantages of in vivo AOSLO, however, we are able to establish that CX3CR1 cells are present within the tissue before the laser lesion is placed. This suggests they are tissue resident. We agree that it is possible that at later time points (days-weeks), systemic macrophages and/or monocytes may participate. Lack of rolling/crawling cells suggest they are not systemic. We elaborate on this point in a new section in the discussion:

      P29 L534-541:

      “CX3CR1-GFP mice exhibit fluorescence not only in microglia

      We recognize that the CX3CR1-GFP model can also label systemic cells such as monocytes/macrophages77. While it is possible these cells could infiltrate the retina in response to the lesion, we find it unlikely since there was no indication of the leukocyte extravasation cascade (rolling/crawling/stalled cells) within the nearest retinal vasculature. In addition to microglia, retinal perivascular macrophages and hyalocytes also exhibit GFP fluorescence and thus that these cells may also contribute toward damage resolution.”

      Another major concern is the time point chosen for analyzing the neutrophil response. The authors assess neutrophil activity 24 hours after injury, which may be too late to capture the initial inflammatory response. This delayed assessment could overlook crucial early dynamics that occur shortly after injury, potentially impacting the overall findings and conclusions of the study.

      The power of in vivo imaging makes these early assessments possible. Therefore, we have taken the reviewers concern and conducted an additional experiment which examines whether neutrophils are seen in the window of time between lesion and 24hrs. In a newly examined mouse, we find that within 3.5 hours post-lesion, neutrophils do not extravasate adjacent to the lesion site (see new “figure 8 – figure supplement 1”).

      Also see accompanying video (new “figure 8 – video 3”) for an example of nearby neutrophils flowing through OPL capillaries just microns away from the lesion site. Neutrophils are clearly contained within the vasculature and exhibit dynamics consistent with healthy retinal tissue. While it remains possible that the lesion may increase leukocyte stalling within the nearest capillaries, we are unable to confirm or deny this with a single experiment. We now submit this evidence as a new supplementary figure following the reviewer’s suggestion.

      Reviewer #2 (Public review):

      Summary:

      This study uses in vivo multimodal high-resolution imaging to track how microglia and neutrophils respond to light-induced retinal injury from soon after injury to 2 months post-injury. The in vivo imaging finding was subsequently verified by an ex vivo study. The results suggest that despite the highly active microglia at the injury site, neutrophils were not recruited in response to acute light-induced retinal injury.

      Strengths:

      An extremely thorough examination of the cellular-level immune activity at the injury site. In vivo imaging observations being verified using ex vivo techniques is a strong plus.

      We appreciate this recognition and hope that the reviewer considers the weaknesses below in the context of the papers identified strengths.

      Weaknesses:

      This paper is extremely long, and in the perspective of this reviewer, needs to be better organized.

      We agree and have taken the following steps to address this:

      (1) Paper has been shortened overall by 8%

      (2) We reorganized the following sections:

      a. Introduction: shortened

      b. Methods: merged section “Ex vivo confocal image processing” with “Ex vivo confocal imaging”.

      c. Results: most sections shortened, others simplified for concision

      d. Discussion: most sections shortened, removed “Microglial/neutrophil discrimination using label-free phase contrast”

      e. Figure references reorganized in order of their appearance.

      Study weakness: though the finding prompts more questions and future studies, the findings discussed in this paper are potentially important for us to understand how the immune cells respond differently to different severity levels of injury.

      On the heels of this burgeoning technology, we consider this report among the first studies of its kind. We are hopeful that it forms the foundation of many further investigations to come. We expect a rich parameter space to be explored with future studies including investigation of other time points, other injuries of varying degree and other immune cell populations (along with their interactions with each other). Each has the potential to reveal the complexities of the ocular immune system in action.

      Reviewer #3 (Public review):

      Summary:

      This work investigated the immune response in the murine retina after focal laser lesions. These lesions are made with close to 2 orders of magnitude lower laser power than the more prevalent choroidal neovascularization model of laser ablation. Histology and OCT together show that the laser insult is localized to the photoreceptors and spares the inner retina, the vasculature, and the pigment epithelium. As early as 1-day after injury, a loss of cell bodies in the outer nuclear layer is observed. This is accompanied by strong microglial proliferation at the site of injury in the outer retina where microglia do not typically reside. The injury did not seem to result in the extravasation of neutrophils from the capillary network constituting one of the main findings of the paper. The demonstrated paradigm of studying the immune response and potentially retinal remodeling in the future in vivo is valuable and would appeal to a broad audience in visual neuroscience. However, there are some issues with the conclusions drawn from the data and analysis that can be addressed to further bolster the manuscript.

      Strengths:

      Adaptive optics imaging of the murine retina is cutting edge and enables non-destructive visualization of fluorescently labeled cells in the milieu of retinal injury. As may be obvious, this in vivo approach is beneficial for studying fast and dynamic immune processes on a local time scale - minutes and hours, and also for the longer days-to-months follow-up of retinal remodeling as demonstrated in the article. In certain cases, the in vivo findings are corroborated with histology.

      Thank you!

      The analysis is sound and accompanied by stunning video and static imagery. A few different sets of mouse models are used, (a) two different mouse lines, each with a fluorescent tag for neutrophils and microglia, (b) two different models of inflammation - endotoxin-induced uveitis (EAU) and laser ablation are used to study differences in the immune interaction.

      Thank you!

      One of the major advances in this article is the development of the laser ablation model for 'mild' retinal damage as an alternative to the more severe neovascularization models. While not directly shown in the article, this model would potentially allow for controlling the size, depth, and severity of the laser injury opening interesting avenues for future study.

      We agree that there is an established community that is invested in developing titrated dosimetry for light damage models. As the reviewer recognizes, this parameter space is exceptionally large therefore we controlled this parameter by choosing a single wavelength that is commonly used in ophthalmoscopy (488nm), fixed duration and exposure regime that created a reproducible, mild damage of photoreceptors. At this titration we created a mild lesion that spares retina above and below.

      Weaknesses:

      (1) It is unclear based on the current data/study to what extent the mild laser damage phenotype is generalizable to disease phenotypes. The outer nuclear cell loss of 28% and a complete recovery in 2 months would seem quite mild, thus the generalizability in terms of immune-mediated response in the face of retinal remodeling is not certain, specifically whether the key finding regarding the lack of neutrophil recruitment will be maintained with a stronger laser ablation.

      It seems the concern here is whether our finding is generalizable to other damage regimes, especially more severe ones. While speculative, we would suspect that it is not generalizable across different lesions of greater severity. For example, puncturing Bruch’s membrane is an example of a more severe phenotype that is often encountered in laser damage. However, this creates a complicated model that not only induces inflammation, but also compromises BRB integrity and promotes CNV. The parameter space to be tested in the reviewer’s question is quite vast and therefore have tried to summarize the generalizability within our manuscript in

      P31 L586-588 “There are limitations on how generalizable this mild damage to more severe damage or disease phenotypes, but this acute damage model can begin to provide clues about how immune cells interact in response to PR loss. In this laser lesion model, we ablate 27% of the PRs in a 50 µm region.”

      (2) Mice numbers and associated statistics are insufficient to draw strong conclusions in the paper on the activity of neutrophils, some examples are below:

      a) 2 catchup mice and 2 positive control EAU mice are used to draw inferences about immune-mediated activity in response to injury. If the goal was to show 'feasibility' of imaging these mouse models for the purposes of tracking specific cell type behavior, the case is sufficiently made and already published by the authors earlier. It is possible that a larger sample size would alter the conclusion.

      We would like to highlight that the total number of mice studied in this report was 28 (18 in-vivo imaging, 10 ex-vivo histology, >40 lesions total). While power analysis is challenging as these are the first studies of their kind, we underscore that in vivo imaging allows those same mice to be studied multiple times longitudinally. This is not possible with traditional histology. Therefore, in vivo imaging not only reveals the temporal progression (unlike histology), but also increases the number of observations beyond a simple count of the “number of mice”.

      The goal of the study was not one of feasibility. The goal was to address a specific question in ocular biology: “do resident CX3CR1 cells recruit neutrophils in early, regional retinal injury”

      The low numbers that the reviewer points to, are not the primary data of the paper, rather, supportive control data. Moreover, we refocus the attention on the fact that our study is performed on 28 mice across multiple modalities and each corroborates a common finding that neutrophils do not appear to be recruited despite strong microglial response; a central finding of the paper.

      b) There are only 2 examples of extravasated neutrophils in the entire article, shown in the positive control EAU model. With the rare extravasation events of these cells and their high-speed motility, the chance of observing their exit from the vasculature is likely low overall, therefore the general conclusions made about their recruitment or lack thereof are not justified by these limited examples shown.

      The spirit of the challenge raised is that because nothing was seen, is not proof that nothing occurred. Said more commonly, “absence of evidence is not evidence of absence”- a quote often attributed to Carl Sagan. Yet we push back on this conjecture as we have shown, not only with cutting edge in vivo imaging, but also with ample histological controls as well as multiple transgenic animals (and corroborating IHC antibodies) that in none of these imaging modalities, at none of the time points we evaluated, did neutrophils aggregate or extravasate in response to photoreceptor ablation.

      Reviewer adds: “the chance of observing their exit from the vasculature is likely low overall…”

      This is the reason that we specifically chose a focal lesion model to increase any possible chance of imaging a rare event. The focal lesion provides both a time and a location for “where” to look. Small 50 micrometer lesions were sufficient to drive a strong local microglial response (figures 5,6,9). This was evidence that local inflammatory cues were present. Yet despite this activation, neutrophils were not recruited to this location. We emphasize that this is a strength of our approach over other pan-retinal damage models that may indeed miss the rare extravasation events that are geographically sparse and happen over hours.

      c) In Figure 3, the 3-day time point post laser injury shows an 18% reduction in the density of ONL nuclei (p-value of 0.17 compared to baseline). In the case of neutrophils, it is noted that "Control locations (n = 2 mice, 4 z-stacks) had 15 {plus minus} 8 neutrophils per sq.mm of retina whereas lesioned locations (n = 2 mice, 4 z-stacks) had 23 {plus minus} 5 neutrophils per sq.mm of retina (Figure 10b). The difference between control and lesioned groups was not statistically significant (p = 0.19)." These data both come from histology. While the p-values - 0.17 and 0.19 - are similar, in the first case a reduction in ONL cell density is concluded while in the latter, no difference in neutrophil density is inferred in the lesioned case compared to control. Why is there a difference in the interpretation where the same statistical test and methodology are used in both cases? Besides this statistical nuance, is there an alternate possibility that there is an increased, albeit statistically insignificant, concentration of circulating neutrophils in the lesioned model? The increase is nearly 50% (15 {plus minus} 8 vs. 23 {plus minus} 5 neutrophils per sq.mm) and the reader may wonder if a larger animal number might skew the statistic towards significance.

      The statistics and p-values will be dependent on the strategy of analysis performed. As described in the methods, we used a predetermined 50 micron cylinder for our counting analysis based on the average lesion size created. We used this circular window to roughly approximate the size of the common lesion size. However, recall that the damage is created in a single axis (a line projected on the retina) therefore it is possible that the analysis region is too generous to capture the exceptionally local damage.

      While the reviewer is focused on the nuance of statistics, we would like to refocus the conversation on our data that shows that very few neutrophils were observed at all (105 cells from 8 locations, P value reported). But missed in the above critique is that all neutrophils were contained within capillaries (Fig 10). We found no examples of extravasated neutrophils.  This is the major finding and is supported by our in vivo as well as ex vivo confirmation.

      (2) The conclusions on the relative activity of neutrophils and microglia come from separate animals. The reader may wonder why simultaneous imaging of microglia and neutrophils is not shown in either the EAU mice or the fluorescently labeled catchup mice where the non-labeled cell type could possibly be imaged with phase-contrast as has been shown by the authors previously. One might suspect that the microglia dynamics are not substantially altered in these mice compared to the CX3CR1-GFP mice subjected to laser lesions, but for future applicability of this paradigm of in vivo imaging assessment of the laser damage model, including documenting the repeatability of the laser damage model and the immune cell behavior, acquiring these data in the same animals would be critical.

      A double fluorescent mouse (neutrophils and microglia) is a logical next step of this research. In fact, we have now crossed these transgenic mice and are studying this double labeled mouse in a second manuscript in preparation. However, for this study, it was imperative that the fluorescent imaging light was kept at low levels as not to contribute or alter the lesion phenotype and accompanying immune response. Therefore, imaging two fluorescent channels to simultaneously view neutrophils and microglia in the same animal would have required at least 2X the visible light exposure for imaging. The imaging light levels used in the current study were carefully examined in our previous publications as to not create additional light damage (Joseph et al 2021).

      (3) Along the same lines as above, the phase contrast ONL images at time points from 3-day to 2-month post laser injury are not shown and the absence of this data is not addressed. This missing data pertains only to the in vivo imaging mice model but are conducted in histology that adequately conveys the time-course of cell loss in the ONL.

      The ocular preparation of the phase contrast data in figure 2, unfortunately developed an anesthesia induced cataract that precluded adequate image quality. This is not uncommon in long-term mouse ocular imaging preparations (Feng et al 2023). Instead, we chose to include the phase-contrast data to show the visually compelling intact and disrupted ONL damage for baseline and 1 day to show that the damage is not only focal, but also shows clear disruption to the somatic layers of the photoreceptors.

      It is suggested that the reason be elaborated for the exclusion of this data and the simultaneous imaging of microglia and neutrophils mentioned above.

      We agree and we have included the reason for the “not acquired” data within the figure 2 legend:

      “Phase contrast data was not acquired for time points 3 days-2 months due to development of cataract which obscured the phase contrast signal”

      Also, it would be valuable to further qualify and check the claims in the Discussion that "ex vivo analysis confirms in vivo findings" and "Microglial/neutrophil discrimination using label-free phase contrast"

      We maintain that ex vivo analysis both corroborates and in many cases, confirms our in vivo findings. We feel this is a strength of our manuscript rather than a qualifier. A) Damage localization is visible with OCT and confocal/phase contrast AOSLO in a region that matches the DAPI loss we see ex vivo. B) Disruption of the ONL seen with in vivo AOSLO is of the same size, shape and location as the ONL damage quantified ex vivo. C) No damage or disruption was seen in locations above the lesion with OCT or AOSLO, which matches our finding that only the ONL shows loss of nuclei whereas other more superficial layers are spared. D) Microglial localization is found both in vivo and ex vivo and E) lack of neutrophil aggregation or extravasation was neither seen in vivo or ex vivo. Given the evidence above, we contend that this strong synergistic and complementary approach corroborates the experimental data in two ways of studying this tissue.

      We agree that the claims made in the section entitled “Microglial/neutrophil discrimination using label-free phase contrast” are not strongly supported by the phase-contrast imaging presented in this paper. Accordingly, we have since removed this section based on reviewer suggestion.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      (1) Based on the title and abstract, the main focus of the manuscript appears to be the immune response. However, most of the manuscript is dedicated to the authors' imaging technique. Additionally, several important concerns regarding the investigation of the immune response in the retina need to be addressed.

      We understand that emphasis may appear to be on the imaging technique, however, because AOSLO is not a widely used technology, we are committed to explaining the technique so that it both builds awareness and confidence in the way this exciting new data is acquired.

      (2) The authors indicate '1 day post-injury' as a timeframe spanning between 18 and 28 hours post-injury. This is a rather wide window of time, which could potentially affect the analysis. It is necessary to demonstrate that there is no significant difference in the immune response, particularly in terms of microglial morphology and branch orientation, between 18 and 28 hours post-injury.

      We agree that a fine time scale may show even greater insight to the natural history of the inflammatory response. However, we feel that our chosen time points go above and beyond the temporal precision that is offered by other investigations, especially considering the novel multi-modal imaging performed here. Studies using finer temporal sampling are poised for future investigation.

      (3) The authors should consider using additional markers or complementary techniques to differentiate between microglia and recruited macrophages, such as incorporating immunohistochemistry with P2RY12, a specific marker for microglia that helps distinguish them from macrophages, and CD68 or F4/80, markers for recruited macrophages. It is also crucial for the authors to include a discussion addressing the limitations of using Cx3cr1GFP mice and the potential impact on result interpretation. It is fundamental to validate the findings and clarify the roles of microglia and macrophages.

      The wonders of current IHC is that there are myriad antibodies and labels that “could” be used. We used what we felt were the most compelling for this stage of early investigation. We look forward to studies that employ this wider range of labels. See our response to reviewer 1’s first comment above for addressing the limitations of using Cx3CR1 mice.

      (4) Analyzing neutrophil responses at 24 hours post-injury may be too late to capture the critical early dynamics of inflammation. By this time, the initial recruitment and activation phases of neutrophils may have already peaked or begun to resolve, potentially missing key insights into the immediate immune response. The authors should conduct additional analysis of neutrophil responses at earlier time points post-injury, such as 6 or 12 hours. Including these time points would provide a more comprehensive and conclusive analysis of the neutrophil response, helping to delineate the progression of inflammation and its implications for subsequent healing processes.

      This point has been addressed above. Briefly, we have now included a new experiment (and figure + video) that shows no neutrophil extravasation at earlier time points. We thank the reviewer for this helpful suggestion.

      Reviewer #2 (Recommendations for the authors):

      This paper is extremely long, and in the perspective of this reviewer, needs to be better organized.

      (1) There was a lengthy description and verification of light-induced injury and longitudinal tracking of healing, which I believe can be further cleaned up and made more succinct.

      We have cleaned-up and re-organized the manuscript (see above response for details). Manuscript has been reorganized and reduced by 8%.

      (2) The intention/goal of the paper can be further strengthened. On page 33: "to what extent do neutrophils respond to acute neural loss in the retina?" This particular statement is so clear and really brings out the purpose of this study, and it will be great to see something like this in the opening statement.

      We thank the reviewer for this excellent suggestion. We have modified the final paragraph of the introduction to strengthen our study’s intention.

      P4 L45-47: Here, we ask the question: “To what extent do microglia/neutrophils respond to acute neural loss in the retina?” To begin unraveling the complexities in this response, we deploy a deep retinal laser ablation model.

      (3) The figures are not mentioned in the manuscript in the order they were numbered. It makes it extremely challenging to follow along. The methods/results sections started with Figure 1, then on to Figure 4, then back to Figures 2 and 3, etc. This reviewer recommends re-organizing figures and their order of appearance so the contents of the figures are referred to in the paragraph in the most efficient and clear manner.

      We have re-organized the appearance of figure references throughout the paper.

      (4) Figure 2: phase contrast was not acquired on days 3, 7, and 2 months. Please briefly explain the reason in the caption.

      Addressed above.

      (5) Figure 4 OPL layer, the area highlighted in a dashed circle was meant to demonstrate that perfusion was intact, but I cannot see the flow in the highlighted area very well at day 7 and 2 months (especially 2 months). Please explain.

      Perfusion maps are often difficult to interpret as a static image. Therefore, we have additionally provided the raw video data (“OPL_vasculature_7d” and “OPL_vasculature_2mo”) which helps visualize active perfusion. To the reviewer’s point, videos reveal that RBC motion is maintained in the capillaries of this location.

      (6) While there's a thorough discussion of the biological impact of the finding, the uniqueness of the imaging technique can be better highlighted. Immune response toward injury is highly dynamic and is often the first step of wound healing. To observe such dynamic events longitudinally in the living eye at the cellular level, it requires a special imaging technique such as the type addressed here. The author can better address the technical uniqueness of studying this type of biological event for readers less familiar with AOSLO.

      We agree and following the reviewer’s suggestion have further emphasized the advance in the current manuscript in two additional places:

      (1) Within the introduction

      P3-4 L21-42: “A missed window of interaction is highly problematic in histological study where a single time point reveals a snapshot of the temporally complex immune response, which changes dynamically over time. Here, we use in vivo imaging to overcome these constraints.

      Documenting immune cell interactions in the retina over time has been challenged by insufficient resolution and contrast to visualize single cells in the living eye. The microscopic size of immune cells requires exceptional resolution for detection. Recently, advances in AOSLO imaging have provided micron-level resolution and enhanced contrast for imaging individual immune cells in the retina and without requiring extrinsic dyes(7,23). AOSLO provides multi-modal information from confocal reflectance, phase-contrast and fluorescence modalities, which can reveal a variety of cell types simultaneously in the living eye. Here, we used confocal AOSLO to track changes in reflectance at cellular scale. Phase-contrast AOSLO provides detail on highly translucent retinal structures such as vascular wall, single blood cells(27–29), PR somata(30), and is well-suited to image resident and systemic immune cells.(7,23) Fluorescence AOSLO provides the ability to study fluorescently-labeled cells(25,31,32) and exogenous dyes(27,33) throughout the living retina. These modalities used in combination have recently provided detailed images of the retinal response to a model of human uveitis.(23,34) Together, these innovations now provide a platform to visualize, for the first time, the dynamic interplay between many immune cell types, each with a unique role in tissue inflammation.”

      (2) Within the discussion

      P34-35 L656-662 “Beyond the context of this specific finding, we share this work with the excitement that AOSLO cellular level imaging may reveal the interaction of multiple immune cell types in the living retina. By using fluorophores associated with specific immune cell populations, the complex dynamics that orchestrate the immune response may be examined in this specialized tissue. This work and future studies may reveal further insights to the interactions of single immune cells in the living body in a non-invasive way.”

      Reviewer #3 (Recommendations for the authors):

      Some other comments:

      (1) The reader may wonder why if all findings are confirmed by histology would an in vivo imaging model be needed. This does not need a generalized explanation given the typical virtues of an in vivo model, but perhaps the authors may want to amplify their findings in the current context, for example, those on the shorter minutes to hours timescales (Figure 2, Supplement 1) that would have been resource and time intensive, and likely impossible, to gather via histology alone.

      The reviewer appropriately underscores the utility of in vivo imaging above histological-only investigation. In response, we have added text in the introduction to emphasize the nuanced, but important value of both longitudinal imaging as well as dynamic imaging which is not possible with conventional histology (e.g. blood perfusion status, immune cell interactions etc.)

      P3-4 L21-42 (these points also addressed in response to reviewer #2 above)

      (2) A few questions and comments on the laser ablation model<br /> - It is alluded to in the Discussion in Lines 519-521 that the procedure is highly reproducible (95%) but the associated data for this repeatability metric is not shown.

      We agree that the criterion for determining a “successful lesion” requires further elaboration. Therefore, we have now included the criteria for successful lesions in the methods as well as discussion (in bullet below):

      Methods:

      P9-10 L129-133: “This protocol produced a hyper-reflective phenotype in the >40 locations across 28 mice. In rare cases, the exposure yielded no hyper-reflective lesion and were often in mice with high retinal motion, where the light dosage was spread over a larger retinal area. These locations were not included in the in-vivo or histological analysis.”

      - The methods state that a 24 x 1-micron line is focused on the retina, but all lesions seem to appear elliptical where the major to minor axis ratio is a lot smaller than this intended size. One wonders what leads to this discrepancy.

      We expect that this observation is related to the response above, we have added the following:

      Discussion:

      P27 L497-505: “The damage took on an elliptical form, likely due to: 1) Eye motion from respiration and heart rate which spreads the light over a larger integrative area (rather than line). 2) The impact of focal light scatter. 3) A micron-thin line imparting damage on cells that are many microns across manifesting as an ellipse. The majority of light exposures produced lesions of this elliptical shape. In a few conditions, for the reasons described above, the exposure failed to produce a strong, focal damage phenotype. To improve lesion reproducibility, future experiments should control for subtle eye motion affecting light damage, especially for long exposures.”

      (3) Lastly, a thickening is noted in the ONL after laser injury that seems to cause a thinning of the INL as well (Figure 3) which may increase the apparent INL nuclei density.

      The reviewer’s careful eye finds local swelling after injury. However, despite swelling, the segregation between INL and ONL was maintained in all days we examined. Thus, no ONL cells were included in INL counts (see figure 3A & 3D).

      Also, the ONL - inner (panel B) seems to show a little reduction in cell density in the same elliptical shape as the outer ONL in panel C.

      We agree with this observation and was one of the reasons we included this detailed analysis of both the inner and outer half of the ONL. Our finding is that there is more prominent loss of nuclei in the outer half of the ONL. While the mechanism for this is not understood, we felt it was an important finding to include and further shows the axial specificity of the light damage we are inducing (especially at day 1 observation).

      Lastly, the reduction in nuclear density is visually obvious in the ONL at the 1 and 3-day time points but the p-statistic does not seem to convey this. One may consider performing the analysis on panel F on a smaller region surrounding the lesion to more reliably reveal these effects.

      Related to the response above, the ONL shows a persistence of nuclei in the upper half of that layer, whereas the outer half, shows a visible reduction. Therefore, we expect that the reviewer is correct that a statistical analysis that considers just the outer half of the ONL would likely show a strong statistical significance. The challenge, however, is that our analysis strategy counted all cells within a 50 micron diameter cylinder through the entirety of the ONL (meaning strong loss in the outer half was attenuated by weak loss in the inner half). A more detailed sub-layer analysis is challenging given the notable retinal remodeling over days-to-weeks that make it challenging to attribute layers within the ONL as viable landmarks for the requested analysis.

      (4) In Figure 6, the NIR confocal image and fluorescent microglia seem to share the same shape, starting from the OPL and posterior to it. This is particularly evident in the 3 and 7-day time points in the ONL and ONL/IS images. This departs from lines 567-577 where the claim is made that the hyperreflective phenotype in NIR images does not emerge from the microglia and neutrophils. This discrepancy should be clarified. It may be so that the hyperreflective phenotype as observed by Figure 2 at shorter timescales is not related to the microglia but the locus of hyper-reflections changes at longer time scales to involve the microglia as well as in Figure 6. One potential clue/speculation of the common shapes/size in confocal hyper-reflectance and fluorescent microglia of Figure 6 comes from Figure 9 where the microglia seem to engulf the photoreceptor phagosomes in the DAPI stains. It is possible that the hyper-reflections arise from the phagosomes but their co-localization with microglia seems to demonstrate a shared size/shape. As an addendum to the first point, such correlations are a power of the in vivo model and impossible to achieve in histology.

      The reviewer shows a deep understanding of our data. We agree with many of the points, but for the purpose of the paper many of the above offerings are speculative and we have chosen not to elaborate on these points as it is not definitive from the data. Instead, we direct the reader to an important finding that within hours, the hyper-reflective phenotype is seen in both OCT and AOSLO, whereas microglial somas/processes have not yet migrated into the hyper-reflective region. We have now emphasized this point in the discussion section:

      P29-30 L543-552: “A common speculation is that the increased backscatter may arise from local inflammatory cells that activate or move into the damage location. In our data, confocal AOSLO and OCT revealed a hyperreflective band at the OPL and ONL after 488 nm light exposure (Figure 2a, b). We found that the hyperreflective bands appeared within 30 minutes after the laser injury, preceding any detectable microglial migration toward the damage location (Figure 2 – figure supplement 1 and Figure 6 – figure supplement 1). We thus conclude that the initial hyperreflective phenotype is not caused by microglial cell activity or aggregation.”

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      __* SUMMARY

      This study utilizes the developing chicken neural tube to assess the regulation of the balance between proliferative and neurogenic divisions in the vertebrate CNS. Using single-cell RNAseq and endogenous protein tagging, the authors identify Cdkn1c as a potential regulator of the transition towards neurogenic divisions. Cdkn1c knockdown and overexpression experiments suggest that low Cdkn1c expression enhances neurogenic divisions. Using a combination of clonal analysis and sequential knockdown, the authors find that Cdkn1c lengthens the G1 phase of the cell cycle via inhibition of cyclinD1. This study represents a significant advance in understanding how cells can transition between proliferative and asymmetric modes of division, the complex and varying roles of cycle regulators, and provides technical advance through innovative combination of existing tools.

      MAJOR AND MINOR COMMENTS *__

      Overall Sample numbers are missing or unclear throughout for all imaging experiments. The authors should add numbers of cells analysed and/or numbers of embryos for their results to be appropriately convincing.

      This information is now provided in the figure legends (numbers of cells analyzed and/or numbers of embryos) except for data in Figure 5, which are presented in a new Supplementary Table

      Values and error bars on graphs must be defined throughout. Are the values means and error bars SD or SEM?

      We have used SD throughout the study. This information has now been added in figure legends.

      Results 2

      ____A reference should be provided for cell type distribution in spinal neural tube, where the authors state that cell bodies of progenitors reside within the ventricular zone.

      We now cite a recent review on spinal cord development (Saade and E. Marti, Nature Reviews Neuroscience, 2025) to illustrate this point

      The authors state that Cdkn1c "was expressed at low levels in a salt and pepper fashion in the ventricular zone, where the cell bodies of neural progenitors reside, and markedly increased in a domain immediately adjacent to this zone which is enriched in nascent neurons on their way to the mantle zone. In contrast, the transcript was completely excluded from the mantle zone, where HuC/D positive mature neurons accumulate." It is not clear if this is referring only to E4 or also to E3 embryos. Indeed, Cdkn1c expression appears to be much more salt and pepper at E3 and only resolves into a clear domain of high expression adjacent to the mantle zone at E4. It may be helpful if this expression pattern could be described in a bit more detail highlighting the changes that occur between E3 and E4.

      We have now reformulated this paragraph as follows: "At E3, the transcript was expressed at low levels in a salt and pepper fashion in the ventricular zone, where the cell bodies of neural progenitors reside (Saade and Marti, 2025)). One day later, at E4, this salt and pepper expression was still detected in the ventricular zone, while it markedly increased in the region of the mantle zone that is immediately adjacent to the ventricular zone. This region is enriched in nascent neurons on their way to differentiation that are still HuC/D negative. In contrast, the transcript was completely excluded from the more basal region of the mantle zone, where mature HuC/D positive neurons accumulate.

      It would be useful to annotate the ISH images in Fig 2A to show the ventricular and mantle zones as defined by immunofluorescence.

      Thank you for the suggestion. We have now added a dotted line that separates the ventricular zone from the mantle zone at E3 and E4 in Figure 2A

      Reference should be included for pRb expression dynamics.

      This section has been rewritten in response to comments from Reviewer #3, and now contains several references regarding pRb expression dynamics. See detailed response to Reviewer #3 for the new version

      Could the Myc tag insertion approach disrupt protein function or turnover? ____Why was the insertion target site at the C terminus chosen?

      The first reason was practical: at the time when we decided to generate a KI in Cdkn1c, we had already generated several successful KIs at C-termini of other genes, in particular using the P2A-Gal4 approach (see Petit-Vargas et al, 2024), and had not yet experimented with N-terminal Gal4-P2A. We therefore decided to use the same approach for Cdkn1c.

      We also chose to target the C-terminus to avoid affecting the active CKI domain which is located at the N-terminus.

      Nevertheless, the C-terminal targeting may have an impact on the turnover: it has been described that CDK2 phosphorylation of a Threonin close to the C-terminus of Cdkn1c leads to its targeting for degradation by the proteasome from late G1 (Kamura et al, PNAS, 2003; doi: 10.1073/pnas.1831009100). We can therefore not rule out that the addition of the Myc tags close to this phosphorylation site modulates the dynamics of Cdkn1c degradation. We note, however, that we observed little overlap between the Cdkn1c-Myc and pRb signals in cycling progenitors, suggesting that Cdkn1c is effectively degraded from late G1.

      OPTIONAL Could a similar approach be used to tag Cdkn1c with a fluorescent protein to enable live imaging of dynamics?

      Although it could be done, we have not attempted to do this for CDKN1c because our current experience of endogenous tagging of several genes with a similar expression level (based on our scRNAseq data) and nuclear localization (Hes5, Pax7) with a fluorescent reporter shows that the fluorescent signal is extremely low or undetectable in live conditions; Therefore we favored the multi-Myc tagging approach, and indeed we find that the Myc signal in progenitors is also very low even though it is amplified by the immunohistology method; this suggests that most likely, the only signal that would be detected -if any- with a fluorescent approach would be the peak of expression in newborn neurons.

      In suppl Fig 1C nlsGFP-positive cells are shown in the control shRNA condition. How can this be explained and does it impact the interpretation of the findings?

      The reviewer refers to the control gRNA condition in panel C, that shows that two small patches of GFP-positive cells are visible in the whole spinal cord of this particular embryo.

      Technically, the origin of these "background" cells could be multiple. A spontaneous legitimate insertion at the CDKN1c locus by homologous recombination is possible, although we tend to think it is unlikely, given the extremely short length of the arms of homology; illegitimate insertions of the Myc-P2A-Gal4 cassette at off-target sites of the control gRNA is a possibility. Alternatively, a low-level leakage of Gal4 expression from the donor vector could lead to a detectable nls-GFP expression in a few cells via Gal4-UAS amplification.

      In any case, these cells are observed at a very low frequency (1 or 2 patches of cells/embryo) relative to the signal obtained in presence of the CDKN1c gRNA#1 (probably several thousand positive cells per embryo). This suggests that if similar "background" cells are also present in presence of the CDKN1c gRNA, they would not significantly contribute to the signal, and would not impact the interpretation.

      In Fig 2B, there are a number of Myc labelled cells in the mantle zone, whereas the in situ images show no appreciable transcript expression. Is this because the protein but not the transcript is present in these cells? Could the authors comment on this?

      It is indeed possible that the CDKN1c protein is more stable than the transcript in newborn neurons and remains detectable in the mantle zone after the mRNA disappears. In Gui et al, 2006, where they use an anti-CDKN1c antibody to label the protein in mouse spinal cord transverse sections at E11.5 (Figure 1B), a few positive cells are also visible basally. They could correspond to neurons that have not yet degraded CDKN1c, although it is unclear in the picture whether these cells are really in the mantle zone or in the adjacent dorsal root ganglion; we note that a similar differential expression dynamics between mRNA and protein has been described for Tis21/Btg2 in the developing mouse cortex, where the protein, but not the mRNA, is detected in some differentiated bIII-tubulin-positive neurons (Iacopetti et al, 1999).

      However, related to our response above to a previous comment from the same reviewer, we cannot rule out the possibility that the Myc tags modulate the turnover of CDKN1c protein and slow down the dynamics of its degradation in differentiating neurons.

      We have added a sentence to indicate the presence of these cells: "In addition, a few Myc-positive cells were located deeper in the mantle zone, where the transcript is no more present, suggesting that the protein is more stable than the transcript."

      Results

      It should be mentioned how mRNA expression levels were quantified in the shRNA validation experiment (supp Fig 2A).

      We did not quantify the level of mRNA reduction, it was just evaluated by eye. The reason for choosing shRNA1 for the whole study was dictated by 1) the fact that we more consistently saw (by eye) a reduction in the signal on the electroporated side with this construct than with the other shRNAs, and 2) that the effect on neurogenesis was also more consistent.

      We will perform additional experiments to provide some quantitation of the shRNA effect, as this is also requested by Reviewer #3.

      As our Cdkn1c KI approach offers a direct read-out of the protein levels in the ventricular and mantle zones, and since our shRNA strategy of "partial knock-down" is based on the idea that the shRNA effect should be more complete in progenitors expressing Cdkn1c at low levels than in newborn progenitors that express the protein at a higher level, we propose to validate the shRNA in the Cdkn1c-Myc knock-in background, by comparing the Myc signal intensity between control and Cdkn1c shRNA conditions

      Figure panels are not currently cited in order. Citation or figure order could be changed.

      We have now added a common citation of the panels referring to analyses at 24 and 48 hours after electroporation (now Figure 3A-F), allowing us to display the experimental data on the figure according to the timing post electroporation, while the text details the phenotype at the later time point first.

      The authors should provide representative images for the graphs shown in Fig 3A and 3B. These could go into supplementary if the authors prefer.

      We have added images in a revised version of the Figure 3, as requested

      A supplementary figure showing the Caspase3 experiment should be added.

      We have added data showing Caspase3 experiments in Supplementary Figure 3D

      OPTIONAL. Identification of sister cells in the clonal analysis experiments is based on static images and cannot be guaranteed. Could live imaging be used to watch divisions followed by fixation and immunostaining to confirm identity?

      We agree with the reviewer that direct tracking is the most direct method for the identification of pairs of sister cells. However, it remains technically challenging, and the added value compared to the retrospective identification would be limited, while requiring a great workload, especially considering the many different experimental conditions that we have explored in this study.

      Results 4

      How did the authors quantify the intensity of endogenous Myc-tagged Cdkn1c to confirm the validity of the Pax7 locus knock in? Can they show that the expression level was consistently lower than the endogenous expression in neurons? Quantification and sample numbers should be shown.

      We have not done these quantifications in the original version of the study. We will add a quantification of the signal intensity in the ventricular and mantle zones for the revised version of the manuscript, as also requested by reviewer #3.

      In Fig 4B, the brightness of row 2 column 1 is lower than the same image in row 2 column 2, which is slightly misleading, since it makes the misexpressed expression level look lower than it is compared with endogenous in column 3. Is this because only a single z-section is being displayed in the zoomed in image? If so, this should be stated in the figure legend.

      All images in the figure are single Z confocal images. Images in Column 2 (showing both electroporated sides of the same tube) were acquired with a 20x objective, whereas the insets shown in Columns 1 and 3 are 100x confocal images. 100x images on both sides were acquired with the same acquisition parameters, and the display parameters are the same for both images in the figure. The signal intensity can therefore be compared directly between columns 1 and 3.

      We have modified the legend of the Figure to indicate these points: "The insets shown in Columns 1 and 3 are 100x confocal images acquired in the same section and are presented with the same display parameters".

      In Fig 4D, the increase in neurogenic divisions is mainly because of the rise in terminal NN divisions according to the graph, but no clear increase in PN divisions. Could the authors comment on the significance of this?

      Our interpretation is that Pax7-CDKN1c misexpression experiments cause both PP to PN and PN to NN conversions. This is coherent with the classical idea of a progressive transition between these three modes of division in the spinal cord. Coincidentally, in our experimental conditions (timing of analysis and level of overexpression), the increase in PN resulting from PP to PN conversions is perfectly balanced by a decrease resulting from PN to NN conversions, giving the artificial impression that the PN compartment is unaffected. A less likely hypothesis would be that misexpression directly transforms symmetric PP into symmetric NN divisions, and that asymmetric PN divisions are insensitive to CDKN1c levels. We do not favor this hypothesis, because one would expect, in that case, that the shRNA approach would also not affect the PN compartment, and it is not what we have observed (see Figure 3H - previously 3F).

      We have modified the manuscript to elaborate on our interpretation of this result: "We observed an increase in the proportion of terminal neurogenic (NN) divisions and a decrease in proliferative (PP) divisions (Figure 4D). This suggests that CDKN1c premature expression in PP progenitors converts them to the PN mode of division, while the combined endogenous and Pax7-driven expression of CDKN1c converts PN progenitors to the NN mode of division. Coincidentally, at the stage analyzed, PP to PN conversions are balanced by PN to NN conversions, leaving the PN proportion artificially unchanged. The alternative interpretation of a direct conversion of symmetric PP into symmetric NN divisions is less likely, because the PN compartment was affected in the reciprocal CDKN1c shRNA approach (see Figure 3H)."

      Results 5 ____The proportion of pRb-positive progenitors having entered S phase was stated to be higher at all time points; however, it is not significantly higher until 6h30 and is actually trending lower at 2h30.

      Thank you for pointing this out. We have modified the sentence in the main text.

      "We found that the proportion of pRb positive progenitors having entered S phase (EdU positive cells) was significantly higher at all time points examined more than 4h30 after FT injection in the Cdkn1c knock-down condition compared to the control population (Figure 5D)"

      OPTIONAL Could CyclinD1 activity be directly assessed?

      This is an interesting suggestion. For example, using the fluorescent CDK4/6 sensor developed by Yang et al (eLife, 2020; https://doi.org/10.7554/eLife.44571) in a CDKN1c shRNA condition would represent an elegant experimental alternative to complement our rescue experiments with the double CDKN1c/CyclinD1 shRNA. However, we fear that setting up and calibrating such a tool for in vivo usage in the chick embryo represents too much of a challenge for incorporation in this study.

      General ____Scale bars missing fig s1c s4d.

      Thanks for pointing this out. Scale bars have been added in the figures and corresponding legends

      OPTIONAL Some of the main findings be replicated in another species, for example, mouse or human to examine whether the mechanism is conserved.

      OPTIONAL Could use approaches other than image analysis be used to reinforce findings, for example biochemical methods, RNAseq or FACS?

      We agree that it will be interesting and important that our findings are replicated in other species, experimental systems, and even tissues, or by alternative experimental approaches. Nevertheless, it is probably beyond the scope of this study.

      A model cartoon to summarise outcomes would be useful.

      We thank the reviewer for the suggestion. We will propose a summary cartoon for the revised version of the manuscript.

      Unclear how cells were determined to be positive or negative for a label. Was this decided by eye? If so, how did the authors ensure that this was unbiased?

      Positivity or negativity was decided by eye. However, for each experiment, we ensured that all images of perturbed conditions and the relevant controls were analyzed with the same display parameters and by the same experimenter to guarantee that the criteria to determine positivity or negativity were constant.

      Reviewer #1 (Significance (Required)):

      SIGNIFICANCE

      Strengths: This manuscript investigates the mechanisms regulating the switch from symmetric proliferative divisions to neurogenic division during vertebrate neuronal differentiation. This is a question of fundamental importance, the answer to which has eluded us so far. As such, the findings presented here are of significant value to the neurogenesis community and will be of broad interest to those interested in cell divisions and asymmetric cell fate acquisition. Specific strengths include:

      • Variety of approaches used to manipulate and observe individual cell behaviour within a physiological context.
      • A limitation of using the chicken embryo is the lack of available antibodies for immunostaining. The authors take advantage of recent advances in chicken embryo CRISPR strategy to endogenously tag the target protein with Myc, to facilitate immunostaining.
      • Innovative combination of genetic and labelling tools to target cells, for example, use of FlashTag and EdU in combination to more accurately assess G1 length than the more commonly used method.
      • Premature misexpression demonstrates that the previously observed dynamics indeed regulate cell fate.
      • Mechanistic insight by examining downstream target CyclinD1.
      • Clearly presented with useful illustrations throughout.
      • Logic is clear and examination thorough.
      • Conclusions are warranted on the basis of their findings. ____Limitations ____T____his study primarily used visual analysis of fixed tissue images to assess the main outcomes. To reinforce the conclusions, these could be supplemented with live imaging to appreciate dynamics, or biochemical techniques to look at protein expression levels.

      Some aspects of quantification require explanation in order for the experiments to be replicated.

      It is imperative that precise sample sizes are included for all experiments presented.

      Advance: ____First functional demonstration role for Cdkn1c in regulating neurogenic transition in progenitors.

      Conceptual advance suggesting Cdkn1c has dual roles in driving neurogenesis: promoting neurogenic divisions of progenitors and the established role of mediating cell cycle exit previously reported.

      Technical advances in the form of G1 signposting and endogenous Myc tagging using CRISPR in chicken embryonic tissue.

      Audience:

      Of broad interest to developmental biologists. Could be relevant to cancer, since Cdkn1c is implicated.

      Please define your field of expertise with a few keywords to help the authors contextualize your point

      Developmental biology, vertebrate embryonic development, neuronal differentiation, imaging. Please note that we have not commented on RNAseq experiments as these are outside of our area of expertise.

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      The work by Mida and colleagues addresses important questions about neurogenesis in the embryo, using the chicken neural tube as their model system. The authors investigate the mechanisms involved in the transition from stem cell self-renewal to neurogenic progenitor divisions, using a combination of single cell, gene functional and tracing studies.

      The authors generated a new single cell data set from the embryonic chicken spinal cord and identify a transitory cell population undergoing neuronal differentiation, which expresses Tis21, Neurog2 and Cdkn1c amongst other genes. They then study the role of Cdkn1c and investigate the hypothesis that it plays a dual role in spinal cord neurogenesis: low levels favour transition from proliferative to neurogenic divisions and high levels drive cell cycle exit and neuronal differentiation.

      Major comments

      I have only a general comment related to the main point of the paper. The authors claim that Cdkn1c onset in cycling progenitor drives transition towards neurogenic modes of division, which is different from its role in cell cycle exit and differentiation. Figures 3F and 4D are key figures where the authors analysed PP, PN and NN mode of divisions via flash tag followed by analysis of sister cell fate. If their assumption is correct, shouldn't they also see, for example in Fig. 4D, an increase in PN or is this too transient to be observed or is it bypassed?

      As already stated in our response to a similar question from reviewer #1, our interpretation is that Pax7-CDKN1c misexpression experiments cause both PP to PN and PN to NN conversions. This is coherent with the classical idea of a progressive transition between these three modes of division in the spinal cord. Coincidentally, in our experimental conditions (timing of analysis and level of overexpression), the increase in PN resulting from PP to PN conversions is perfectly balanced by a decrease resulting from PN to NN conversions, giving the artificial impression that the PN compartment is unaffected. A less likely hypothesis would be that misexpression directly transforms symmetric PP into symmetric NN divisions, and that asymmetric PN divisions are insensitive to CDKN1c levels. We do not favor this hypothesis, because one would expect, in that case, that the shRNA approach would also not affect the PN compartment, and it is not what we have observed (see Figure 3H - previously 3F).

      At the moment, the calculations of PN and NN frequencies are merged in the text, so perhaps describing PN and NN numbers separately will help better understand the dynamics of this gradual process (especially since there is little to no difference in PN).

      Regarding the results of Pax7 overexpression presented in figure 4D (now Figure 4E in the revised version), we had made the choice to merge PN and NN values in the main text to focus on the neurogenic transition from PP to PN/NN collectively. We agree with this reviewer, as well as with reviewer #1, that it should be more detailed and better discussed. We therefore propose to modify the paragraph as follows (and as already indicated above in the response to reviewer #1):

      "We observed an increase in the proportion of terminal neurogenic (NN) divisions and a decrease in proliferative (PP) divisions (Figure 4D). This suggests that Cdkn1c premature expression in PP progenitors converts them to the PN mode of division, while the combined endogenous and Pax7-driven expression of Cdkn1c converts PN progenitors to the NN mode of division. Coincidentally, at the stage analyzed, PP to PN conversions are balanced by PN to NN conversions, leaving the PN proportion artificially unchanged. The alternative interpretation of a direct conversion of symmetric PP into symmetric NN divisions is less likely, because the PN compartment was affected in the reciprocal Cdkn1c shRNA approach (see Figure 3F, now 3H)."

      Could the increase in NN be compatible also with a role in cell cycle exit and differentiation, for example from cells that have been targeted and are still undergoing the last division (hence marked by flash tag) or there won't be any GFP cells marked by flash tag a day after expression of high levels of Cdkn1c?

      It is likely that a proportion of cells that would normally have done a NN division are pushed to a direct differentiation that bypasses their last division in the Pax7-CDKN1c condition, and that they contribute to the general increase in neuron production observed in our quantification 48hae (Figure 3F -previously 3C). However, these cases would not contribute to the increase in the NN quantification in pairs of sister cells 6 hours after division at 24hae (Figure 4E - previously 4D), because by design they would not incorporate FlashTag. The rise in NN is therefore the result of a PN to NN conversion.

      Basically, what would the effect of expressing higher levels of Cdkn1c be? I guess this will really help them distinguish between transition to neurogenic division rather than neuronal differentiation. If not experimentally, any further comments on this would be appreciated.

      These experiments have been performed and presented in the study by Gui et al., 2007, which we cite in the paper. Using a strong overexpression of CDKN1c from the CAGGS promoter, they showed a massive decrease in proliferation, assessed by BrdU incorporation, 24hours after electroporation. We will cite this result more explicitly in the main text, and better explain the difference of our approach. We propose the following modification

      « We next explored whether low Cdkn1c activity is sufficient to induce the transition to neurogenic modes of division. A previous study has shown that overexpression of Cdkn1c driven by the strong CAGGS promoter triggers cell cycle exit of chick spinal cord progenitors, revealed by a drastic loss of BrdU incorporation 1 day after electroporation (Gui et al., 2007). As this precludes the exploration of our hypothesis, we developed an alternative approach designed to prematurely induce a pulse of Cdkn1c in progenitors, with the aim to emulate in proliferative progenitors the modest level of expression observed in neurogenic progenitors. We took advantage of the Pax7 locus, which is expressed in progenitors in the dorsal domain at a level similar to that observed for Cdkn1c in neurogenic precursors (Supplementary Figure 6A)."

      * * Minor comments

      Fig 3C my understanding is that HuC/D should be nuclear, but in fig 3C it seems more cytoplasmic (any comment?)

      Some studies suggest that HuC/D can, under certain conditions, be observed in the nucleus of neurons. However, HuC/D is a RNA binding protein whose localization is mainly expected to be cytoplasmic. In our experience (Tozer et al, 2017), and in other publications using the antibody in the chick spinal cord (see, for example, le Dreau et al, 2014), it is observed in the cell body of differentiated neurons, as in the current manuscript.

      Fig Suppl 3E (and related 4B), immuno for Cdkn1c-Myc: to help the reader understand the difference between the immuno signals when looking at the figure, I would suggest writing on the panel i) Pax7-Cdkn1c-Myc and ii) endogenous Cdkn1c-Myc, rather than 'misexpressed' and 'endogenous', which is slightly confusing (especially because what it is called endogenous expression is higher).

      This has now been modified in the figures.

      Literature citing: Introduction and discussion are very nicely written, although they could benefit from some more recent literature on the topic. For example, Cdkn1c role as a gatekeeper of stem cell reserve in the stomach, gut, (Lee et al, CellStemCell 2022 PMID: 35523142) or some other work on symmetric/asymmetric divisions and clonal analysis in zebrafish (Hevia et al, CellRep 2022 PMID: 35675784, Alexandre et al, NatNeur PMID: 20453852), mammals (Royal et al, Elife 2023 37882444, Appiah et al, EMBO rep 2023 PMID: 37382163). Also, similar work has been performed in the developing pancreatic epithelium, where mild expression of Cdkn1a under Sox9rtTa control was used to lengthen G1 without overt cell cycle exit and this resulted in Neurog3 stabilization and priming for endocrine differentiation (Krentz et al, DevCell 2017 PMID: 28441528), so similar mechanisms might be in in place to gradually shift progenitor towards stable decision to differentiate. Moreover, in the discussion, alongside Neurog2 control of Cdkn1c, it could be mentioned that the feedback loop between Cdk inhibitors and neurogenic factor is usually established via Cdk inhibitor-mediated inhibition of proneural bHLHs phosphorylation by CDKs (Krentz et al, DevCell 2017 PMID: 28441528, Ali et al, 24821983, Azzarelli et al 2017 - PMID: 28457793; 2024 - PMID:39575884). Further, in the discussion, could they mention anything about the following open questions: is there evidence for Cdkn1c low/high expression in mammalian spinal cord? Or maybe of other Cdk inhibitors? Is Cdkn1c also involved in cell cycle exit during gliogenesis? Or is there another Cdk inhibitor expressed at later developmental stages, hence linking this with specific cell fate decisions?

      We will modify the introduction and discussion in several instances, in order to address the above suggestions and we will:

      • add references to its role in other contexts and/or species.

      • expand the discussion on the cross talk between neurogenic factors and CDK inhibitors in other cellular contexts.

      • add a dedicated paragraph in the discussion to answer reviewer#2's questions: is there evidence for Cdkn1c low/high expression in mammalian spinal cord? Or maybe of other Cdk inhibitors? Is Cdkn1c also involved in cell cycle exit during gliogenesis or is there another Cdk inhibitor expressed at later developmental stages?

      Reviewer #2 (Significance (Required)):

      The work here presented has important implications on neural development and its disorders. The authors used the most advanced technologies to perform gene functional studies, such as CRISPR-HDR insertion of Myc-tag to follow endogenous expression, or expression under endogenous Pax7 promoter, often followed by flash tag experiments to trace sister cell fate, and all of this in an in vivo system. They then tested cell cycle parameters, clonal behaviour and modes of cell division in a very accurate way. Overall data are convincing and beautifully presented. The limitation is potentially in the resolution between the events of switching to neurogenic division versus neuronal differentiation, which might just warrant further discussion. This work advances our knowledge on vertebrate neurogenesis, by investigating a key player in proliferation and differentiation.

      ____I believe this work will be of general interest to developmental and cellular biologists in different fields. Because it addresses fundamental questions about the coordination between cell cycle and differentiation and fate decision making, some basic concepts can be translated to other tissues and other species, thus increasing the potential interested audience.

      My work focuses on stem cell fate decisions in mammalian systems, and I am familiar with the molecular underpinnings of the work here presented. However, I am not an expert in the chicken spinal cord as a model and yet the manuscript was interesting. I am also not sufficiently expert in the bioinformatic analysis, so cannot comment on the technical aspects of Figure 1 and the way they decided to annotate their data.

      __*

      Reviewer #3 (Evidence, reproducibility and clarity (Required)): *__

      Summary: In this study, Mida et al. analyze large-scale single-cell RNA-seq data from the chick embryonic neural tube and identify Cdkn1c as a key molecular regulator of the transition from proliferative to neurogenic cell divisions, marking the onset of neurogenesis in the developing CNS. To confirm this hypothesis, they employed classical techniques, including the quantification of neural cell-specific markers combined with the flashTAG label, to track and isolate isochronic cohorts of newborn cells in different division modes. Their findings reveal that Cdkn1c expression begins at low levels in neurogenic progenitors and becomes highly expressed in nascent neurons. Using a classical knockdown strategy based on short hairpin RNA (shRNA) interference, they demonstrate that Cdkn1c suppression promotes proliferative divisions, reducing neuron formation. Conversely, novel genetic manipulation techniques inducing low-level CDKN1c misexpression drive progenitors into neurogenic divisions prematurely.

      By employing cumulative EdU incorporation assays and shRNA-based loss-of-function approaches, Mida et al. further show that Cdkn1c extends the G1 phase by inhibiting cyclin D, ultimately concluding that Cdkn1c plays a dual role: first facilitating the transition of progenitors into neurogenic divisions at low expression levels, and later promoting cell cycle exit to ensure proper neural development.

      This study presents several ambiguities and lacks precision in its analytical methodologies and quantification approaches, which contribute to confusion and potential bias. To enhance the reliability of the conclusions, a more rigorous validation of the methods employed is essential.

      This study introduces a novel approach to tracking the fate of sister cells from neural progenitor divisions to infer the division modes. While previous methods for analyzing the division mode of neural progenitor cells have been implemented, rigorous validation of the approach introduced by Mida et al. is necessary. Furthermore, the concept of cell cycle regulators interacting to control the duration of specific cell cycle stages and influencing progenitor cell division modes has been explored before, potentially limiting the novelty of these findings.

      Major comments:

      1.-The study presents ambiguity and lacks precision in quantifying neural precursor division modes. The authors use phosphorylated retinoblastoma protein (pRb) as a marker for neurogenic progenitors, claiming its reliability in identifying neurogenic divisions.

      However, they do not provide a thorough characterization of pRb expression in the developing chick neural tube, leaving its suitability as a neurogenic division marker unverified.

      Throughout their comments on the manuscript, this reviewer raises several points regarding the characterization of pRb expression in our model and of our use of this marker in our study. We take these comments into account and propose to expand on pRb characteristics in the first occurrence of pRb as a marker of cycling cells in the manuscript. The modifications rely on:

      • the quotation of several studies showing that phosphorylation of Rb is regulated during the cell cycle, and that "it is not detectable during a period of variable length in early G1 in several cell types (Moser et al, 2018;Spencer et al, 2013; Gookin et al, 2017), including neural progenitors in the developing chick spinal cord (Molina et al, 2022). Apart from this absence in early G1, pRb is detected throughout the rest of the cell cycle until mitosis".

      • a more detailed description of our own characterization of pRb dynamics in a synchronous cohort of cycling cells, which reveals a similar heterogeneity in the timing of the onset of Rb phosphorylation after mitosis. This description was initially shown in supplementary figure 3 and will be transferred to a new supplementary figure 2 to account for the fact that it will now be cited earlier in the manuscript.

      Regarding the specific question the "suitability (of pRb) as a neurogenic division marker": we do not directly "use phosphorylated retinoblastoma protein (pRb) as a marker for neurogenic progenitors", but we use Rb phosphorylation to discriminate between progenitors (pRb+) and neurons (pRb-) identity in pairs of sister cells to retrospectively identify the mode of division of their mother.

      Given that Rb is unphosphorylated during a period of variable length after mitosis (see references above), pRb is not a reliable marker of ALL cycling progenitors. We developed an assay to identify the timepoint (the maximal length of this "pRb-negative" phase) after which Rb is phosphorylated in all cycling progenitors (new Supplementary Figure 2). This assay relies on a time course of pRb detection in cohorts of FlashTag-positive pairs of sister cells born at E3. This time course experiment allowed us to identify a plateau after which the proportion of pRb-positive cells in the cohort remains constant. From this timepoint, this proportion corresponds to the proportion of cycling cells in the cohort. Rb phosphorylation therefore becomes a discriminating factor between cycling progenitors (pRb+) and non-cycling neurons (pRb-).

      We are confident that this provides a solid foundation for the determination of the identity of pairs of sister cells in all our Flash-Tag based assays, which retrospectively identify the mode of division of a progenitor on the basis of the phosphorylation status of its daughter cells 6 hours after division.

      We propose to modify the main text to describe the strategy and protocol more explicitly, by introducing the sentence highlighted in yellow in the following paragraph where the paired-cell analysis is first introduced (in the section on CDKN1c knock-down):

      "This approach allows to retrospectively deduce the mode of division used by the mother progenitor cell. We injected the cell permeant dye "FlashTag" (FT) at E3 to specifically label a cohort of progenitors that undergoes mitosis synchronously (Baek et al., 2018; Telley et al., 2016 and see Methods), and let them develop for 6 hours before analyzing the fate of their progeny using pRb immunoreactivity (Figure 3D). Our characterization of pRb immunoreactivity in the tissue had established beforehand that 6 hours after mitosis, all progenitors can reliably be detected with this marker (Supplementary Figure 2, Methods). Therefore, at this timepoint after FT injection, two-cell clones selected on the basis of FT incorporation can be categorized as PP, PN, or NN based on pRb positivity (P) or not (N) (see Methods, new Figure 3G and new Supplementary Figures 2 and 4)."

      We also modified accordingly the legend to Supplementary Figure 2 (previously Supplementary Figure 3, which describes the identification of the plateau of pRb.

      Furthermore, retinoblastoma protein (Rb) and cyclin D interact crucially to regulate the G1/S phase transition of the cell cycle, with cyclin D/CDK complexes phosphorylating Rb. Since the authors conclude that CDKN1c primarily acts by inhibiting the cyclin D/CDK6 complex, it is likely that CDKN1c influences pRb expression or phosphorylation state. This raises the possibility that pRb could be a direct target of CDKN1c, whose expression and phosphorylation would be altered in gain-of-function (GOF) and loss-of-function (LOF) analyses of CDKN1c.

      In light of this, it would be more appropriate to consider pRb as a CDKN1c target and discuss the molecular mechanisms regulating cell cycle components.

      We agree with the reviewer that Rb phosphorylation may be a direct or indirect target of Cdkn1c activity, and exploring the molecular aspects of the cellular and developmental phenomena that we describe in our manuscript would represent an interesting follow up study.

      ____A more precise approach would involve using other markers or targets to quantify neural precursor division modes at earlier stages of neurogenesis.

      To complement our analyses of the modes of division, we propose to use a positive marker to assess neural identity in parallel to the absence of pRb within pairs of cells. This approach may be the most meaningful in the gain of function context (Pax7 driven expression of Cdkn1c) because in this context, the time-point to reach the plateau of Rb phosphorylation used in our FT-based assay may indeed be delayed. On the opposite, in the context of loss of functions, the plateau may be reached earlier, which would have no effect on this assay.

      2.-Furthermore, the study employs FlashTag labeling to track daughter cells post-division, but the 16-hour post-injection window may result in misidentification of sister cells due to the potential presence of FlashTagged cells that did not originate from the same division.

      This introduces a risk of bias in quantification, data misinterpretation, and potential errors in defining division modes. A more rigorous validation of the FlashTag strategy and its specificity in tracking division pairs is necessary to ensure the reliability of their conclusions.

      The reviewer probably mistyped and meant 6-hour post injection, which is the duration that we use for paired cell tracking. We would like to emphasize that in addition to the FlashTag label, we benefit from the electroporation reporter to assess clonality. Altogether, we combine 5 criteria to define a clonal relationship :

      • 2 cells are positive for Flash Tag
      • The Flash Tag intensity is similar between the 2 cells
      • The 2 cells are positive for the electroporation reporter
      • The electroporation reporter intensity is similar between the two cells
      • the position of the two cells is consistent with the radial organization of clones in this tissue (Leber and Sanes, 1995;__; __Loulier et al, 2014): they are found on a shared line along the apico-basal axis, and share the same Dorso-Ventral and Antero-Posterior position . This combination is already described in the Methods section. We propose to modify the paragraph to include the sentence highlighted in yellow in the text below;

      "Cell identity of transfected GFP positive cells was determined as follows: cells positive for pRb and FT were classified as progenitors and cells positive for FT and negative for pRb as neurons. In addition, a similar intensity of both the GFP and FT signals within pairs of cells, and a relative position of the two cells consistent with the radial organization of clones in this tissue (Leber and Sanes, 1995; Loulier et al, 2014) were used as criteria to further ascertain sisterhood. This combination restricts the density of events fulfilling all these independent criteria, and can confidently be used to ensure a robust identification of pairs of sister cells."

      3.- The knock-in strategy used to tag the endogenous CDKN1c protein in Figure 2 is an elegant tool to infer protein dynamics in vivo. However, since strong conclusions regarding CDKN1c dynamics during the cell cycle are drawn from this section, it would be advisable to strengthen the results by including quantification with adequate replication and proper statistical analysis, as the current findings are preliminary and somewhat speculative.

      - "Although pRb is specific for cycling cells, it is only detected once cells have passed the point of restriction during the G1 phase." Please provide literary reference confirming this observation.

      We have entirely remodeled this section, which describes the expression of Myc-tagged Cdkn1c relative to pRb and now provide several references that describe the generally accepted view that pRb is specific of cycling cells, regulated during the cell cycle, and in particular absent in early G1. We also remove the mention of the "Restriction point" in the main text to avoid any confusion on the timing of phosphorylation, as the notion of restriction point is not useful in our study. The section now reads as follows:

      "To ascertain that Cdkn1c is translated in neural progenitors, we used an anti-pRb antibody, recognizing a phosphorylated form of the Retinoblastoma (Rb) protein that is specifically detected in cycling cells (Gookin et al., 2017; Moser et al., 2018; Spencer et al., 2013) , including neural progenitors of the developing chick spinal cord (Molina et al., 2022). In the ventricular zone of transverse sections at E4 (48hae), we detected triple Cdkn1c-Myc/GFP/pRb positive cells (arrowheads in Figure 2B), providing direct evidence for the Cdkn1c protein in cycling progenitors. We also observed many double GFP/pRb positive cells that were Myc negative (arrowheads in Figure 2B). The observation of UAS-driven GFP in these pRb-positive cells is evidence for the translation of Gal4 and therefore provides a complementary demonstration that the Cdkn1c *transcript is translated in progenitors. The absence of Myc detection in these double GFP/pRb positive cells also suggests that Cdkn1c/Cdkn1c-Myc stability is regulated during the cell cycle. *

      Finally, we observed double Myc/GFP-positive cells that were pRb-negative (Figure 2B; asterisks). One characteristic of Rb phosphorylation as a marker of cycling cells is a period in early G1 during which it is not detectable, as described in several cell types (Gookin et al., 2017; Moser et al., 2018; Spencer et al., 2013) including chick spinal cord neural progenitors (Molina et al., 2022). Using a method that specifically labels a synchronous cohort of dividing cells in the neural tube, we similarly observed a period in early G1 during which pRb is not detectable in some progenitors at E3 (See Supplementary Figure 2 and Methods). Hence, the double Myc/GFP positive and pRb negative cells may correspond to progenitors in early G1. Alternatively, they may be nascent neurons whose cell body has not yet translocated basally (see Figure 2C). Finally, we observed a pool of GFP positive/pRb negative nuclei with a strong Myc signal in the region of the mantle zone that is in direct contact with the ventricular zone (VZ), corresponding to the region where the transcript is most strongly detected (see Figure 2A). This pool of cells with a high Cdkn1c expression likely corresponds to immature neurons exiting the cell cycle and on their way to differentiation (Figure 2B; double asterisks). In addition, a few Myc positive cells were located deeper in the mantle zone, where the transcript is no more present, suggesting that the protein is more stable than the transcript.

      In summary, our dual Myc and Gal4 knock-in strategy which reveals the history of Cdkn1c transcription and translation confirms that Cdkn1c is expressed at low level in a subset of progenitors in the chick spinal neural tube, as previously suggested (Gui et al., 2007; Mairet-Coello et al., 2012). In addition, the restricted overlap of Cdkn1c-Myc detection with Rb phosphorylation suggests that in progenitors, Cdkn1c is degraded during or after G1 completion. "

      This section will again be remodeled in a future revised version of the manuscript, in which we will add quantifications of Myc levels, as requested by Reviewer 1 above, and also by Reviewer #3 below.

      Given that pRb immunoreactivity is used as a marker for cycling progenitors to base many of the results of this study, it would be very valuable to characterize the dynamics of pRb in cycling cells in the studied tissue, for instance combined with the cell cycle reporter used by Molina et al. (Development 2022).

      In the original version of the manuscript, the section describing the dynamics of CDKN1c-Myc in the KI experiments presented in Figure 2 relied on the idea that the dynamics of pRb in chick spinal progenitors is similar to what I described in other tissues and cell types, without providing any references to substantiate this fact. Actually, Molina et al provide a characterization of pRb in combination with their cell cycle reporter and conclude that pRb negative progenitors are in G1 ("We also verified that phospho-Rb- and HuC/D-negative cells were in G1 by using our FUCCI G1 and PCNA reporters"). We will now cite this reference to support our claim. In addition, our characterization of Rb progressive phosphorylation in the synchronic Flash-Tag cohort of newborn sister cells provides a complementary demonstration that a fraction of the progenitors are pRb-negative when they exit mitosis (i.e. in early G1). This analysis was initially only introduced in the supplementary Figure 3, as support for the section that presents the Paired-cell assay used in Figure 3. We propose to introduce the data from Supplementary Figure 3 earlier in the manuscript (now Supplementary Figure 2), in order to better introduce the reader with the dynamics of pRb in cycling cells in our model. This will better support our description of the Cdkn1c-Myc dynamics in relation with pRb. We therefore propose to reformulate this whole section as follows.

      - It would be valuable to analyse the dynamics of Myc immunoreactivity in combination of pRb in all three gRNAs (highlighted in Supplementary Figure 1), as it would be a strong point in favour that the dynamics reflect the endogenous CDKN1c dynamics.

      - It would be very valuable to provide a quantification of said dynamics (e.g. plotting myc intensity / pRb immunoreactivity along the apicobasal axis of the tissue).

      These are two interesting suggestions. To complement our data with guide #1, we have performed Myc-immunostaining experiments on transverse sections in the context of guide #3, showing exactly the same pattern of Myc signal, with low expression in the VZ, and a peak of signal in the part of the mantle zone that is immediately touching the VZ. This confirms the specificity of the spatial distribution of the Cdkn1c-Myc signal. These data have been added in a revised version of Supplementary Figure 1.

      We will perform the suggested quantifications using guides #1 and #3, which both show a good KI efficiency. We do not think it is useful to do these experiments with guide #2, whose efficiency is much lower, and which would lead to a very sparse signal.

      - The characterization of dynamics is performed only with one of the gRNAs (#1) on the basis that it produces the strongest NLS-GFP signal, as a proxy for guide efficiency. It would be nice if the authors could validate guide cutting efficiency via sequencing (e.g. using a Cas9-T2A-GFP plasmid and sorting for positive cells).

      We will perform these experiments to validate guide cutting efficiency using the Tide method (Brinkman et al, 2014)

      - In order to make sure that the dynamics inferred from Myc-tag immunoreactivity do reflect the cell cycle dynamics of CDKN1c-myc, it would be advisable to confirm in-frame insertion of the myc-tag sequence.

      We will perform genomic PCR experiments to confirm in-frame insertion of the Myc tags at the Cdkn1c locus

      4.- In Figure 3, the authors use a short-hairpin-mediated knock-down strategy to decrease the levels of Cdkn1c, and show that this manipulation leads to an increase percentage of cycling progenitors and a decrease in the number of neurons in electroporated cells.

      The authors claim that their shRNA-based knockdown strategy aims to reduce low-level Cdkn1c expression in neurogenic progenitors while minimally affecting the higher expression in newborn neurons required for cell cycle exit. However, several factors need consideration. Electroporation introduces variability in shRNA delivery, making it difficult to achieve consistent gene inhibition across all cells, especially for dose-dependent genes like Cdkn1c.

      Additionally, Cdkn1c generates multiple isoforms, which may not be fully annotated in the chick genome, raising the possibility that the shRNA targets specific isoforms, potentially explaining the observed low expression.

      All the predicted isoforms in the chick genome contain the sequence targeted by shRNA1, which is located in the CKI domain, the region of the protein that is most conserved between species. Besides, all the isoforms annotated in the mouse and human genomes also contain the region targeted by shRNA1. We are therefore confident that shRNA1 should target all chick isoforms.

      A more rigorous approach, such as qPCR analysis of sorted electroporated cells, would better validate the expression levels, rather than relying on in situ hybridization, presenting electroporated and non-electroporated cells in the same section (Supp. Figure 2).

      This approach (qRT-PCR on sorted cells) would enable us to focus solely on electroporated cells, but it would result in an averaged quantification of Cdkn1c depletion. In order to obtain additional information on the shRNA-dependent decrease in Cdkn1C in the different neural cell populations (progenitor versus differentiating neuron), we propose an alternative approach consisting in monitoring the level of Cdkn1c protein, assessed through Cdkn1c-Myc signal in knock-in cells, in the presence versus absence of Cdkn1c shRNA.

      - As the authors note, "Unambiguous identification of cycling progenitors and postmitotic neurons is notoriously difficult in the chick spinal cord". "markers of progenitors usually either do not label all the phases of the cell cycle (eg. Phospho-Rb, thereafter pRb), or persist transiently in newborn neurons (eg. Sox2)." Given that pRb immunoreactivity is used as the basis for a lot of the conclusions in this study, it would be valuable to add a characterization of its dynamics as mentioned in Figure 2, as well as provide literary references/proof that Sox2 expression persists in newborn neurons.

      We have addressed the case of pRb dynamics in progenitors above and added a reference documented pRb expression during the cell cycle of chick neural progenitors (Molina et al, 2022).

      Regarding Sox2 persistence: we consistently detect a small fraction of double positive Sox2+/HuC/D+ cells in chick spinal cord transverse sections. We have shown that this marker of differentiating neurons (HuC/D) only becomes detectable more than 8 hours after mitosis in newborn neurons at E3 (Baek et al, 2018), indicating that Sox2 protein can persist for up to at least 8 hours in newborn neurons.

      We now cite a paper showing that a similar persistence of Sox2 protein is reported in differentiating neurons of the human neocortex, where double Sox2/NeuN positive cells are frequently observed in cerebral organoids (Coquand et al, Nature Cell Biology 2024__)__

      - The undefined population (pRb-/HuCD-) introduces an unknown that assumes that the percentage of progenitors in G1 phase before the restriction point and the number of newborn neurons are equal for both conditions in an experiment. Can the authors provide explanation for this assumption?

      We do not think that these numbers are equal for both conditions, and we did not formulate this assumption. We only indicate (in the methods section) that this undefined/undetermined population (based on negativity for both markers) is a mix of two possible cell types. However, we do not offer any interpretation of the CDKN1c phenotypes based on the changes in this population. Indeed, our interpretation of the knock-down phenotype is solely based on the increase in pRb-positive and decrease in HuC/D-positive cells, which both suggest a delay in neurogenesis. We understand from the reviewer's comment that depicting an "undefined" population on the graph may cause some confusion. We therefore propose to present the data on pRb and HuC/D in different graphs, rather than on a combined plot, and to remove the reference to undefined cells in Figure 3, as well as in Figures 4 and 5 depicting the gain of function and double knock-down experiments. We have implemented these changes in updated versions of the figures.

      - In Gui et al. (Dev Biol 2006), authors showed that a knockdown of Cdkn1c leads to a failure of nascent neurons to exit the cell cycle and causes them to re-entry the cell cycle, shown by ectopic mitoses. In that study, cells born from those ectopic mitoses eventually leave the cell cycle leading to an increase in the number of neurons. Can the authors check for ectopic mitoses at 24hpe and 48hpe?

      We have now performed experiments with an anti phospho Histone 3 antibody, which labels mitotic cells, at 24 and 48 hours post electroporation. We do not see any ectopic mitoses upon Cdkn1c knock-down with this marker, and we have produced a Supplementary Figure with these data. This is consistent with the fact that we also do not see ectopic pRb or Sox2 positive cells in the mantle zone in the knock-down experiments. These data (pH3 and Sox2) have been added in the new Supplementary Figure 3E and F.

      We have now modified the main text to include these data:

      "In the context of a full knock-out of Cdkn1c in the mouse spinal cord, a reduction in neurogenesis was also observed, which was attributed to a failure of prospective neurons to exit the cell cycle, resulting in the observation of ectopic mitoses in the mantle zone (Gui et al, 2007). In contrast with this phenotype, using an anti phospho-Histone3 antibody, we did not observe any ectopic mitoses 24 or 48 hours after electroporation in our knock-down condition (Supplementary Figure 3E-F). This is consistent with the fact that we also do not observe ectopic cycling cells with pRb (Figure 3A and D) and Sox2 (Supplementary Figure 3E-F) antibodies. We therefore postulated that the reduced neurogenesis that we observe upon a partial Cdkn1c knock-down may result from a delayed transition of progenitors from the proliferative to neurogenic modes of division."

      - The authors then address the question of whether the decrease in neuron number is due to the failure of newborn neurons to exit the cell cycle or to a delay in the transition from proliferative to neurogenic divisions. For that, they implement a strategy to label a synchronized cohort of progenitors based of incorporation of a FlashTag dye.

      - Given that this strategy is the basis of many of the experiments in this article, it would be very valuable to expand on the validation of this technique as cited in major comment #2. In figure 3E, the close proximity of cell pairs in PP and PN clones shown in the pictures makes their sibling status apparent. However, this is not the case for the NN clone. Can the authors further explain with what criteria they determined the clonal status of two FlashTag labelled cells?

      The key criterion for cells that are not directly touching each other is that their relative position corresponds to the classical "radial" organization of clones in this tissue (Leber and Sanes, 1995__; __Loulier et al, Neuron, 2014). In other words, we make sure that they are located on a same apico-basal axis, as is the case for the NN clone presented on the figure. As stated above in our response to major comment #2, we have modified the Methods section accordingly.

      Can they provide further image examples of different types of clones?

      We now provide additional examples in a new Supplementary Figure 4

      - Can the authors show that the plateau reached in Sup Figure 3 for pRb immunoreactivity corresponds to a similar dynamic for HuC/D immunoreactivity?

      The plateau for Rb phosphorylation in progenitors is reached before 6 hours post mitosis at E3. At the same age, we have previously shown (Baek et al, PLoS Biology 2018) in a similar time course experiment in pairs of FT+ cells that the HuC/D signal is not detected in newborn neurons 8 hours after mitosis. HuC/D only starts to appear between 8 and 12 hours, and still increases between 8 and 16 hours. The plateau would therefore be very delayed for HuC/D compared to pRb. This long delay in the appearance of this « positive » marker of neural differentiation is the main reason why we chose to use Rb phosphorylation status for the analysis of synchronous cohorts of pairs of sister cells, because pRb becomes a discriminating factor much earlier than HuC/D after mitosis.

      - In order to further validate the strategy, could the authors use it at different stages to validate if they can replicate the different percentages of PP/PN/NN reported in the literature (e.g. Saade Cell Rep 2013)?

      We have carried out similar experiments at E2, showing a plateau of 95% of pRb-positive cells in the FT-positive population (see graph on the right). This provides a retrospective estimate of the mode of division of the mother cells at this stage (roughly 90% of PP and 10% of PN) which is consistent with the vast majority of PP divisions described by Saade et al (2013, see Figure S1) at this stage.

      5.- In Figure 4, the strategy used to induce a low-dose overexpression of CDKN1c is an elegant method to introduce CDKN1c-Myc expression under the control of the endogenous Pax7 promoter, active in proliferative progenitors. The main point to address is:

      - Please provide proof that Pax7 expression is not altered in guides with a successful knock-in event (e.g. sorting and WB against the Pax7 protein) or the immunohistochemistry as performed in the Pax7-P2A-Gal4 tagging in Petit-Vargas et al., 2024.

      We have now performed Pax7 immunostainings on transverse sections at 24 and 48 hours post electroporation, both with the Pax7-CDKN1c-Gal4 and with the Pax7-Gal4 control constructs. We present these data in the new supplementary figure 7. In both conditions, we find that the Pax7 protein is still present in KI-positive cells. We observe a modest increase in Pax7 signal intensity in these cells, suggesting either that the insertion of exogenous sequences stabilizes the Pax7 transcript, or that the C-terminal modification of Pax7 protein with the P2A tag increases its stability. This does not affect the interpretation of the CDKN1c overexpression phenotype, because we used the Pax7-Gal4 construct that shows the same modification of Pax7 stability as a control for this experiment. We have introduced this comment in the legend of Supplementary Figure 7.

      - Given the cell cycle regulated expression and activity of CDKN1c, can the authors elaborate on whether this is regulated at the promoter level?

      Cdkn1c transcription is regulated by multiple transcription factors and non-coding RNAs (see for example Creff and Besson, 2020, or Rossi et al, 2018 for a review). To our knowledge, these studies focus more on the regulation of Cdkn1c global expression than on the regulation of its levels during cell cycle progression. Although it is very likely that transcriptional regulation contributes, post-translational regulation, and in particular degradation by the proteasome, is also a key factor in the cell cycle regulation of Cdkn1c activity

      If so, how does this differ from the promoter activity of Pax7?

      The transcriptional regulation of Pax7 and Cdkn1c is probably controlled by different regulators, since their expression profiles are very different. Regardless of the mechanisms that control their expression, the rationale for choosing Pax7 as a driver for Cdkn1c expression was that Pax7 expression precedes that of Cdkn1c in the progenitor population, and that it disappears in newborn neurons, when that of Cdkn1c peaks. This provided us with a way to advance the timing of Cdkn1c expression onset in proliferative progenitors.

      - It would be advisable to characterize the dynamics along the cell cycle for the overexpressed form of CDKN1c-Myc relative to pRb, similarly to what was done in Figure 2B.

      We will carry out experiments similar to those shown in Figure 2B in order to characterise the dynamics of Cdkn1c in a context of overexpression, in relation to pRb.

      In addition, we will include a more precise quantification of the "misexpressed" compared to "endogenous" Cdkn1c -Myc levels, as already mentioned in the answer to a request by reviewer1.

      6.-In figure 5, the authors use a double knock-down strategy to test the hypothesis that the effect of Cdkn1c in G1 length is partially at least through its inhibition of CyclinD1. Results show that double shRNA-mediated knock-down of CyclinD1 and Cdkn1c counteracts the effects of Cdkn1c-sh alone on EdU incorporation, PP/PN/NN cell divisions and overall rations of progenitors and neurons.

      - In the measurement of progenitor cell cycle length in Figure 5A, it would be more appropriate to present the nonlinear regression method described by Nowakowski et al. (1989), as has been commonly used in the field (Saade et al., 2013, PMID: 23891002, Le Dreau et al., 2014, PMID: 24515346, Arai et al., 2011, PMID: 21224845).

      The Nowakowski non linear regression method has been used often in the literature in the same tissue, and is generally used to calculate fixed values for Tc, Ts, etc... This method is based on several selective criteria, and in particular the assumption that "all of the cells have the same cycle times". Yet, many studies have documented that cell cycle parameters change during the transition from proliferative to neurogenic modes of division during which our analysis is performed; live imaging data in the chick spinal cord have illustrated very different cell cycle durations at a given time point (see Molina et al). We therefore think that the proposed formulas do not reflect the heterogenous reality of neural progenitors of the embryonic spinal cord. However, the cumulative approach described by Nowakowski is useful to show qualitative differences between populations (e.g. a global decrease of the cycle length, like in our comparison between control and shRNA conditions). For these reasons, we prefer to display only the raw measurements rather than the regression curves.

      - Cumulative EdU incorporation in spinal progenitors (pRb-positive) at E3 (24 hours after injection) showed that the proportion of EdU-positive progenitors reached a plateau at 14 hours in control conditions, which is later than what has been reported in Le Dreau et al., 2014 (PMID: 24515346). Can you explain why?

      Le Dreau et al count the EdU+ proportion of cells in the total population of electroporated cells located in the VZ (which includes progenitors, but also future neurons that have been labelled during the previous cycles -at least for the time points after 2hours- and have not yet translocated to the mantle zone), whereas we only consider pRb+ progenitors in the analysis. In addition, the experiments are not performed at the same developmental stage. Altogether, this may account for the different curves obtained in our study.

      - It would be interesting to measure G1 length as in Figure 5D for the double cdkn1c-sh - ccnd1-sh knock down condition, to see if it rescues G1 length. As well as in the Ccnd1 knock down condition alone to see if it increases G1 length in this context as well.

      We will perform cumulative EDU incorporation experiments similar to that shown in Figure 5D to measure G1 length for the cdkn1c-sh - ccnd1-sh knock down double conditions, as well as in the Ccnd1 knock down condition alone.

      Minor comments

      __*Introduction:

      • The introduction should include references of studies of the role of Cdkn1c in cortical development (Imaizumi et al. Sci Rep 2020, Colasante et al. Cereb Cortex 2015, Laukoter et al. ____Nature Communications 2020).*__

      We will modify the introduction in several instances, in order to address suggestions by Reviewers #2 (see above) and #3, in particular to expand the description of the role of Cdkn1c during cortical development

      1) Transcriptional signature of the neurogenic transition (Figure 1).

      - In the result section, it would be informative to include the genes used to determine the progenitor and neuron score (instead of in Methods).

      We have now listed the genes used to determine the progenitor and neuron score in the main text of the result section

      - Figure 1A. It would be informative to add in the diagram what "filtering" means (eg. Neural crest cells).

      We have now added the detail of what 'filtering' means in the diagram

      - In the result section, "However, while Tis21 expression is switched off in neurons, Cdkn1c transiently peaks at high levels in nascent neurons before fading off in more mature cells." Missing literary reference or data to clearly demonstrate this point.

      We have reworded this sentence, adding a reference to the expression profile of Tis 21. The paragraph now reads as follows:

      « However, Cdkn1c expression is maintained longer and transiently peaks at high levels after Tis21 expression is switched off. Given that Tis21 is no more expressed in neurons (Iacopetti et al, 1999), this suggests that Cdkn1c expression is transiently upregulated in nascent neurons before fading off in more mature cells. »

      - "Interestingly, the gene cluster that contained Tis21 also contained genes encoding proteins with known expression and/or functions at the transition from proliferation to differentiation, such as the Notch ligand Dll1, the bHLH transcription factors Hes6, NeuroG1 and NeuroG2, and the coactivator Gadd45g." Missing references.

      We have now added references linking the function and/or expression profile of these genes to the neurogenic transition: Dll1 (Henrique et al., 1995), the bHLH transcription factors Hes6 (Fior and Henrique, 2005), NeuroG1 and NeuroG2 (Lacomme et al., 2012; Sommer et al., 1996) and the coactivator Gadd45g (Kawaue et al., 2014).

      - There is an error in the color code in Cell Clusters in Figure 1C (cluster 4 yellow in the legend but ocre in the figure)

      - Figure Sup3B colour code is switched (green for PP and red for NN) compared to the rest of the paper.

      We have corrected the colour code errors in Figure 1c and Supp Figure 3B (now changed to Supplementary Figure 5 in the modified revision)

      ____It would be valuable to assign cell cycle stage to neural progenitor cells (based on cell cycle score) and determine whether cdkn1c at the transcript level also shows enrichment in G1 cells considered to be progenitors.

      We have so far refrained from performing the suggested combined analysis based on cell cycle and cell type scores, as the "neurogenic progenitor population" (based on neurogenic progenitor score values) in which Cdkn1c expression is initiated represents a small number of cells in our scRNAseq, and felt that the significance of such an analysis is uncertain. We will perform this analysis in the revised version

      2) Progressive increase in Cdkn1c/p57kip2 expression underlie different cellular states in the embryonic spinal neural tube (Figure 2).

      - Figure 2A. Scale bar is missing in E3 and E4. It is important to consider the growth of the developing spinal cord and present it accordingly (E3 transverse section, Figure 2).

      The scale bar is actually valid for the whole panel A. The E2 section in the original figure appeared as "large" as the E3 section along the DV axis probably because the cutting angle was not perfectly transverse at E2, artificially lengthening the section. In a new version of the figure, we have replaced the E2 images with another section from the same experiment. The scale bar remains valid for the whole panel.

      - Figure 2 could use a diagram of the knock-in strategy used, similar as the one in Figure 4A.

      We have now added a diagram for the knock-in strategy in Figure 2B, and modified the legend of the figure accordingly.

      - Indicate hours post-electroporation. Indicate which guide is used in the main text.

      We have now added the post-electroporation timing and guide used in the main text.

      3) Downregulation of Cdkn1c in neural progenitors delays the transition from proliferative to neurogenic modes of division (Figure 3).

      - In methods: "Thus, to reason on a more homogeneous progenitor population, we restricted all our analysis to the dorsal one half or two thirds of the neural tube." Indicate when and depending on what one half or two thirds of the neural tube were analysed.

      - Are the clonal analysis experiments (Fig 3D, E and F) also restricted to the dorsal region?

      __We have modified this sentence as follows: "__Thus, to reason on a more homogeneous progenitor population, we restricted all our analysis to the dorsal two thirds of the neural tube, except for the Pax7-Cdkn1c misexpression analysis, which was performed in the more dorsal Pax7 domain."

      This is valid both for the whole population and clonal analyses

      - Figure 3. Would have a better flow if 3C preceded 3A and 3B.

      We have modified the Figure accordingly.

      - Figure 3C. it would be informative to show pictures of the electroporated NT at both 24hpe and 48hpe, as well as highlighting the dorsal part of the neural tube that was used for quantification.

      We have modified the Figure accordingly

      - In methods "At each measured timepoint (1h, 4h, 7h, 10h, 12h, 14 and 17h after the first EdU injection), we quantified the number of EdU positive electroporated progenitors (triple positive for EdU, pRb and GFP) over the total population of electroporated progenitor cells (pRb and GFP positive) (Figure 3B)." Explanation does not correspond to Figure 3B.

      This explanation corresponds indeed to Figure 5A. We have corrected this mistake in the new version of the manuscript.

      4) Inducing a premature expression of Cdkn1c in progenitors triggers the transition to neurogenic modes of division (Figure 4.).

      - "We took advantage of the Pax7 locus, which is expressed in progenitors in the dorsal domain at a level similar to that observed for Cdkn1c in neurogenic precursors (Supplementary Figure 4A)". Missing reference or data showing that Pax7 is restricted to the dorsal domain.

      We have added references to the expression profile of Pax7 in the dorsal neural tube (Jostes et al, 1990). In addition, the new Supplementary Figure 7 shows anti-Pax7 staining that confirm this expression pattern at E3 and E4

      - "its intensity was similar to the one observed for endogenous Myc-tagged Cdkn1c in progenitors (Figure 4B and Supplementary Figure 4E), and remained below the endogenous level of Myc-tagged Cdkn1c observed in nascent neurons, confirming the validity of our strategy". It would be valuable to add a quantification to demonstrate this point, either by fluorescence levels or WB of nls-GFP cells.

      As stated in the response to Major Point 5 above, we will perform a quantification based on Myc immunofluorescence to compare endogenous Cdkn1c expression versus Cdkn1c expression upon overexpression.

      - "At the population level, at E4, Cdkn1c expression from the Pax7 locus resulted in a strong reduction in the number of progenitors (pRb positive cells)". Indicate in the main text that this is 48hpe.

      We have added in the main text that the quantification was performed 48hae.

      - Legend of figure 4D should indicate that the quantification has been done 24hpe.

      We have added the timing of quantification in the legend of Figure 4D.

      - "To circumvent the cell cycle arrest that is triggered in progenitors by strong overexpression of Cdkn1c (Gui et al., 2007)". It would be advisable to expand on this reference on the text, or ideally to include a simple Cdkn1c overexpression experiment.

      These experiments have been performed and presented in the study by Gui et al., 2007, which we cite in the paper. Using a strong overexpression of CDKN1c from the CAGGS promoter, they showed a massive decrease in proliferation, assessed by BrdU incorporation, 24hours after electroporation. We will cite this result more explicitly in the main text, and better explain the difference of our approach. We propose the following modification:

      « We next explored whether low Cdkn1c activity is sufficient to induce the transition to neurogenic modes of division. A previous study has shown that overexpression of Cdkn1c driven by the strong CAGGS promoter triggers cell cycle exit of chick spinal cord progenitors, revealed by a drastic loss of BrdU incorporation 1 day after electroporation (Gui et al., 2007). As this precludes the exploration of our hypothesis, we developed an alternative approach designed to prematurely induce a pulse of Cdkn1c in progenitors, with the aim to emulate in proliferative progenitors the modest level of expression observed in neurogenic progenitors. We took advantage of the Pax7 locus, which is expressed in progenitors in the dorsal domain at a level similar to that observed for Cdkn1c in neurogenic precursors (Supplementary Figure 4A)."

      - "We observed a massive increase in the proportion of neurogenic (PN and NN) divisions rising from 57% to 84% at the expense of proliferative pairs (43% PP pairs in controls versus 16% in misexpressing cells, Figure 4D)." adding the percentages in the main text is a bit inconsistent with how the rest of the data is presented in the rest of the sections.

      This whole section has been modified in response to a question from reviewer 1. The new version does not contain percentages in the main text, and reads as follows:

      « Using the FlashTag cohort labeling approach described above, we traced the fate of daughter cells born 24 hae. We observed an increase in the proportion of terminal neurogenic (NN) divisions and a decrease in proliferative (PP) divisions (Figure 4D). This suggests that CDKN1c premature expression in PP progenitors converts them to the PN mode of division, while the combined endogenous and Pax7-driven expression of CDKN1c converts PN progenitors to the NN mode of division. Coincidentally, at the stage analyzed, PP to PN conversions are balanced by PN to NN conversions, leaving the PN proportion artificially unchanged. The alternative interpretation of a direct conversion of symmetric PP into symmetric NN divisions is less likely, because the PN compartment was affected in the reciprocal CDKN1c shRNA approach (see Figure 3F). Overall, these data show that inducing a premature low-level expression of Cdkn1c in cycling progenitors is sufficient to accelerate the transition towards neurogenic modes of division. »

      - Figure sup 4C includes references to 3 gRNAs even when only one is used in the study.

      The three guides listed in the original Supplementary Figure 4C correspond to the guides that we tested in Petit-Vargas et al. 2024. In this study, we only used the most efficient of these three guides. We have modified Figure 4C by quoting only this guide.

      5) The proneurogenic activity of Cdkn1c in progenitors is mediated by modulation of cell cycle dynamics (Figure 5)

      - "we targeted the CyclinD1/CDK4-6 complex, which promotes cell cycle progression and proliferation, and is inhibited by Cdkn1c." reference missing

      We have included references related to the activity of the CyclinD1/CDK4-6 complex in the developing CNS, and the antagonistic activities of CyclinD1 and Cdkn1c in this model

      - "we targeted the CyclinD1/CDK4-6 complex, which promotes cell cycle progression and proliferation in the developing CNS (Lobjois et al, 2004, 2008, Lange 2009, Gui et al 2007), and is inhibited by Cdkn1c (Gui et al, 2007)."

      - It would be informative to include experimental set-up information (e.g. hae) in Figures 5A, 5B, 5F and 5G.

      We have added the experimental set-up information in Figure 5.

      - Clarify if analysis is restricted to the dorsal progenitors or the whole dorsoventral length of the tube.

      The analyses were carried out on two thirds of the neural tube (dorsal 2/3), excluding the ventral zone, as specified above (and in the Methods section)

      - It would be valuable to add an image to illustrate what is quantified in Figure 5D, Figure F and Figure G.

      - For Figure 4C and D, it would be valuable to add images to illustrate the quantification.

      We have added images:

      • in Supplementary Figure 7C to illustrate what is quantified in Figures 4C (now 4C and 4D);
      • In Figure 5E to illustrate what is quantified in Figure 5D
      • In Supplementary Figure 8B to illustrate what is quantified in Figure 5G (now Figure 5H and 5I) Regarding the requested images for Figures 4D and 5F, they correspond to the same types of images already shown in Figure 3E. Since we have now added several additional examples of representative pairs of each type of mode of division in the new Supplementary Figure 4, we do not think that adding more of these images in figures 4 and 5 would strengthen the result of the quantifications.

      Discussion:

      - "Nonetheless, studies in a wide range of species have demonstrated that beyond this binary choice, cell cycle regulators also influence the neurogenic potential of progenitors, i.e the commitment of their progeny to differentiate or not (Calegari and Huttner, 2003; FUJITA, 1962; Kicheva et al., 2014; Lange et al., 2009; Lukaszewicz and Anderson, 2011a; Pilaz et al., 2009; Smith and Schoenwolf, 1987; Takahashi et al., 1995)." Should include maybe references to Peco et al. Development 2012, Roussat et al. J Neurosci. 2023).

      We have now included the references suggested by the reviewer.

      - "This occurs through a change in the mode of division of progenitors, acting primarily via the inhibition of the CyclinD1/CDK6 complex." The data shown in the paper does not demonstrate that Cdkn1c is inhibiting CyclinD1, only that knocking down both mRNAs counteracts the effect of knocking down Cdkn1c alone at the general tissue level and in the percentage of PP/PN/NN clones. This statement should be qualified.

      We propose to reformulate this paragraph in the discussion as follows to take this remark into account

      "This allows us to re-interpret the role of Cdkn1c during spinal neurogenesis: while previously mostly considered as a binary regulator of cell cycle exit in newborn neurons, we demonstrate that Cdkn1c is also an intrinsic regulator of the transition from the proliferative to neurogenic status in cycling progenitors. This occurs through a change in their mode of division, and our double knock-down experiments suggest that the onset of Cdkn1c expression may promote this change by counteracting a CyclinD1/CDK6 complex dependent mechanism."

      Other comments:

      - To improve clarity for the reader, it would help if electroporation was shown consistently on the same side of the neural tube. If electroporation has been performed at different sides and this is reflected in the figures, it would be advisable to explain on the figure legend.

      We have modified the figures to systematically show the electroporated side of the neural tube on the same side of the image for single electroporations.

      ____- Figure legends should include the number of embryos/tissue sections analysed for each experiment, as well as information on whether the sections were cryostat or vibratome.

      This information is now provided in the figure legends (numbers of cells analysed and/or numbers of embryos), except for data in Figure 5, which are presented in a new Supplementary Table 1.

      All experiments were performed on vibratome sections, except for in situ hybridization experiments, which were performed on cryostat sections. This last information was already indicated in the relevant figure legends

      - Overall, there is a lack of consistency in the figures regarding how much information is available to the reader (e.g. Sup Figure 2A, in the panel mRNA in situ hybridisation of Cdkn1c is referred to only as Cdkn1c whereas in Sup figure 5 the in situ reads as CCND1 mRNA). Readability would improve a lot if figures included information on what is an electroporated fluorescent tag or an immunostaining (similar to the label in sup 4D) as well as the exact stage and hours after electroporation where relevant.

      - There is a general lack of consistency in indicating the timing of the experiments, both in terms of embryonic stage/day and in terms of hours-post-electroporation.

      We have now homogenized the nomenclature in the figures.

      - "Primary antibodies used are: chick anti-GFP (GFP-1020 - 1:2000) from Aves Labs; goat antiSox2 (clone Y-17 - 1:1000) from Santa Cruz". There is no Sox2 immunostaining in the article.

      In the original version of the manuscript, the anti-Sox2 antibody was not used; we have now added experiments using this antibody in the modified version of the manuscript; this sentence in the Methods thus remains unchanged.

      Reviewer #3 (Significance (Required)):

      __*Significance:

      In neural development, there is a progressive switch in competence in neural progenitor cells, that transition from a proliferative (able to expand the neural progenitor pool) to neurogenic (able to produce neurons). Several factors are known to influence the transition of neural progenitor cells from a proliferative to a neurogenic state, including the activity of extracellular signalling pathways (e.g. SHH) (Saade et al. 2013, Tozer et al. 2017). In this study, the authors perform scRNA-seq of the cervical neural tube of chick at a stage of both proliferative and neurogenic progenitors are present, and identify transcriptional differences between the two populations. Among the differently expressed transcripts, they identify Cdkn1c (p57-Kip2) as enriched in neurogenic progenitors. Initially characterized as a driver of cell cycle exit in newborn neurons, the authors investigate the role of Cdkn1c in cycling progenitors. *__

      The authors find that knock-down of Cdkn1c leads to an increase in proliferative divisions at the expense of neurogenic divisions. Conversely, misexpression of Cdkn1c in proliferative progenitors leads to a switch to neurogenic divisions. Furthermore, they find that knock-down of Cdkn1c shortens G1 phase of the cell cycle, suggesting a link between G1 length and neurogenic competence in neural progenitor cells. Cell cycle length has previously been linked to competence of neural progenitors, and it has been described that longer G1 duration is linked to neurogenic competence (e.g. Calegari F, Huttner WB. 2003).

      The strengths of the study include:

      The identification of a subset of genes enriched in neurogenic vs. proliferative progenitors. Since the transition from proliferative to neurogenic competence is a gradual process at the tissue level, the classification of proliferative vs. neurogenic progenitors based on a score of transcripts and the identification of a subset of transcripts that are enriched in neurogenic progenitors is a valuable contribution to the neurodevelopmental field.

      - The somatic knock-in strategy used to induce low-level overexpression of Cdkn1c in proliferative progenitors is an elegant strategy to induce overexpression in a subset of cells in a controlled manner and is a valuable technical advance.

      - The characterization of a specific role of Cdkn1c in regulating cell cycle length in cycling progenitors is novel and valuable knowledge contributing to our understanding of how regulation of cell cycle length impacts competence of neural progenitors.

      The aspects to improve:

      - The sc-RNAseq isolated genes enriched in neurogenic versus proliferative progenitors, providing valuable insight into the gradual transition from proliferative to neurogenic competence at the tissue level. However, this gene subset requires clearer representation and detailed characterization. Additionally, the full scRNA-seq dataset should be made publicly available to support further research in neurodevelopment.

      The sequencing dataset has been deposited in NCBI's Gene Expression Omnibus database. It is currently under embargo, but will be made available upon acceptance and publication of the peer reviewed manuscript. Access is nonetheless available to the reviewers via a token that can be retrieved from the Review Commons website.

      The following information will be added in the final manuscript.

      Data availability

      Single cell RNA sequencing data have been deposited in NCBI's Gene Expression Omnibus (GEO) repository under the accession number GSE273710, and are available at https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE273710."

      - The characterization of Cdkn1c dynamics in cycling progenitors using endogenous tagging of the Cdkn1c transcript with a Myc tag is an elegant way to investigate the dynamics of Cdkn1c-myc along the cell cycle. However, it would be much more powerful if combined with a careful characterization of pRb immunostaining along the cell cycle in this tissue, as well as the quantifications and controls proposed. - Retinoblastoma protein (Rb) and cyclin D play a key role in regulating the G1/S transition, with cyclin D/CDK complexes phosphorylating Rb. Given that CDKN1c primarily inhibits the cyclin D/CDK6 complex, it likely affects pRb expression or phosphorylation. This suggests pRb may be a direct target of CDKN1c, making it an unreliable marker for tracking and quantifying neurogenic progenitors through CDKN1c modulation. In light of this, it would be more appropriate to consider pRb as a CDKN1c target and discuss the molecular mechanisms regulating cell cycle components. A more precise approach would involve using other markers or targets to quantify neural precursor division modes at earlier stages of neurogenesis.

      - Many of the conclusions of the study are based on experiments performed using the FlashTag dye in order to perform clonal analysis of proliferative vs. neurogenic divisions. It would be very valuable to further characterize the reliability of this tool as well as to provide more information on the criteria used to determine the fate of the pairs of sister cells.

      - The somatic knock-in strategy used to induce low-level overexpression of Cdkn1c in proliferative progenitors is an elegant strategy to induce overexpression in a subset of cells in a controlled manner. It would be valuable to further characterize the dynamics of Cdkn1c expression using this too and to provide proof that Pax7 expression is not altered in guides with the knock-in event.

      - The presentation of the existing literature could be more up to date.

      - The presentation of the data in the figures could be improved for readability. The sc-RNA seq data and the technical advances could be of interest for an audience of researchers using chick as a model organism, and working on neurodevelopment in general. Furthermore, the characterization of Cdkn1c as a regulator of G1 length in cycling progenitors and its implications for neurogenic competence could be of general interest for people working on basic research in the neurodevelopmental field.

      Field of expertise of the reviewer: neural development, cell biology, embryology.

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #3

      Evidence, reproducibility and clarity

      Summary:

      In this study, Mida et al. analyze large-scale single-cell RNA-seq data from the chick embryonic neural tube and identify Cdkn1c as a key molecular regulator of the transition from proliferative to neurogenic cell divisions, marking the onset of neurogenesis in the developing CNS. To confirm this hypothesis, they employed classical techniques, including the quantification of neural cell-specific markers combined with the flashTAG label, to track and isolate isochronic cohorts of newborn cells in different division modes. Their findings reveal that Cdkn1c expression begins at low levels in neurogenic progenitors and becomes highly expressed in nascent neurons. Using a classical knockdown strategy based on short hairpin RNA (shRNA) interference, they demonstrate that Cdkn1c suppression promotes proliferative divisions, reducing neuron formation. Conversely, novel genetic manipulation techniques inducing low-level CDKN1c misexpression drive progenitors into neurogenic divisions prematurely. By employing cumulative EdU incorporation assays and shRNA-based loss-of-function approaches, Mida et al. further show that Cdkn1c extends the G1 phase by inhibiting cyclin D, ultimately concluding that Cdkn1c plays a dual role: first facilitating the transition of progenitors into neurogenic divisions at low expression levels, and later promoting cell cycle exit to ensure proper neural development.

      This study presents several ambiguities and lacks precision in its analytical methodologies and quantification approaches, which contribute to confusion and potential bias. To enhance the reliability of the conclusions, a more rigorous validation of the methods employed is essential.

      This study introduces a novel approach to tracking the fate of sister cells from neural progenitor divisions to infer the division modes. While previous methods for analyzing the division mode of neural progenitor cells have been implemented, rigorous validation of the approach introduced by Mida et al. is necessary. Furthermore, the concept of cell cycle regulators interacting to control the duration of specific cell cycle stages and influencing progenitor cell division modes has been explored before, potentially limiting the novelty of these findings.

      Majors comments:

      1. The study presents ambiguity and lacks precision in quantifying neural precursor division modes. The authors use phosphorylated retinoblastoma protein (pRb) as a marker for neurogenic progenitors, claiming its reliability in identifying neurogenic divisions. However, they do not provide a thorough characterization of pRb expression in the developing chick neural tube, leaving its suitability as a neurogenic division marker unverified. Furthermore, retinoblastoma protein (Rb) and cyclin D interact crucially to regulate the G1/S phase transition of the cell cycle, with cyclin D/CDK complexes phosphorylating Rb. Since the authors conclude that CDKN1c primarily acts by inhibiting the cyclin D/CDK6 complex, it is likely that CDKN1c influences pRb expression or phosphorylation state. This raises the possibility that pRb could be a direct target of CDKN1c, whose expression and phosphorylation would be altered in gain-of-function (GOF) and loss-of-function (LOF) analyses of CDKN1c. In light of this, it would be more appropriate to consider pRb as a CDKN1c target and discuss the molecular mechanisms regulating cell cycle components. A more precise approach would involve using other markers or targets to quantify neural precursor division modes at earlier stages of neurogenesis.
      2. Furthermore, the study employs FlashTag labeling to track daughter cells post-division, but the 16-hour post-injection window may result in misidentification of sister cells due to the potential presence of FlashTagged cells that did not originate from the same division. This introduces a risk of bias in quantification, data misinterpretation, and potential errors in defining division modes. A more rigorous validation of the FlashTag strategy and its specificity in tracking division pairs is necessary to ensure the reliability of their conclusions.
      3. The knock-in strategy used to tag the endogenous CDKN1c protein in Figure 2 is an elegant tool to infer protein dynamics in vivo. However, since strong conclusions regarding CDKN1c dynamics during the cell cycle are drawn from this section, it would be advisable to strengthen the results by including quantification with adequate replication and proper statistical analysis, as the current findings are preliminary and somewhat speculative.
        • "Although pRb is specific for cycling cells, it is only detected once cells have passed the point of restriction during the G1 phase." Please provide literary reference confirming this observation. Given that pRb immunoreactivity is used as a marker for cycling progenitors to base many of the results of this study, it would be very valuable to characterize the dynamics of pRb in cycling cells in the studied tissue, for instance combined with the cell cycle reporter used by Molina et al. (Development 2022).
        • The characterization of dynamics is performed only with one of the gRNAs (#1) on the basis that it produces the strongest NLS-GFP signal, as a proxy for guide efficiency. It would be nice if the authors could validate guide cutting efficiency via sequencing (e.g. using a Cas9-T2A-GFP plasmid and sorting for positive cells).
        • In order to make sure that the dynamics inferred from Myc-tag immunoreactivity do reflect the cell cycle dynamics of CDKN1c-myc, it would be advisable to confirm in-frame insertion of the myc-tag sequence.
        • It would be valuable to analyse the dynamics of Myc immunoreactivity in combination of pRb in all three gRNAs (highlighted in Supplementary Figure 1), as it would be a strong point in favour that the dynamics reflect the endogenous CDKN1c dynamics.
      4. It would be very valuable to provide a quantification of said dynamics (e.g. plotting myc intensity / pRb immunoreactivity along the apicobasal axis of the tissue).
      5. In Figure 3, the authors use a short-hairpin-mediated knock-down strategy to decrease the levels of Cdkn1c, and show that this manipulation leads to an increase percentage of cycling progenitors and a decrease in the number of neurons in electroporated cells.

      The authors claim that their shRNA-based knockdown strategy aims to reduce low-level Cdkn1c expression in neurogenic progenitors while minimally affecting the higher expression in newborn neurons required for cell cycle exit. However, several factors need consideration. Electroporation introduces variability in shRNA delivery, making it difficult to achieve consistent gene inhibition across all cells, especially for dose-dependent genes like Cdkn1c. Additionally, Cdkn1c generates multiple isoforms, which may not be fully annotated in the chick genome, raising the possibility that the shRNA targets specific isoforms, potentially explaining the observed low expression. A more rigorous approach, such as qPCR analysis of sorted electroporated cells, would better validate the expression levels, rather than relying on in situ hybridization, presenting electroporated and non-electroporated cells in the same section (Supp. Figure 2). - As the authors note, "Unambiguous identification of cycling progenitors and postmitotic neurons is notoriously difficult in the chick spinal cord". "markers of progenitors usually either do not label all the phases of the cell cycle (eg. Phospho-Rb, thereafter pRb), or persist transiently in newborn neurons (eg. Sox2)." Given that pRb immunoreactivity is used as the basis for a lot of the conclusions in this study, it would be valuable to add a characterization of its dynamics as mentioned in Figure 2, as well as provide literary references/proof that Sox2 expression persists in newborn neurons. - The undefined population (pRb-/HuCD-) introduces an unknown that assumes that the percentage of progenitors in G1 phase before the restriction point and the number of newborn neurons are equal for both conditions in an experiment. Can the authors provide explanation for this assumption? - In Gui et al. (Dev Biol 2006), authors showed that a knockdown of Cdkn1c leads to a failure of nascent neurons to exit the cell cycle and causes them to re-entry the cell cycle, shown by ectopic mitoses. In that study, cells born from those ectopic mitoses eventually leave the cell cycle leading to an increase in the number of neurons. Can the authors check for ectopic mitoses at 24hpe and 48hpe? - The authors then address the question of whether the decrease in neuron number is due to the failure of newborn neurons to exit the cell cycle or to a delay in the transition from proliferative to neurogenic divisions. For that, they implement a strategy to label a synchronized cohort of progenitors based of incorporation of a FlashTag dye. - Given that this strategy is the basis of many of the experiments in this article, it would be very valuable to expand on the validation of this technique as cited in major comment #2. In figure 3E, the close proximity of cell pairs in PP and PN clones shown in the pictures makes their sibling status apparent. However, this is not the case for the NN clone. Can the authors further explain with what criteria they determined the clonal status of two FlashTag labelled cells? Can they provide further image examples of different types of clones? - Can the authors show that the plateau reached in Sup Figure 3 for pRb immunoreactivity corresponds to a similar dynamic for HuC/D immunoreactivity? - In order to further validate the strategy, could the authors use it at different stages to validate if they can replicate the different percentages of PP/PN/NN reported in the literature (e.g. Saade Cell Rep 2013)?. 5. In Figure 4, the strategy used to induce a low-dose overexpression of CDKN1c is an elegant method to introduce CDKN1c-Myc expression under the control of the endogenous Pax7 promoter, active in proliferative progenitors. The main point to address is: - Please provide proof that Pax7 expression is not altered in guides with a successful knock-in event (e.g. sorting and WB against the Pax7 protein) or the immunohistochemistry as performed in the Pax7-P2A-Gal4 tagging in Petit-Vargas et al., 2024. - Given the cell cycle regulated expression and activity of CDKN1c, can the authors elaborate on whether this is regulated at the promoter level? If so, how does this differ from the promoter activity of Pax7? - It would be advisable to characterize the dynamics along the cell cycle for the overexpressed form of CDKN1c-Myc relative to pRb, similarly to what was done in Figure 2B. 6. In figure 5, the authors use a double knock-down strategy to test the hypothesis that the effect of Cdkn1c in G1 length is partially at least through its inhibition of CyclinD1. Results show that double shRNA-mediated knock-down of CyclinD1 and Cdkn1c counteracts the effects of Cdkn1c-sh alone on EdU incorporation, PP/PN/NN cell divisions and overall rations of progenitors and neurons. - In the measurement of progenitor cell cycle length in Figure 5A, it would be more appropriate to present the nonlinear regression method described by Nowakowski et al. (1989), as has been commonly used in the field (Saade et al., 2013, PMID: 23891002, Le Dreau et al., 2014, PMID: 24515346, Arai et al., 2011, PMID: 21224845). - Cumulative EdU incorporation in spinal progenitors (pRb-positive) at E3 (24 hours after injection) showed that the proportion of EdU-positive progenitors reached a plateau at 14 hours in control conditions, which is later than what has been reported in Le Dreau et al., 2014 (PMID: 24515346). Can you explain why? - It would be interesting to measure G1 length as in Figure 5D for the double cdkn1c-sh - ccnd1-sh knock down condition, to see if it rescues G1 length. As well as in the Ccnd1 knock down condition alone to see if it increases G1 length in this context as well.

      Minor comments

      Introduction:

      • The introduction should include references of studies of the role of Cdkn1c in cortical development (Imaizumi et al. Sci Rep 2020, Colasante et al. Cereb Cortex 2015, Laukoter et al. Nature Communications 2020).

      • Transcriptional signature of the neurogenic transition (Figure 1).

        • In the result section, it would be informative to include the genes used to determine the progenitor and neuron score (instead of in Methods).
        • Figure 1A. It would be informative to add in the diagram what "filtering" means (eg. Neural crest cells).
        • In the result section, "However, while Tis21 expression is switched off in neurons, Cdkn1c transiently peaks at high levels in nascent neurons before fading off in more mature cells." Missing literary reference or data to clearly demonstrate this point.
        • "Interestingly, the gene cluster that contained Tis21 also contained genes encoding proteins with known expression and/or functions at the transition from proliferation to differentiation, such as the Notch ligand Dll1, the bHLH transcription factors Hes6, NeuroG1 and NeuroG2, and the coactivator Gadd45g." Missing references.
        • There is an error in the color code in Cell Clusters in Figure 1C (cluster 4 yellow in the legend but ocre in the figure)

      It would be valuable to assign cell cycle stage to neural progenitor cells (based on cell cycle score) and determine whether cdkn1c at the transcript level also shows enrichment in G1 cells considered to be progenitors. 2. Progressive increase in Cdkn1c/p57kip2 expression underlie different cellular states in the embryonic spinal neural tube (Figure 2). - Figure 2A. Scale bar is missing in E3 and E4. It is important to consider the growth of the developing spinal cord and present it accordingly (E3 transverse section, Figure 2). - Figure 2 could use a diagram of the knock-in strategy used, similar as the one in Figure 4A. - Indicate hours post-electroporation. Indicate which guide is used in the main text. 3. Downregulation of Cdkn1c in neural progenitors delays the transition from proliferative to neurogenic modes of division (Figure 3). - In methods: "Thus, to reason on a more homogeneous progenitor population, we restricted all our analysis to the dorsal one half or two thirds of the neural tube." Indicate when and depending on what one half or two thirds of the neural tube were analysed. - Figure 3. Would have a better flow if 3C preceded 3A and 3B. - Figure 3C. it would be informative to show pictures of the electroporated NT at both 24hpe and 48hpe, as well as highlighting the dorsal part of the neural tube that was used for quantification. - Are the clonal analysis experiments (Fig 3D, E and F) also restricted to the dorsal region? - Figure Sup3B colour code is switched (green for PP and red for NN) compared to the rest of the paper. - In methods "At each measured timepoint (1h, 4h, 7h, 10h, 12h, 14 and 17h after the first EdU injection), we quantified the number of EdU positive electroporated progenitors (triple positive for EdU, pRb and GFP) over the total population of electroporated progenitor cells (pRb and GFP positive) (Figure 3B)." Explanation does not correspond to Figure 3B. 4. Inducing a premature expression of Cdkn1c in progenitors triggers the transition to neurogenic modes of division (Figure 4.).<br /> - "We took advantage of the Pax7 locus, which is expressed in progenitors in the dorsal domain at a level similar to that observed for Cdkn1c in neurogenic precursors (Supplementary Figure 4A)". Missing reference or data showing that Pax7 is restricted to the dorsal domain. - "its intensity was similar to the one observed for endogenous Myc-tagged Cdkn1c in progenitors (Figure 4B and Supplementary Figure 4E), and remained below the endogenous level of Myc-tagged Cdkn1c observed in nascent neurons, confirming the validity of our strategy". It would be valuable to add a quantification to demonstrate this point, either by fluorescence levels or WB of nls-GFP cells. - For Figure 4C and D, it would be valuable to add images to illustrate the quantification. - "At the population level, at E4, Cdkn1c expression from the Pax7 locus resulted in a strong reduction in the number of progenitors (pRb positive cells)". Indicate in the main text that this is 48hpe. - Legend of figure 4D should indicate that the quantification has been done 24hpe. - "To circumvent the cell cycle arrest that is triggered in progenitors by strong overexpression of Cdkn1c (Gui et al., 2007)". It would be advisable to expand on this reference on the text, or ideally to include a simple Cdkn1c overexpression experiment. - "We observed a massive increase in the proportion of neurogenic (PN and NN) divisions rising from 57% to 84% at the expense of proliferative pairs (43% PP pairs in controls versus 16% in misexpressing cells, Figure 4D)." adding the percentages in the main text is a bit inconsistent with how the rest of the data is presented in the rest of the sections. - Figure sup 4C includes references to 3 gRNAs even when only one is used in the study. 5. The proneurogenic activity of Cdkn1c in progenitors is mediated by modulation of cell cycle dynamics (Figure 5) - "we targeted the CyclinD1/CDK4-6 complex, which promotes cell cycle progression and proliferation, and is inhibited by Cdkn1c." reference missing - It would be valuable to add an image to illustrate what is quantified in Figure 5D, Figure F and Figure G. - It would be informative to include experimental set-up information (e.g. hae) in Figures 5A, 5B, 5F and 5G. - Clarify if analysis is restricted to the dorsal progenitors or the whole dorsoventral length of the tube.

      Discussion:

      • "Nonetheless, studies in a wide range of species have demonstrated that beyond this binary choice, cell cycle regulators also influence the neurogenic potential of progenitors, i.e the commitment of their progeny to differentiate or not (Calegari and Huttner, 2003; FUJITA, 1962; Kicheva et al., 2014; Lange et al., 2009; Lukaszewicz and Anderson, 2011a; Pilaz et al., 2009; Smith and Schoenwolf, 1987; Takahashi et al., 1995)." Should include maybe references to Peco et al. Development 2012, Roussat et al. J Neurosci. 2023).
      • "This occurs through a change in the mode of division of progenitors, acting primarily via the inhibition of the CyclinD1/CDK6 complex." The data shown in the paper does not demonstrate that Cdkn1c is inhibiting CyclinD1, only that knocking down both mRNAs counteracts the effect of knocking down Cdkn1c alone at the general tissue level and in the percentage of PP/PN/NN clones. This statement should be qualified.

      Other comments:

      • There is a general lack of consistency in indicating the timing of the experiments, both in terms of embryonic stage/day and in terms of hours-post-electroporation.
      • To improve clarity for the reader, it would help if electroporation was shown consistently on the same side of the neural tube. If electroporation has been performed at different sides and this is reflected in the figures, it would be advisable to explain on the figure legend.
      • Figure legends should include the number of embryos/tissue sections analysed for each experiment, as well as information on whether the sections were cryostat or vibratome.
      • Overall, there is a lack of consistency in the figures regarding how much information is available to the reader (e.g. Sup Figure 2A, in the panel mRNA in situ hybridisation of Cdkn1c is referred to only as Cdkn1c whereas in Sup figure 5 the in situ reads as CCND1 mRNA). Readability would improve a lot if figures included information on what is an electroporated fluorescent tag or an immunostaining (similar to the label in sup 4D) as well as the exact stage and hours after electroporation where relevant.
      • "Primary antibodies used are: chick anti-GFP (GFP-1020 - 1:2000) from Aves Labs; goat antiSox2 (clone Y-17 - 1:1000) from Santa Cruz". There is no Sox2 immunostaining in the article.

      Significance

      In neural development, there is a progressive switch in competence in neural progenitor cells, that transition from a proliferative (able to expand the neural progenitor pool) to neurogenic (able to produce neurons). Several factors are known to influence the transition of neural progenitor cells from a proliferative to a neurogenic state, including the activity of extracellular signalling pathways (e.g. SHH) (Saade et al. 2013, Tozer et al. 2017). In this study, the authors perform scRNA-seq of the cervical neural tube of chick at a stage of both proliferative and neurogenic progenitors are present, and identify transcriptional differences between the two populations. Among the differently expressed transcripts, they identify Cdkn1c (p57-Kip2) as enriched in neurogenic progenitors. Initially characterized as a driver of cell cycle exit in newborn neurons, the authors investigate the role of Cdkn1c in cycling progenitors. The authors find that knock-down of Cdkn1c leads to an increase in proliferative divisions at the expense of neurogenic divisions. Conversely, misexpression of Cdkn1c in proliferative progenitors leads to a switch to neurogenic divisions. Furthermore, they find that knock-down of Cdkn1c shortens G1 phase of the cell cycle, suggesting a link between G1 length and neurogenic competence in neural progenitor cells. Cell cycle length has previously been linked to competence of neural progenitors, and it has been described that longer G1 duration is linked to neurogenic competence (e.g. Calegari F, Huttner WB. 2003).

      The strengths of the study include:

      The identification of a subset of genes enriched in neurogenic vs. proliferative progenitors. Since the transition from proliferative to neurogenic competence is a gradual process at the tissue level, the classification of proliferative vs. neurogenic progenitors based on a score of transcripts and the identification of a subset of transcripts that are enriched in neurogenic progenitors is a valuable contribution to the neurodevelopmental field.

      • The somatic knock-in strategy used to induce low-level overexpression of Cdkn1c in proliferative progenitors is an elegant strategy to induce overexpression in a subset of cells in a controlled manner and is a valuable technical advance.
      • The characterization of a specific role of Cdkn1c in regulating cell cycle length in cycling progenitors is novel and valuable knowledge contributing to our understanding of how regulation of cell cycle length impacts competence of neural progenitors.

      The aspects to improve:

      • The sc-RNAseq isolated genes enriched in neurogenic versus proliferative progenitors, providing valuable insight into the gradual transition from proliferative to neurogenic competence at the tissue level. However, this gene subset requires clearer representation and detailed characterization. Additionally, the full scRNA-seq dataset should be made publicly available to support further research in neurodevelopment.
      • The characterization of Cdkn1c dynamics in cycling progenitors using endogenous tagging of the Cdkn1c transcript with a Myc tag is an elegant way to investigate the dynamics of Cdkn1c-myc along the cell cycle. However, it would be much more powerful if combined with a careful characterization of pRb immunostaining along the cell cycle in this tissue, as well as the quantifications and controls proposed.
      • Retinoblastoma protein (Rb) and cyclin D play a key role in regulating the G1/S transition, with cyclin D/CDK complexes phosphorylating Rb. Given that CDKN1c primarily inhibits the cyclin D/CDK6 complex, it likely affects pRb expression or phosphorylation. This suggests pRb may be a direct target of CDKN1c, making it an unreliable marker for tracking and quantifying neurogenic progenitors through CDKN1c modulation. In light of this, it would be more appropriate to consider pRb as a CDKN1c target and discuss the molecular mechanisms regulating cell cycle components. A more precise approach would involve using other markers or targets to quantify neural precursor division modes at earlier stages of neurogenesis.
      • Many of the conclusions of the study are based on experiments performed using the FlashTag dye in order to perform clonal analysis of proliferative vs. neurogenic divisions. It would be very valuable to further characterize the reliability of this tool as well as to provide more information on the criteria used to determine the fate of the pairs of sister cells.
      • The somatic knock-in strategy used to induce low-level overexpression of Cdkn1c in proliferative progenitors is an elegant strategy to induce overexpression in a subset of cells in a controlled manner. It would be valuable to further characterize the dynamics of Cdkn1c expression using this too and to provide proof that Pax7 expression is not altered in guides with the knock-in event.
      • The presentation of the existing literature could be more up to date.
      • The presentation of the data in the figures could be improved for readability. The sc-RNA seq data and the technical advances could be of interest for an audience of researchers using chick as a model organism, and working on neurodevelopment in general. Furthermore, the characterization of Cdkn1c as a regulator of G1 length in cycling progenitors and its implications for neurogenic competence could be of general interest for people working on basic research in the neurodevelopmental field.

      Field of expertise of the reviewer: neural development, cell biology, embryology.

    3. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #2

      Evidence, reproducibility and clarity

      The work by Mida and colleagues addresses important questions about neurogenesis in the embryo, using the chicken neural tube as their model system. The authors investigate the mechanisms involved in the transition from stem cell self-renewal to neurogenic progenitor divisions, using a combination of single cell, gene functional and tracing studies.

      The authors generated a new single cell data set from the embryonic chicken spinal cord and identify a transitory cell population undergoing neuronal differentiation, which expresses Tis21, Neurog2 and Cdkn1c amongst other genes. They then study the role of Cdkn1c and investigate the hypothesis that it plays a dual role in spinal cord neurogenesis: low levels favour transition from proliferative to neurogenic divisions and high levels drive cell cycle exit and neuronal differentiation.

      Major comments

      I have only a general comment related to the main point of the paper. The authors claim that Cdkn1c onset in cycling progenitor drives transition towards neurogenic modes of division, which is different from its role in cell cycle exit and differentiation. Figures 3F and 4D are key figures where the authors analysed PP, PN and NN mode of divisions via flash tag followed by analysis of sister cell fate. If their assumption is correct, shouldn't they also see, for example in Fig. 4D, an increase in PN or is this too transient to be observed or is it bypassed? At the moment, the calculations of PN and NN frequencies are merged in the text, so perhaps describing PN and NN numbers separately will help better understand the dynamics of this gradual process (especially since there is little to no difference in PN). Could the increase in NN be compatible also with a role in cell cycle exit and differentiation, for example from cells that have been targeted and are still undergoing the last division (hence marked by flash tag) or there won't be any GFP cells marked by flash tag a day after expression of high levels of Cdkn1c? Basically, what would the effect of expressing higher levels of Cdkn1c be? I guess this will really help them distinguish between transition to neurogenic division rather than neuronal differentiation. If not experimentally, any further comments on this would be appreciated.

      Minor comments

      Fig 3C my understanding is that HuC/D should be nuclear, but in fig 3C it seems more cytoplasmic (any comment?)

      Fig Suppl 3E (and related 4B), immuno for Cdkn1c-Myc: to help the reader understand the difference between the immuno signals when looking at the figure, I would suggest writing on the panel i) Pax7-Cdkn1c-Myc and ii) endogenous Cdkn1c-Myc, rather than 'misexpressed' and 'endogenous', which is slightly confusing (especially because what it is called endogenous expression is higher).

      Literature citing: Introduction and discussion are very nicely written, although they could benefit from some more recent literature on the topic. For example, Cdkn1c role as a gatekeeper of stem cell reserve in the stomach, gut, (Lee et al, CellStemCell 2022 PMID: 35523142) or some other work on symmetric/asymmetric divisions and clonal analysis in zebrafish (Hevia et al, CellRep 2022 PMID: 35675784, Alexandre et al, NatNeur PMID: 20453852), mammals (Royal et al, Elife 2023 37882444, Appiah et al, EMBO rep 2023 PMID: 37382163). Also, similar work has been performed in the developing pancreatic epithelium, where mild expression of Cdkn1a under Sox9rtTa control was used to lengthen G1 without overt cell cycle exit and this resulted in Neurog3 stabilization and priming for endocrine differentiation (Krentz et al, DevCell 2017 PMID: 28441528), so similar mechanisms might be in in place to gradually shift progenitor towards stable decision to differentiate. Moreover, in the discussion, alongside Neurog2 control of Cdkn1c, it could be mentioned that the feedback loop between Cdk inhibitors and neurogenic factor is usually established via Cdk inhibitor-mediated inhibition of proneural bHLHs phosphorylation by CDKs (Krentz et al, DevCell 2017 PMID: 28441528, Ali et al, 24821983, Azzarelli et al 2017 - PMID: 28457793; 2024 - PMID:39575884). Further, in the discussion, could they mention anything about the following open questions: is there evidence for Cdkn1c low/high expression in mammalian spinal cord? Or maybe of other Cdk inhibitors? Is Cdkn1c also involved in cell cycle exit during gliogenesis or is there another Cdk inhibitor expressed at later developmental stages, hence linking this with specific cell fate decisions?

      Significance

      The work here presented has important implications on neural development and its disorders. The authors used the most advanced technologies to perform gene functional studies, such as CRISPR-HDR insertion of Myc-tag to follow endogenous expression, or expression under endogenous Pax7 promoter, often followed by flash tag experiments to trace sister cell fate, and all of this in an in vivo system. They then tested cell cycle parameters, clonal behaviour and modes of cell division in a very accurate way. Overall data are convincing and beautifully presented. The limitation is potentially in the resolution between the events of switching to neurogenic division versus neuronal differentiation, which might just warrant further discussion. This work advances our knowledge on vertebrate neurogenesis, by investigating a key player in proliferation and differentiation.

      I believe this work will be of general interest to developmental and cellular biologists in different fields. Because it addresses fundamental questions about the coordination between cell cycle and differentiation and fate decision making, some basic concepts can be translated to other tissues and other species, thus increasing the potential interested audience.

      My work focuses on stem cell fate decisions in mammalian systems, and I am familiar with the molecular underpinnings of the work here presented. However, I am not an expert in the chicken spinal cord as a model and yet the manuscript was interesting. I am also not sufficiently expert in the bioinformatic analysis, so cannot comment on the technical aspects of Figure 1 and the way they decided to annotate their data.

    4. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #1

      Evidence, reproducibility and clarity

      Summary

      This study utilizes the developing chicken neural tube to assess the regulation of the balance between proliferative and neurogenic divisions in the vertebrate CNS. Using single-cell RNAseq and endogenous protein tagging, the authors identify Cdkn1c as a potential regulator of the transition towards neurogenic divisions. Cdkn1c knockdown and overexpression experiments suggest that low Cdkn1c expression enhances neurogenic divisions. Using a combination of clonal analysis and sequential knockdown, the authors find that Cdkn1c lengthens the G1 phase of the cell cycle via inhibition of cyclinD1. This study represents a significant advance in understanding how cells can transition between proliferative and asymmetric modes of division, the complex and varying roles of cycle regulators, and provides technical advance through innovative combination of existing tools.

      Major and Minor Comments:

      Overall

      • Sample numbers are missing or unclear throughout for all imaging experiments. The authors should add numbers of cells analysed and/or numbers of embryos for their results to be appropriately convincing.
      • Values and error bars on graphs must be defined throughout. Are the values means and error bars SD or SEM?

      Results 2

      • A reference should be provided for cell type distribution in spinal neural tube, where the authors state that cell bodies of progenitors reside within the ventricular zone.
      • The authors state that Cdkn1c "was expressed at low levels in a salt and pepper fashion in the ventricular zone, where the cell bodies of neural progenitors reside, and markedly increased in a domain immediately adjacent to this zone which is enriched in nascent neurons on their way to the mantle zone. In contrast, the transcript was completely excluded from the mantle zone, where HuC/D positive mature neurons accumulate." It is not clear if this is referring only to E4 or also to E3 embryos. Indeed, Cdkn1c expression appears to be much more salt and pepper at E3 and only resolves into a clear domain of high expression adjacent to the mantle zone at E4. It may be helpful if this expression pattern could be described in a bit more detail highlighting the changes that occur between E3 and E4.
      • It would be useful to annotate the ISH images in Fig 2A to show the ventricular and mantle zones as defined by immunofluorescence.
      • Reference should be included for pRb expression dynamics.
      • Could the Myc tag insertion approach disrupt protein function or turnover?
      • Why was the insertion target site at the C terminus chosen?
      • OPTIONAL Could a similar approach be used to tag Cdkn1c with a fluorescent protein to enable live imaging of dynamics?
      • In suppl Fig 1C nlsGFP-positive cells are shown in the control shRNA condition. How can this be explained and does it impact the interpretation of the findings?
      • In Fig 2B, there are a number of Myc labelled cells in the mantle zone, whereas the in situ images show no appreciable transcript expression. Is this because the protein but not the transcript is present in these cells? Could the authors comment on this?

      Results 3

      • It should be mentioned how mRNA expression levels were quantified in the shRNA validation experiment (supp Fig 2A).
      • Figure panels are not currently cited in order. Citation or figure order could be changed.
      • The authors should provide representative images for the graphs shown in Fig 3A and 3B. These could go into supplementary if the authors prefer.
      • A supplementary figure showing the Caspase3 experiment should be added.
      • OPTIONAL. Identification of sister cells in the clonal analysis experiments is based on static images and cannot be guaranteed. Could live imaging be used to watch divisions followed by fixation and immunostaining to confirm identity?

      Results 4

      • How did the authors quantify the intensity of endogenous Myc-tagged Cdkn1c to confirm the validity of the Pax7 locus knock in? Can they show that the expression level was consistently lower than the endogenous expression in neurons? Quantification and sample numbers should be shown.
      • In Fig 4B, the brightness of row 2 column 1 is lower than the same image in row 2 column 2, which is slightly misleading, since it makes the misexpressed expression level look lower than it is compared with endogenous in column 3. Is this because only a single z-section is being displayed in the zoomed in image? If so, this should be stated in the figure legend.
      • In Fig 4D, the increase in neurogenic divisions is mainly because of the rise in terminal NN divisions according to the graph, but no clear increase in PN divisions. Could the authors comment on the significance of this?

      Results 5

      • The proportion of pRb-positive progenitors having entered S phase was stated to be higher at all time points; however, it is not significantly higher until 6h30 and is actually trending lower at 2h30.
      • OPTIONAL Could CyclinD1 activity be directly assessed?

      General

      • Scale bars missing fig s1c s4d.
      • OPTIONAL Some of the main findings be replicated in another species, for example, mouse or human to examine whether the mechanism is conserved.
      • OPTIONAL Could use approaches other than image analysis be used to reinforce findings, for example biochemical methods, RNAseq or FACS?
      • A model cartoon to summarise outcomes would be useful.
      • Unclear how cells were determined to be positive or negative for a label. Was this decided by eye? If so, how did the authors ensure that this was unbiased?

      Significance

      Strengths:

      This manuscript investigates the mechanisms regulating the switch from symmetric proliferative divisions to neurogenic division during vertebrate neuronal differentiation. This is a question of fundamental importance, the answer to which has eluded us so far. As such, the findings presented here are of significant value to the neurogenesis community and will be of broad interest to those interested in cell divisions and asymmetric cell fate acquisition. Specific strengths include:

      • Variety of approaches used to manipulate and observe individual cell behaviour within a physiological context.
      • A limitation of using the chicken embryo is the lack of available antibodies for immunostaining. The authors take advantage of recent advances in chicken embryo CRISPR strategy to endogenously tag the target protein with Myc, to facilitate immunostaining.
      • Innovative combination of genetic and labelling tools to target cells, for example, use of FlashTag and EdU in combination to more accurately assess G1 length than the more commonly used method.
      • Premature misexpression demonstrates that the previously observed dynamics indeed regulate cell fate.
      • Mechanistic insight by examining downstream target CyclinD1.
      • Clearly presented with useful illustrations throughout.
      • Logic is clear and examination thorough.
      • Conclusions are warranted on the basis of their findings.

      Limitations

      • This study primarily used visual analysis of fixed tissue images to assess the main outcomes. To reinforce the conclusions, these could be supplemented with live imaging to appreciate dynamics, or biochemical techniques to look at protein expression levels.
      • Some aspects of quantification require explanation in order for the experiments to be replicated.
      • It is imperative that precise sample sizes are included for all experiments presented.

      Advance:

      • First functional demonstration role for Cdkn1c in regulating neurogenic transition in progenitors.
      • Conceptual advance suggesting Cdkn1c has dual roles in driving neurogenesis: promoting neurogenic divisions of progenitors and the established role of mediating cell cycle exit previously reported.
      • Technical advances in the form of G1 signposting and endogenous Myc tagging using CRISPR in chicken embryonic tissue.

      Audience:

      Of broad interest to developmental biologists. Could be relevant to cancer, since Cdkn1c is implicated.

       Please define your field of expertise with a few keywords to help the authors contextualize your point Developmental biology, vertebrate embryonic development, neuronal differentiation, imaging. Please note that we have not commented on RNAseq experiments as these are outside of our area of expertise.

    1. Welcome back and in this video I want to talk about geolocation routing which is another routing policy available within Route 53. Now this is going to be a pretty brief video so let's jump in and get started.

      In many ways geolocation routing is similar to latency, only instead of latency, the location of customers and the location of resources are used to influence resolution decisions. With geolocation routing, when you create records you tag the records with the location. Now this location is generally a country, so using ISO standard country codes, it can be continents—again using ISO continent codes such as SA for South America in this case—or records can be tagged with default. Now there's a fourth type which is known as a subdivision; in America you can tag records with the state that the record belongs to.

      Now when a user is making a resolution request, an IP check verifies the location of the user. Depending on the DNS system, this can be the user directly or the resolver server, but in most cases these are one and the same in terms of the user's location. So we have the location of the user and we have the location of the records. What happens next is important because geolocation doesn't return the closest record, it only returns relevant records.

      When a resolution request happens, Route 53 takes the location of the user and it starts checking for any matching records. First, if the user doing the resolution request is based in the US, then it checks the state of the user and it tries to match any records which have a state allocated to them. If any records match, they're returned and the process stops. If no state records match, then it checks the country of the user. If any records are tagged with that country, then they're returned and the process stops. Then it checks the continent; if any records match the continent that the user is based in, then they're returned and the process stops.

      Now you can also define a default record which is returned if no record is relevant for that user. If nothing matches though—so there are no records that match the user's location and there's no default record—then a no answer is returned. So to stress again, this type of routing policy does not return the closest record, it only returns any which are applicable or the default, or it returns no answer.

      So geolocation is ideal if you want to restrict content—for example, providing content for the US market only. If you want to do that, then you can create a US record and only people located in the US will receive that record as a response for any queries. You can also use this policy type to provide language specific content or to load balance across regional endpoints based on customer location.

      Now one last time, because this is really important for the exam and for real world usage: this routing policy type is not about the closest record—geolocation returns relevant locations only. You will not get a Canadian record returned if you're based in the UK and no closer records exist. The smallest type of record is a subdivision which is a US state, then you have country, then you have continent, and finally optionally a default record. Use the geolocation routing policy if you want to route traffic based on the location of your customers.

      Now it's important that you understand—which is why I've stressed this so much—that geolocation isn't about proximity, it's about location. You only have records returned if the location is relevant. So if you're based in the US but are based in a different state than a record, you won't get that record. If you're based in the US and there is a record which is tagged as the US as a country, then you will get that record returned. If there isn't a country specific record but there is one for the continent that you're in, you'll get that record returned, and then the default is a catchall. It's optional; if you choose to add it, then it's returned if your user is in a location where you don't have a specific record tagged to that location.

      Now that's everything that I wanted to cover in this video. Thanks for watching. Go ahead and complete the video and when you're ready I look forward to you joining me in the next.

    1. https://web.archive.org/web/20250414081426/https://blog.joewoods.dev/uncategorized/vague-list-action-list/

      Joe Wood keeps a 'vague' list of tasks that are equally important as other more tangible tasks but lack clarity about what steps to take. He added this within his GTD implementation. Interesting, as I notice I tend to put off important things when I don't have a clear path to execution yet (and the next action would be to think about those steps). I also think such vague actions may actually not be actions but projects lacking definition. It makes beginning harder, and keeping a vague list might help address it. I think I might use it as a tag in tasks, not as a separate list.

    1. Briefing Document : Le Refus Scolaire Anxieux

      Source : Excerpts de la transcription de la conférence "Le refus scolaire anxieux : mieux le reconnaitre, mieux le comprendre pour mieux le soigner" avec le Docteur Hélène Denis, pédopsychiatre au CHU de Montpellier.

      Date de la conférence : 2025

      Thèmes Principaux :

      Définition et distinction du Refus Scolaire Anxieux (RSA) :

      Le Dr. Denis insiste sur l'importance d'utiliser le terme "refus scolaire anxieux" plutôt que "phobie scolaire", qu'elle considère comme un terme obsolète et imprécis.

      Le RSA est défini comme l'incapacité pour un enfant ou un adolescent d'aller à l'école en raison d'une anxiété intense.

      Elle cite la définition de Juria Guérin (1974) : enfants ou adolescents qui, pour des raisons irrationnelles, refusent d'aller à l'école et résistent avec des réactions d'anxiété vive ou de panique à l'idée d'y aller, malgré les efforts pour les y forcer.

      • "le refus scolaire anxieux qu'est-ce que c'est et ben c'est ce qu'on appelle dans le jargon populaire la phobie scolaire et il faut plus employer ce mot-là à partir de ce soir phobie scolaire ça veut plus trop rien dire"
      • "ce sont des enfants ou des adolescents qui n'arrivent plus à aller à l'école parce qu'ils sont anxieux et que cette anxiété est tellement forte qu'il n'arrive plus à y aller"
      • Caractéristiques des jeunes souffrant de RSA : Contrairement à l'absentéisme scolaire classique (école buissonnière), les jeunes atteints de RSA veulent retourner à l'école, ont des ambitions scolaires et souffrent de cette situation. Ils sont souvent conscients du caractère irrationnel de leurs peurs anxieuses et demandent de l'aide.
      • "la particularité de ces jeunes qui ne qui sont absents parce qu'il n'arrivent plus à aller à l'école pour des raisons anxieux sont des patients qui veulent retourner à l'école ils ont des ambitions scolaires ils étaient auparavant plutôt très intéressés voir très investis dans la scolarité et à un moment donné ils n'arrivent plus à y aller et ce sont des jeunes qui du coup souffrent de cette situation et demandent de l'aide"

      Le RSA comme complication de troubles anxieux : Le RSA n'est pas un diagnostic en soi dans les classifications internationales, mais plutôt une manifestation ou une complication de troubles anxieux sous-jacents (un ou plusieurs).

      Le Dr. Denis présente les critères de Berg pour définir les patients concernés par le RSA dans le cadre de la recherche : refus d'aller à l'école entraînant une absence prolongée, détresse émotionnelle anticipatoire (peur, colère, tristesse, symptômes physiques), maintien au domicile pendant les heures de classe, absence de comportements antisociaux significatifs et efforts parentaux préalables pour la rescolarisation.

      "le refus scolaire anxieux c'est pas un diagnostic qui est dans les classifications parce qu'en fait c'est une complication de plusieurs troubles anxieux"

      Les Troubles Anxieux : Le Dr. Denis souligne la sous-reconnaissance et la mauvaise prise en charge des troubles anxieux en France.

      Elle explique que l'anxiété est une émotion normale et utile, mais que les troubles anxieux se caractérisent par une peur exagérée, intense, fréquente et durable, entraînant une souffrance importante et des comportements d'évitement.

      Elle détaille différents types de troubles anxieux chez l'enfant et l'adolescent : anxiété de séparation, phobies spécifiques, trouble anxiété généralisée (TAG), anxiété sociale (y compris l'anxiété de performance), trouble panique et troubles obsessionnels compulsifs (TOC) (bien que n'étant plus classés comme troubles anxieux, ils peuvent entraîner un RSA).

      • "les troubles anxieux c'est une c'est une pathologie qui est très peu connue ou très mal diagnostiquée et très très mal prise en charge en France"
      • "les troubles anxieux c'est une peur normale qui va être très exagérée au départ ça peut être une peur normale mais on n'arrive pas à trouver la résolution ou alors c'est une peur normale qui a trouvé une résolution qui revient très forte à un autre moment du développement"

      Conséquences des Troubles Anxieux non traités : Le Dr. Denis insiste sur les répercussions importantes des troubles anxieux non traités sur le développement psychologique, la vie familiale, les apprentissages scolaires, et le risque accru de développer à l'âge adulte des troubles anxieux persistants, une dépression, ou des conduites addictives (abus de substances pour gérer l'anxiété).

      "le problème des troubles anxieux de l'enfant et de l'adolescent c'est que si on n'y fait rien il y a pas de raison que ça s'arrête et donc on va laisser se construire comme ça un adulte anxieux sans s'en être occupé sans avoir arrêté cette trajectoire d'anxiété"

      Diagnostic Différentiel du RSA : Il est crucial de distinguer le RSA de l'absentéisme scolaire volontaire (école buissonnière), qui n'est pas motivé par l'anxiété et où les jeunes n'expriment pas de souffrance ni de désir de retourner à l'école. La distinction peut parfois être complexe, notamment en présence de facteurs familiaux compliqués.

      "ce qui n'est pas un refus scolaire anxieux c'est ceux qui ne vont pas à l'école mais parce qu'ils n'ont pas envie d'y aller ce sont des jeunes qu'on appelle école buissonnière"

      Traitement du RSA : Le traitement de référence, basé sur les études internationales, est la Thérapie Cognitive et Comportementale (TCC), éventuellement associée à un traitement médicamenteux (antidépresseurs ISRS).

      La TCC vise à apprendre au patient à identifier et à modifier ses pensées dysfonctionnelles, à gérer ses émotions et à s'exposer progressivement aux situations anxiogènes.

      "dans les études scientifiques de bonne qualité on retrouve qu'il faut faire de la thérapie cognitive et comportementale qui est le traitement de référence des troubles anxieux"

      "la technique de référence c'est s'exposer aux situations qui font peur on va préparer le patient doucement mais sûrement à s'exposer à ce qui fait peur"

      Prise en charge spécifique au CHU de Montpellier : L'unité du Dr. Denis propose une prise en charge spécifique en hospitalisation de jour pour les adolescents (11-16 ans) souffrant de RSA.

      Cette prise en charge combine scolarité adaptée au sein de l'unité avec des thérapies cognitives et comportementales individuelles et en groupe.

      Un travail important est mené en partenariat avec les familles et les établissements scolaires pour faciliter le retour à l'école.

      "l'unité du docteur Hélène Denis au CHU de Montpellier a développé une prise en charge spécifique ces patients qui ont en général entre 11 et 16 ans [...] sont reçus en hospitalisation de jours durant cette période ils poursuivent leurs études au sein de l'unité et reçoivent des soins en thérapie cognitive et comportementale à la fois en individuel et en groupe"

      Rôle de l'Éducation Nationale dans la détection et la prise en charge précoce : Le Dr. Denis encourage les professionnels de l'éducation à être attentifs aux signes d'anxiété liés à la scolarité (peur exprimée, somatisations, absences perlées), à adopter une attitude empathique et bienveillante, à proposer des aménagements scolaires si nécessaire (temps partiel), à faciliter la verbalisation des peurs, et à orienter vers une aide spécialisée en cas de persistance ou d'aggravation. Elle souligne l'importance du lien avec les parents.

      "aller chercher avec des mots simples et une reconnaissance empathique et bienveillante de 'Mais qu'est-ce qui te fait peur ? même si c'est débile tu peux peut-être me le dire'"

      "il vaut mieux aménager faire du temps partiel plutôt que s'acharner et après tout bloquer la déscolarisation totale c'est l'enfer pour repartir c'est l'enfer il vaut mieux y rester un peu et moins souvent et et mettre en place des stratégies pour essayer que petit à petit on y reparte"

      Points de vigilance : Le Dr. Denis exprime un regard critique sur certaines approches et terminologies dans le domaine de l'éducation, notamment concernant le "haut potentiel intellectuel" (HPI), qu'elle considère comme une invention franco-française problématique et non étayée scientifiquement comme cause de mal-être scolaire.

      Elle met également en garde contre une utilisation excessive et parfois inappropriée du terme "harcèlement". Idées ou Faits Importants :

      • Le refus scolaire anxieux est une problématique fréquente et invalidante chez les adolescents.
      • Il est essentiel de distinguer le RSA de l'absentéisme non anxieux pour une prise en charge adaptée.
      • Les troubles anxieux sous-jacents sont souvent mal diagnostiqués et pris en charge en France.
      • La TCC est le traitement de référence du RSA et des troubles anxieux.
      • Une prise en charge multidisciplinaire et un partenariat étroit avec les familles et les écoles sont cruciaux pour un retour à l'école réussi.
      • La détection précoce et les aménagements scolaires peuvent prévenir une déscolarisation totale.
      • Certaines notions populaires comme le lien systématique entre HPI et mal-être scolaire sont remises en question par le Dr. Denis.

      Conclusion :

      La conférence du Dr. Hélène Denis met en lumière la complexité du refus scolaire anxieux, son lien étroit avec les troubles anxieux, et l'importance d'une approche diagnostique et thérapeutique rigoureuse.

      Elle souligne le rôle crucial des professionnels de l'éducation dans la détection précoce et l'orientation, ainsi que la nécessité d'une collaboration étroite avec les équipes médicales et les familles pour accompagner au mieux ces jeunes en souffrance et favoriser leur retour à l'école.

      La présentation du dispositif spécifique du CHU de Montpellier offre un exemple concret de prise en charge efficace basée sur la TCC.

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public Review):

      Astrocytes are known to express neuroligins 1-3. Within neurons, these cell adhesion molecules perform important roles in synapse formation and function. Within astrocytes, a significant role for neuroligin 2 in determining excitatory synapse formation and astrocyte morphology was shown in 2017. However, there has been no assessment of what happens to synapses or astrocyte morphology when all three major forms of neuroligins within astrocytes (isoforms 1-3) are deleted using a well characterized, astrocyte specific, and inducible cre line. By using such selective mouse genetic methods, the authors here show that astrocytic neuroligin 1-3 expression in astrocytes is not consequential for synapse function or for astrocyte morphology. They reach these conclusions with careful experiments employing quantitative western blot analyses, imaging and electrophysiology. They also characterize the specificity of the cre line they used. Overall, this is a very clear and strong paper that is supported by rigorous experiments. The discussion considers the findings carefully in relation to past work. This paper is of high importance, because it now raises the fundamental question of exactly what neuroligins 1-3 are actually doing in astrocytes. In addition, it enriches our understanding of the mechanisms by which astrocytes participate in synapse formation and function. The paper is very clear, well written and well illustrated with raw and average data.

      We thank the reviewer for the balanced and informative summary.

      Reviewer #2 (Public Review):

      In the present manuscript, Golf et al. investigate the consequences of astrocyte-specific deletion of Neuroligin family cell adhesion proteins on synapse structure and function in the brain. Decades of prior research had shown that Neuroligins mediate their effects at synapses through their role in the postsynaptic compartment of neurons and their transsynaptic interaction with presynaptic Neurexins. More recently, it was proposed for the first time that Neuroligins expressed by astrocytes can also bind to presynaptic Neurexins to regulate synaptogenesis (Stogsdill et al. 2017, Nature). However, several aspects of the model proposed by Stogsdill et al. on astrocytic Neuroligin function conflict with prior evidence on the role of Neuroligins at synapses, prompting Golf et al. to further investigate astrocytic Neuroligin function in the current study. Using postnatal conditional deletion of Neuroligins 1, 2 and 3 specifically from astrocytes, Golf et al. show that virtually no changes in the expression of synaptic proteins or in the properties of synaptic transmission at either excitatory or inhibitory synapses are observed. Moreover, no alterations in the morphology of astrocytes themselves were found. The authors conclude that while Neuroligins are indeed expressed in astrocytes and are hence likely to play some role there, this role does not include any direct consequences on synaptic structure and function, in direct contrast to the model proposed by Stogsdill et al.

      Overall, this is a strong study that addresses an important and highly relevant question in the field of synaptic neuroscience. Neuroligins are not only key regulators of synaptic function, they have also been linked to numerous psychiatric and neurodevelopmental disorders, highlighting the need to precisely define their mechanisms of action. The authors take a wide range of approaches to convincingly demonstrate that under their experimental conditions, no alterations in the levels of synaptic proteins or in synaptic transmission at excitatory or inhibitory synapses, or in the morphology of astrocytes, are observed.

      We are also grateful for this reviewer’s constructive comments.

      One caveat to this study is that the authors do not directly provide evidence that their Tamoxifen-inducible conditional deletion paradigm does indeed result in efficient deletion of all three Neuroligins from astrocytes. Using a Cre-dependent tdTomato reporter line, they show that tdTomato expression is efficiently induced by the current paradigm, and they refer to a prior study showing efficient deletion of Neuroligins from neurons using the same conditional Nlgn1-3 mouse lines but a different Cre driver strategy. However, neither of these approaches directly provide evidence that all three Neuroligins are indeed deleted from astrocytes in the current study. In contrast, Stogsdill et al. employed FACS and qPCR to directly quantify the loss of Nlgn2 mRNA from astrocytes. This leaves the current Golf et al. study somewhat vulnerable to the criticism, however unlikely, that their lack of synaptic effects may be a consequence of incomplete Neuroligin deletion, rather than a true lack of effect of astrocytic Neuroligins.

      The concern is valid. In the original submission of this paper, we did not establish that the Cre recombinase we used actually deleted neuroligins in astrocytes. We have now addressed this issue in the revised paper with new experiments as described below.

      However, the reviewer’s impression that the Stogsdill et al. paper confirmed full deletion of Nlgn2 is a misunderstanding of the data in that paper. The reviewer is correct that Stogsdill et al. performed FACS to test the efficacy of the GLAST-Cre mediated deletion of Nlgn2-flox mice, followed by qRT-PCR comparing heterozygous with homozygous mutant mice. With their approach, no wild-type control could be used, as these would lack reporter expression. However, this experiment does NOT allow conclusions about the degree of recombination, both overall recombination (i.e. recombination in all astrocytes regardless of TdT+) and recombination in TdT+ astrocytes because it doesn’t quantify recombination. To quantify the degree of recombination, the paper would have had to perform genomic PCR measurements.  

      The problem with the data on the degree of recombination in the Stogsdill et al. (2017) paper, as we understand them, is two-fold.

      First, the GLAST-Cre line only targets ~40-70% of astrocytes, at least as evidenced by highly sensitive Cre-reporter mice in a variety of studies using this Cre line. The 40-70% variation is likely due to differences in the reporter mice and the tamoxifen injection schedule used. In comparison, we are targeting most astrocytes using the Aldh1l1-CreERT2 mice. Moreover, GLAST-Cre mice exhibit neuronal off-targeting, consistent with at least some of the remaining Nlgn2 qRT-PCR signal in the FACS-sorted cells. As we describe next, this signal also likely comes from astrocytes where recombination was incomplete This is the reason why we, like everyone else, are now using the Aldh1l1-Cre line that has been shown to be more efficient both in terms of the overall targeting of astrocytes (i.e. nearly complete) and the level of recombination observed in reporter(+) astrocytes.

      Second, Stogsdill et al. detected a significant decrease in the Nlgn2 qRT-PCR signal in the FACS-sorted homozygous Nlgn2 KO cells compared to the heterozygous Nlgn2 KO cells but the Nlgn2 qRT-PCR signal was still quite large. The data is presented as normalized to the HET condition. As a result, we don’t know the true level of gene deletion (i.e. compared to TdT- astrocytes). For example, based on the Stogsdill et al. data the HET manipulation could have induced only a 20% reduction in Nlgn2 mRNA levels in TdT(+) astrocytes, in which case the KO would have produced a 40% reduction in Nlgn2 mRNA in TdT(+) astrocytes. Moreover, it is possible based on our own experience with the GLAST-Cre line, that the reporter may also not turn on in some astrocytes where other alleles have been independently recombined – just as some astrocytes that are Td(+) would still be wild-type or heterozygous for Nlgn2. Thus, it is impossible to calculate the actual percentage of recombination from these data, even in TdT(+) cells, absent of PCR of genomic DNA from isolated cells. Alternatively, comparison of mRNA levels using primers sensitive to floxed sequences in wild-type controls versus cKO mice would have also yielded a much better idea of the recombination efficiency.

      In summary, it is unclear whether the Nlgn2 deletion in the Stogsdill et al. paper was substantial or marginal – it is simply impossible to tell.

      Reviewer #3 (Public Review):

      This study investigates the roles of astrocytes in the regulation of synapse development and astrocyte morphology using conditional KO mice carrying mutations of three neuroligins1-3 in astrocytes with the deletion starting at two different time points (P1 and P10/11). The authors use morphological, electrophysiological, and cell-biological approaches and find that there are no differences in synapse formation and astrocyte cytoarchitecture in the mutant hippocampus and visual cortex. These results differ from the previous results (Stogsdill et al., 2017), although the authors make several discussion points on how the differences could have been induced. This study provides important information on how astrocytes and neurons interact with each other to coordinate neural development and function. The experiments were well-designed, and the data are of high quality.

      We also thank this reviewer for helpful comments!

      Recommendations for the authors:

      This project was meant to rigorously test the intriguing overall question whether neuroligins, which are abundantly expressed in astrocytes, regulate synapse formation as astrocytic synapse organizers. The goal of the paper was NOT to confirm or dispute the conclusion by Stogsdill et al. (Nature 2017) that Nlgn2 expressed in astrocytes is essential for excitatory synapse formation and that astrocytic Nlgn1-3 are required for proper astrocyte morphogenesis. Instead, the project was meant to address the much broader question whether the abundant expression of any neuroligin, not just Nlgn2, in astrocytes is essential for neuronal excitatory or inhibitory synapse formation and/or for the astrocyte cytoarchitecture. We felt that this was an important question independent of the Stogsdill et al. paper. We analyzed in our experiments young adult mice, a timepoint that was chosen deliberately to avoid the possibility of observing a possible developmental delay rather than a fundamental function that extends beyond development.

      We do recognize that the conclusion by Stogsdill et al. (2017) that Nlgn2 expression in astrocytes is essential for excitatory synapse formation was very exciting to the field but contradicted a large literature demonstrating that Nlgn2 protein is exclusively localized to inhibitory synapses and absent from excitatory synapses (to name just a few papers, see Graf et al., Cell 2004; Varoqueaux et al., Eur. J. Cell Biol. 2004; Patrizi et al., PNAS 2008;  Hoon et al., J. Neurosci. 2009). In addition, the conclusion of Stogsdill et al. that astrocytic Nlgn2 specifically drove excitatory synapse formation was at odds with previous findings documenting that the constitutive deletion of Nlgn2 in all cells, including astrocytes, has no effect on excitatory synapse numbers (again, to name a few papers, see Varoqueaux et al., Neuron 2006; Blundell et al., Genes Brain Behav. 2008; Poulopoulos et al., Neuron 2009; Gibson et al., J. Neurosci. 2009). These contradictions conferred further urgency to our project, but please note that this project was primarily driven by our curiosity about the function of astrocytic neuroligins, not by a fruitless desire to test the validity of one particular Nature paper.

      The general goal of our paper notwithstanding, few papers from our lab have received as much attention and as many negative comments on social media as this paper when it was published as a preprint. Because we take these criticisms seriously, we have over the last year performed extensive additional experiments to ensure that our findings are well founded. We feel that, on balance, our data are incompatible with the notion that astrocytic neuroligins play a fundamental role in excitatory synapse formation but are consistent with other prior findings obtained with neuroligin KO mice. In the new data we added to the paper, we not only characterized the Cre-mediated deletion of neuroligins in depth, but also employed an independent second system -human neurons cultured on mouse glia- to further validate our conclusions as described below. Although we believe that our results are incompatible with the notion that astrocytic neuroligins fundamentally regulate excitatory or inhibitory synapse formation, we also conclude with regret that we still don’t know what astrocytic neuroligins actually do. Thus, the function of astrocytic neuroligins, as there surely must be one, remains a mystery.

      Finally, there are many possible explanations for the discrepancies between our conclusions and those of Stogsdill et al. as described in our paper. Most of these explanations are technical and may explain why not only our, but also the results of many other previous studies from multiple labs, are inconsistent with the conclusions by Stogsdill et al. (2017), as discussed in detail in the revised paper.

      Reviewer #1 (Recommendations For The Authors):

      The paper is very clear and well written. I have only one comment and that is to increase the sizes of Figs 2, 4 and 6 so that the imaging panels can be seen more clearly. Also, although I know the n numbers are provided in the figure legends, the authors may help the reader by providing them in the results when key data and findings are reported.

      We agree and have followed the reviewer’s suggestions as best as we could.

      Reviewer #2 (Recommendations For The Authors):

      (1) Given the strength and importance of the claims that the authors make, I would highly recommend adding some quantitative evidence regarding the efficacy of deletion in astrocytes, e.g. using the same strategy as in Stogsdill et al. As unlikely as it may be that Neuroligin deletion is in fact incomplete, this possibility cannot be excluded unless directly measured. To avoid future discussions on this subject, it seems that the onus is on the authors to provide this information.

      We concur that this is an important point and have devoted a year-long effort to address it. Note, however, that the strategy employed by Stogsdill et al. does not actually allow conclusions about their recombination efficiency. As described above, it only allows the conclusion that some recombination took place. The Stogsdill et al. Nature paper (2017) is a bit confusing on this point. This approach is thus not appropriate to address the question raised by the reviewer.

      We have performed two experiments to address the issue raised by the reviewer.

      First, we used a viral (i.e. AAV2/5) approach to express Rpl22 with a triple HA-tag, also known as Ribotag, which allows us to purify ribosome-bound mRNA from targeted cells for downstream gene expression analysis. The novel construct is driven by the GfaABC1D promoter and includes two additional features which make it particularly useful. First, upstream of Ribotag is a membrane-targeted, Lck-mVenus followed by a self-cleaving P2A sequence. This allows easy visualization of targeted astrocytes. Second, we have incorporated a cassette of four copies of six miRNA targeting sequences (4x6T) for mIR-124 as was recently published (Gleichman et al., 2023) to eliminate off-target expression in neurons. Based on qPCR analysis, the updated construct allowed >95% de-enrichment of neuronal mRNA and slightly improved observed recombination rates (~10% per gene) relative to an earlier version without 4x6T. Mice that were injected with tamoxifen at P1, similar to other experiments in the paper, were then stereotactically injected at ~P35-40 within the dorsal hippocampus with AAV2/5-GfaABC1D-Lck-mVenus-P2A-Rpl22-HA-4x6T. Approximately 3 weeks later, acute slices were prepared, visualized for fluorescence, and both CA1 and nearby cortex that was partially targeted were isolated for downstream ribosome affinity purification with HA antibodies. Total RNA was saved as input. qPCR was performed using assays that are sensitive to the exons that are floxed in the Nlgn123 cKO mice, so that our quantifications are not confounded by potential differences in non-sense mediated decay. Our control data reveals a striking enrichment of an astrocyte marker gene (e.g. aquaporin-4) and de-enrichment of genes for other cell types. In the CA1, we observed robust loss of Nlgn3 (~96%), Nlgn2 (~86%), and Nlgn1 (65%) gene expression. Similarly, in the cortex, we observed a similarly robust loss of Nlgn3 (93%), Nlgn2 (83%), and Nlgn1 (72%) expression. Given that our targeting of astrocytes based on Ai14 Cre-reporter mice was ~90-99%, these reductions are striking and definitive. The existence of some residual transcript reflects the presence of a small population of astrocytes heterozygous for Nlgn2 and Nlgn3. In contrast, Nlgn1 appears more difficult to recombine and it is likely that some astrocytes are either heterozygous or homozygous knockout cells. Although it is thus possible that Nlgn1 could provide some compensation in our experiments, it is worth noting that Stogsdill et al. found that only Nlgn2 and Nlgn3 knockdown with shRNAs resulted in impaired astrocyte morphology by P21. Moreover, they found that Nlgn2 cKO in astrocytes with PALE of a Cre-containing pDNA impaired astrocyte morphology in a gene-dosage dependent manner and suppressed excitatory synapse formation at P21. Thus, our inability to delete all of Nlgn1 doesn’t readily explain contradictions between our findings and theirs.

      Second, in an independent approach we have cultured glia from mouse quadruple conditional Nlgn1234 KO mice and infected the glia with lentiviruses expressing inactive (DCre, control) or active Cre-recombinase. We confirmed complete recombination by PCR. We then cultured human neurons forming excitatory synapses on the glia expressing or lacking neuroligins and measured the frequency and amplitude of mEPSCs as a proxy for synapse numbers and synaptic function. As shown in the new Figure 9, we detected no significant changes in mEPSCs, demonstrating in this independent system that the glial neuroligins do not detectably influence excitatory synapse formation.

      (2) Along the same lines, the authors should be careful not to overstate their findings in this direction. For example, the figure caption for Figure 2 reads 'Nlgn1-3 are efficiently and selectively deleted in astrocytes by crossing triple Nlgn1-3 conditional KO mice with Adh1l1-CreERT2 driver mice and inducing Cre-activity with tamoxifen early during postnatal development'. This is not technically correct and should be modified to reflect that the authors are not in fact assessing deletion of Nlgn1-3, but only expression of a tdTomato reporter.

      We agree – this is essentially the same criticism as comment #1.

      (3) In general, the animal numbers used for the experiments are rather low. With an n = 4 for most experiments, only large abnormalities would be detected anyway, while smaller alterations would not reach statistical significance due to the inherent biological and technical variance. For the most part, this is not a concern, since there really is no difference between WTs and Nlgn1-3 cKOs. However, trends are observed in some cases, and it is conceivable that these would become significant changes with larger n's, e.g. Figure 3H (Vglut2); Figure 4E (VGlut2 S.P., D.G.); Figure 6D (Vglut2). Increasing the numbers to n = 6 here would greatly strengthen the claims that no differences are observed.

      We concur that small differences would not have been detected in our experiments but feel that given the very large phenotypes of the neuroligin deletions in neurons and of the phenotypes reported by Stogsdill et al. (2017), which also did not employ a large number of animals, a very small phenotype in astrocytes would not have been very informative.

      Minor points:

      (1) Please state the exact genetic background for the mouse lines used.

      Our lab generally uses hybrid CD1/Bl6 mice to avoid artifacts produced by inbred genetic mutations in so-called ‘pure’ lines, especially Bl6 mice. This standard protocol was followed in the present study. Thus, the mice are on a mixed CD1/Bl6 hybrid background.

      Reviewer #3 (Recommendations For The Authors):

      (1) Figure 4 demonstrates that neuroligin 1-3 deletions restricted to astrocytes do not affect the number of excitatory and inhibitory synapses in layer IV of the primary visual cortex. This conclusion could be further strengthened if the authors could provide electrophysiological evidence such as mE/IPSCs.

      We agree but have chosen a different avenue to further test our conclusions because slice electrophysiological experiments are time-consuming, labor intensive, and difficult to quantitate, especially in cortex.

      Specifically, we have co-cultured human neurons with astrocytes that either contain or lack neuroligins (new Fig. 9). With this experimental design, we have total control over ALL neuroligins in astrocytes. Electrophysiological recordings then demonstrated that the complete deletion of all glial neuroligins has no effect on mEPSC frequencies and amplitudes. Although clearly much more needs to be done, the new results confirm in an independent system that glial neuroligins have no effect on synapse formation in the neurons, even though neurons depend on astrocytes for synaptogenic factors as Ben Barres brilliantly showed a decade ago. However, it is important to note that dissociated glia in culture, while synaptogenic, are reactive and may not faithfully recapitulate all roles of astrocytes in synaptogenesis.

      (2) It would help readers if the images showing the punctate double marker stainings of excitatory/inhibitory synapses are presented in merged colors (i.e., yellow colors for red and green puncta colors).

      We have tried to improve the visualization of the rather voluminous studies we performed and illustrate in the figures as best as we could.

      (3) The resolutions of the images in the figures are not good, although I guess it is because the images are for review processes.

      We apologize and would like to assure the reviewer that we are supplying high-resolution images to the journal.

      (4) Typos in lines 82 and 274.

      We have corrected these errors.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Manuscript number: RC- 2025-02880

      Corresponding author(s): Monica, Gotta

      1. General Statements [optional]

      We thank the reviewers for their useful comments that will improve our manuscript and make it clearer. We agree with Reviewer 1 that SDS-22 has more general functions in cellular processes by maintaining GSP-1/-2 levels, rather than only regulating cell polarity. We have now modified our conclusion in the text (all changes are highlighted in yellow) and we hope that it is now more clear and better explained. Below we address the reviewer’s comments one by one and indicate how we have or will address the comments in the final version. We expect the revisions to take 2-3 months.

      2. Description of the planned revisions

      Major comments

      Reviewer 1

      (1) Overall, the evidence supporting the core finding that SDS-22 is required for normal GSP-1/2 levels is strong and well documented. The experiments were performed well and controls, statistics, replicates were appropriate. Our only slight reservation was whether the effect of sds-22(RNAi) on stability may be overstated due to the use of GFP fusions to GSP-1/2 for this analysis. The authors note these alleles are hypomorphic, potentially raising the possibility that GFP tags destabilise the proteins and make them more prone to degradation. Ideally this would be repeated with an untagged allele via Western (e.g. Peel et al 2017 for relevant antibodies).

      We thank the reviewer for the general comments. To address this important point on the protein levels we have requested GSP-1 and GSP-2 antibodies reported in Peel et al and Tzur et al (Peel et al, 2017; Tzur et al, 2012). The published GSP-1 antibody has been used in western blot, and the GSP-2 antibody has been used in both immunostaining and Western blot analysis. Despite our efforts, we were not able to detect GSP-2 neither on western blots nor on immunostainings with the aliquot we have received. On the opposite, GSP-1 antibodies worked well on western blot. We have already measured the GSP-1 levels in SDS-22 depleted embryos (N=2, see below) and we observed reduced levels, confirming our initial result. However, as the reviewer rightly pointed out, the levels are reduced by 20% (rather than about 50% as in the GFP strain), suggesting that indeed the GFP fusion does contribute to the instability. We will measure GSP-1 levels in at least an additional sds-22(RNAi) experiment and in sds-22(E153A) embryos.

      Left, Western Blot of embryonic extracts from N2 in ctrl(RNAi) and sds-22(RNAi) embryos. Tubulin is used as a loading control. Right, Fold change of GSP-1 normalized to Tubulin levels. N = 2.

      Since we could not detect endogenous GSP-2 with the antibodies we have received, we will generate an OLLAS-tagged GSP-2 strain. OLLAS is a commonly used tag consisting of 14 amino acids (Park et al, 2008), with an additional 4 amino acids as a linker. The tag is much smaller than mNeonGreen, which consists of approximately 270 amino acids. We will then measure the GSP-2 levels using the ollas antibody in sds-22(RNAi) embryos. We will also cross this strain with sds-22(E153A) and measure OLLAS::GSP-2 levels in this mutant. If this strain is not embryonic lethal, as in the case of the mNG::gsp-2; sds-22(E153A) (Fig EV6A), it will also suggest that ollas::gsp-2 does not behave as hypomorph.

      These data will complement the data shown in Fig 6.

      (2) The role for SDS-22 in polarity is rather weak. Both the SDS-22 depletion phenotypes and the ability of SDS-22 depletion to suppress pkc-3(ts) polarity phenotypes are modest (and weaker in than GSP-2 depletion). For example, the images in Figure 1B appear striking, but from Movie S1 it is clear that this isn't a full rescue as PAR-2 is initially uniformly enriched on the cortex (rather than mostly cytoplasmic) and it is never fully cleared. In the movie, the clearance at the point of pronuclear meeting is very modest. Quantitation might be helpful here (i.e. as in Figure 3G). As the authors state, it seems that SDS-22 does not have a specific role in polarity beyond the general effect on GSP-1/2 levels. This does not undermine the core message of the paper, but we would recommend downplaying the conclusions with respect to contributing to polarity establishment. For example "...suggesting that SDS-22 regulates GSP-1/-2 activity to control the loading of PAR-2 to the posterior cortex in one-cell stage C. elegans embryos" implies a regulatory role for SDS-22 in polarity, but we would interpret it as simply helping reduce aberrant degradation of GSP-1/2 and this impacts a variety of cellular processes including polarity.

      We agree with the reviewer that the rescue of pkc-3ts polarity defects by SDS-22 depletion is not as strong as GSP-2 depletion, and as suggested, we have re-quantified the phenotype, as we did in Fig 3G, as shown below in Fig 1C.

      This has replaced Fig.1 in the manuscript.

      Accordingly, we have clarified this in the text in several locations. We have added “partial” rescue in many places and modified conclusions in the results and discussion. The changes are all highlighted and the major ones are also below:

      From Result Line 119-121, page 5:

      “In contrast, depletion of SDS-22 resulted in PAR-2 localization being restricted to the posterior cortex in 87.5% of the one-cell stage embryos (Fig 1B) and PAR-2 was localized to the P1 blastomere after the first cell-division (Movie EV1).”

      To: Result Line 122-125, page 5

      “In contrast, depletion of SDS-22 resulted in PAR-2 localization being enriched in the posterior cortex in 87.5% of the one-cell stage embryos (Fig 1B,C) and PAR-2 was localized to the P1 blastomere after the first cell-division (Movie EV1).”

      • *

      From Result Line 172-175, page 7:

      “Our data show that depletion of SDS-22 results in a smaller PAR-2 domain, suppresses the polarity defects of a pkc-3 temperature sensitive strain and the aberrant PAR-2 localization observed in the PAR-2(L165V) mutant strain. As SDS-22 is a conserved PP1 regulator, our data suggest that SDS-22 positively regulates GSP-2 in polarity establishment.”

      To: Result Line 178-181, page 7

      “Our data show that depletion of SDS-22 results in a smaller PAR-2 domain, partially suppresses the polarity defects of a pkc-3 temperature sensitive strain and the aberrant PAR-2 localization observed in the PAR-2(L165V) mutant strain. As SDS-22 is a conserved PP1 regulator, our data suggest that SDS-22 positively regulates GSP-2.”

      From Result Line 256-257, page 10:

      “suggesting that the interaction of SDS-22 with the PP1 phosphatases is important for polarity establishment.”

      To: Result Line 264-265, page 10

      “suggesting that the interaction of SDS-22 with the PP1 phosphatases contributes to polarity establishment”

      • *

      From Result Line 311-313, page 12:

      To conclude, while our genetic data on PAR-2 cortical localization suggest that SDS-22 is not required to fully activate GSP-1 and/or GSP-2, depletion or mutation of SDS-22 results in a reduced activity of the phosphatases.

      To: Result Line 319-322, page 12

      To conclude, while our genetic data on PAR-2 cortical localization suggest that SDS-22 is not required to fully activate GSP-1 and/or GSP-2, depletion or mutation of SDS-22 results in a reduced activity of the phosphatases, as shown by phospho-histone H3 (Ser10) levels. This suggests that SDS-22 plays a general role in regulating GSP-1 and GSP-2, which is not specific to cell polarity.

      From Result Line 391-392, page 15:

      In summary, our results show that SDS-22 maintains the levels of GSP-1 and GSP-2 by protecting them

      392 from proteasome mediated degradation.

      To: Result Line 402-403, page 15

      In summary, these data show that SDS-22 is important to maintain the levels of GSP-1 and GSP-2 by protecting them from proteasome mediated degradation.

      We have also rephrased our conclusion according to Reviewer 1’s suggestion.

      From Introduction Line 95-101, Page 4:

      Here we show that SDS-22 depletion rescues the polarity defects caused by reduced PAR-2 phosphorylation in the pkc-3(ne4246) mutant at the semi-restrictive temperature (24°C), similarly to the depletion of GSP-2. Depletion of SDS-22 results in lower GSP-1 and GSP-2 protein levels which can be rescued by depleting proteasomal subunits. These results establish SDS-22 as a regulator of PAR polarity establishment in the C. elegans one-cell embryo and are consistent with and complement the recent data in mammalian cells showing that SDS22 is important to control the stability of the PP1 phosphatase (Cao et al., 2024).

      To: Introduction Line 96-101, Page 4

      *Here we show that SDS-22 depletion partially rescues the polarity defects caused by reduced PAR-2 phosphorylation in the pkc-3(ne4246) mutant at the semi-restrictive temperature (24°C). Depletion of SDS-22 results in lower GSP-1 and GSP-2 protein levels which can be rescued by depleting proteasomal subunits. These results establish that SDS-22 contributes to cell polarity by regulating GSP-1/-2 levels and are consistent with and complement the recent data in mammalian cells showing that SDS22 is important to control the stability of the PP1 phosphatase (Cao et al., 2024). *

      From Discussion Line 417-420, page 17:

      Depletion of SDS-22, or mutation of its E153 residue (E153A) important for SDS-22-PP1 interaction resulted in reduced GSP-1/-2 protein levels, decreased dephosphorylation of a PP1 substrate, and a smaller PAR-2 domain, suggesting that SDS-22 regulates GSP-1/-2 activity to control the loading of PAR-2 to the posterior cortex in one-cell stage C. elegans embryos.

      To: Discussion Line 426-429, page 17

      *Here we find that a conserved PP1 regulator, SDS-22, when depleted, results in a smaller PAR-2 domain and can partially rescue the polarity defects of a pkc-3(ne4246) mutant. We demonstrate that SDS-22 contributes to the activity of GSP-1/-2 by protecting them from proteasomal degradation and maintaining their protein levels. *

      Add new discussion to Discussion Line 429-432, page 17:

      Taken together, our data suggest that the role of SDS-22 in polarity is indirect via the regulation of GSP-1/-2 levels. In support of this, SDS-22 depletion results in broader GSP-1/-2 dependent phenotypes such as increased Phospho-H3 (Ser10) (Fig 5) and centriole duplication defects in later-stage embryos (Peel et al., 2017).

      • *

      (3) Specificity of SDS-22 effects on polarity. SDS-22 (or GSP-1/2) depletion is likely to have effects on many pathways. We wondered whether some of the polarity phenotypes may not be specifically due to changes in the PAR-2 phosphorylation cycle as implied.

      One candidate is the actomyosin cortex. It was noticeable that control and sds-22 embryos were different: In Movies S1, S2, and S3 control embryos show either stronger or more persistent cortical ruffling or pseudocleavage furrows. This is also visible in Figure 3A. Is it possible that disruption of SDS-22 reduces cortical flows (time, intensity or duration) and could this explain the small reduction in anterior PAR-2 spreading and thus the slightly smaller domain size measured in Figures 1B and 3A.

      We have noticed that SDS-22 depletion results in less ruffling and reduced pseudocleavage furrows. To properly address this question we should have a condition in which we can rescue the cortical flow reduction in the SDS-22 depletion and measure the PAR-2 domain. Since we do not know how SDS-22 reduces the flows, we could not come up with a clean experiment to address this issue and are happy to have suggestions.

      We believe that the most rigorous way to address this issue, as reviewer 1 points out, is to clearly address this limitation in the text. We have now added this in the discussion:

      Discussion Line 463-466, page 18:

      Consistent with GSP-2 reduced levels, SDS-22 depleted or E153A mutant embryos also have a smaller PAR-2 domain. However, since these embryos also show reduced cortical ruffling (Movie EV1,2) and are smaller (Fig EV2C) we cannot exclude that these two phenotypes also contribute to the smaller size of the PAR-2 domain.

      • *

      A potentially related issue could be embryo size. sds-22 embryos generally seem to be smaller than wild-type (e.g. Figure 1B(left), 4A(left column), and particularly EV3). Is this consistently true? Could cell size effects change the ability of embryos to clear anterior PAR-2 domains as described in EV3? Klinkert et al (2018, biorXiv) note that reducing the size of air-1(RNAi) embryos reduces the frequency of bipolar PAR-2 domains.

      Quantification of perimeter of embryos at pronuclear meeting in live zygotes. Sample size (n) is indicated in the graph, each dot represents a single embryo and mean is shown. N = 5. The P value was determined using two-tailed unpaired Student’s t test.

      We quantified the perimeter of the embryos and as seen by quantification, there is a weak but significant decrease of size in the absence of SDS-22, and in SDS-22(E153A) mutant, as shown above. We have now added the data of the RNAi in the supplementary information and mentioned it in the results.

      Results Line 129, page 5:

      SDS-22 depleted embryos also displayed a smaller size (Fig EV2C).

      Klinkert et al reported that reducing the size of air-1(RNAi) embryos by depletion of ANI-2, a homolog of the actomyosin scaffold protein anillin, reduces the frequency of bipolar PAR-2 domains (Klinkert et al, 2018). In the image shown in the paper on bioRxiv, the PAR-2 domain appears small but there are no quantifications and these data have been removed from the published paper.

      From published data, a smaller embryo size does not appear to correlate with smaller PAR-2 domain. Chartier et al show that depletion of ANI-2 reduces embryo size without changing the relative anterior PAR-6 domain (Chartier et al, 2011), thereby suggesting that the posterior PAR-2 domain should not change either. In addition, Hubatsch et al reported that small embryos depleted of ima-3 tend to have larger PAR-2 domains, whereas larger embryos depleted of C27D9.1 exhibit smaller PAR-2 domains (Hubatsch et al, 2019), which is the opposite of what we see. We do not believe that the smaller PAR-2 domain is the important message of our paper. Our main question was whether PAR-2 was cortical or not and since GSP-2 had a smaller domain, we decided to quantify the PAR-2 domain length in the different RNAi conditions and mutants. Since RNAi of C27D9.1 which makes embryos bigger, results in a small PAR-2 domain, again we do not know how to experimentally address this question, unless the reviewer has a suggestion. As for the point above, we will clearly highlight this limitation in the discussion (see our reply to the previous point, now it is in Discussion Line 463-466, page 18).

      We would stress that these comments relate to interpreting the polarity phenotypes and do not undermine the core finding that SDS-22 stabilises GSP-1/2.

      We thank the reviewer and we hope that by performing the experiments mentioned above and by changing the text, their comments are properly addressed.

      Reviewer 2

      Major comment: Consistent with the model that PP1 activity is reduced in the absence of SDS-22, the authors show that a surrogate PP1 target (phospho-histone H3) becomes hyper-phosphorylated. To strengthen the study, the authors could consider performing an OPTIONAL experiment (see below) of assaying the phosphorylation status of PAR-2 itself, as this is proposed to be the target of both PKC-3 and PP1, and represent the mechanism of PAR-2 polarization.

      We thank the reviewer for this comment and also for pointing out that there is technical difficulty in the proposed experiment.

      We have already attempted to address this point without success in Calvi et al (Calvi et al, 2022), using western blot analysis (see below). For this we used the GFP::PAR-2 strain and used a GFP antibody (shown below in the left panel), as none of the anti-PAR-2 antibodies (neither the ones produced by us nor the ones produced by other laboratories) were working on western blot. We observed several bands of GFP::PAR-2 but were not able to determine if these represented phosphorylated forms or to compare the ratio of phosphorylated to unphosphorylated PAR-2. We did use λ-PPase in the embryonic extracts but we did not always observe a clear difference. We show three experiments below.

      Left, __Western blots of gfp::par-2 embryonic extract in the presence or absence of λ-PPase (+/- PhosSTOP) and probed with anti-GFP and anti-Tubulin antibodies. Right,__ Representative images of fixed embryos with indicated genotypes at one-, two- and four-cell stages. DNA (DAPI) is gay. Scale bars, 5 μm. Anterior is to the left and posterior to the right.

      One possible explanation is that the role of GSP-1/-2 in PAR-2 dephosphorylation is specific to the very early embryos. As shown in the right panel above, despite PAR-2(RAFA) remaining cytoplasmic in one- and two-cell embryos due to lack of binding to GSP-1/-2, it can localize to internal cortices in four-cell stage embryos, similarly to the control and suggesting that in later embryos other mechanisms are intervening. One limitation of our Western Blot is that it is not possible to isolate only early embryos, which are a minority in a mixed population of embryos. This may mask difference of phosphorylation status of PAR-2 in the early stages.

      For the revision, we plan to blot PAR-2 using GFP antibody in gfp::par-2 embryo lysates, with both control and sds-22(RNAi) treatment. We will also compare the GFP::PAR-2 bands between gfp::par-2 and gfp::par-2; sds-22(E153A) mutant samples. We are not very hopeful and our failures with gsp-1/2 RNAi (unpublished) are why we did not try with SDS-22 but it is definitely worth giving it a go and we will.

      As for Hao et al (Hao et al, 2006) the result was quite clear. In this paper however, the authors used a transgene strain of PAR-2. We have never tried to use a transgene (the proteins are usually overexpressed) but we can deplete SDS-22 in a PAR-2 transgene as well and see if a difference is observed.



      Reviewer 3

      Major comments: major issues affecting the conclusions

      Overall, the authors' conclusions are supported by their data. The data and methods are presented clearly, with appropriate replicates and statistics. Here I propose two experiments to strengthen the link between some of their data and their claims. These experiments could take a month or two to complete.

      Experiment 1

      It would be helpful if the authors could show that blocking the proteasome in the zygote restores GSP-1/-2 levels in the absence of SDS-22 or even better in the SDS-22(E153A) mutant. This would provide more direct evidence to support their claim that SDS-22 regulates polarity by protecting PP1 from proteasomal degradation. While they are currently conducting this experiment in the germline, they cannot assess polarity there. However, in the zygote, they would be able to examine the PAR-2 domain (polarity). To do this, the authors could permeabilise the embryos and apply a proteasome inhibitor.

      This would be a straightforward experiment if we were using culture cells. One problem with the set up is that much of the protein of the one-cell embryo is inherited from the egg and the reduction in SDS-22 depletion or mutant happens already in the germline (Fig 6-7). Even if the proteasome is inhibited in embryos, the whole division process only takes 20 minutes and we wonder whether the timing will be sufficient to inhibit the proteasome, produce more protein and rescue the phenotype. We will try, as only this will tell us.

      One alternative approach would be to apply the proteasome inhibitor to adult worms in liquid culture for several hours before dissection. This would aim to inhibit degradation in the germline, therefore allowing us to test whether GSP-1/-2 levels are restored in the embryos with SDS-22 disruption. However, proteasome inhibition in the germline impairs oogenesis (Shimada et al, 2006), suggesting that we might incur in the same problem (unless we succeed in timing the inhibition).

      One additional experiment that we will try is to deplete other proteasomal subunits that result in a lower level or proteasomal activity reduction. As reported by Fernando et al (Fernando et al, 2022), depletion of RPN-9, -10, or -12 impairs proteasomal activity, but worms remain fertile.

      Quantification of mNG::GSP-2 and GFP::GSP-1fluorescence intensity in rpn-12, rpn-9, and rpn-10(RNAi) normalized to ctrl(RNAi). Mean is shown and error bars indicate SD. Dots in graphs represent individual embryo measurements and sample size (n) is indicated inside the bars in the graph. N = 1.

      So far, our data suggest that the GSP-1/-2 levels are weakly but significantly increased in the embryos (16.8% for GSP-2 and 12.5% for GSP-1) following RPN-12 depletion (see above). We will co-deplete RPN-12 and SDS-22 to assess if the protein levels of GSP-1/-2 are rescued. We will also deplete RPN-12 in gfp::gsp-1; sds-22(E153A) strains to test if GSP-1 levels are rescued. We cannot measure GSP-2 levels in mNG::GSP-2; sds-22(E153A) because they are embryonic lethal (see details below in the reply to minor comments of Reviewer 3).

      Left, Representative midsection images of gfp::gsp-1 and gfp::gsp-1;sds-22(E153A) embryos in ctrl(RNAi) and rpn-12(RNAi).__ Right, __Quantification of GFP::GSP-1 intensity levels. N = 1.

      Our preliminary data showed that similar to germlines (Fig 7G-I), RPN-12 depletion in gfp::gsp-1; sds-22(E153A) rescued the reduction of GSP-1 levels in embryos (shown above). We will perform two additional experiments to quantify GSP-1 levels.

      We will also test if the smaller PAR-2 domain in sds-22(E153A) mutant is rescued by RPN-12 depletion. With these experiments, we aim to answer if proteasome inhibition rescues the reduced levels of GSP-1/-2 and thereby rescues the reduced PAR-2 domain when SDS-22 is depleted or mutated.

      Experiment 2

      The posterior localization of PAR-2 after co-RNAi of GSP-1 and SDS-22 contrasts with the absence of PAR-2 at the cortex when both GSP-1 and GSP-2 are depleted. This difference may be due to the partial reduction of GSP-2 levels when SDS-22 is depleted, compared to the more substantial reduction of GSP-2 upon GSP-2 RNAi. Have the authors considered combining full depletion of GSP-1 with partial depletion of GSP-2 to see if PAR-2 remains present and localized to the posterior? This experiment could help clarify the discrepancy between the phenotypes and further support the role of SDS-22 in regulating GSP-2 protein levels. Additionally, by titrating PP1, the authors may be able to determine the minimum amount of PP1 needed to establish the PAR-2 domain.

      We will try this experiment but, assuming we find a condition in which we can fully deplete GSP-1 and only half of GSP-2, one problem is that it is impossible to control the levels of both GSP-1 and 2 and measure the PAR-2 domain in the same embryos (which would be the most rigorous way to perform the experiment so that we know the amount of depletion and correlate with the PAR-2 domain length). The only thing we can do is the same depletion time in the 3 different strains (the mNG::gsp-2, the gfp::gsp-1 and the gfp::par-2) and assume that the depletion will work the same in the three different strains.

      • *

      Minor comments

      Reviewer 1

      Minor Points

      • The link between lethality and polarity of the zygote is not always obvious and whether they are connected (or not) could probably be made clearer. Indeed, the source of lethality is unclear, particularly given that loss of SDS-22 on its own strongly impacts lethality with minimal effects on polarity (at least in the zygote).

      In many cases, we have reported embryonic lethality as information, not with a precise scope to correlate the lethality with the phenotype. We apologize for the lack of clarity. We know that embryonic lethality is normally associated with severe polarity defects. As example, in the par-2(RAFA) mutant and in the pkc-3ts mutant at temperatures around 24-25°C cortical polarity is lost, embryos divide symmetrically and synchronously and die (Calvi et al., 2022; Rodriguez et al, 2017) and many more references for the PAR mutants (Kemphues et al, 1988; Kirby et al, 1990; Morton et al, 1992). We and others have also shown that depletion of GSP-2 can rescue the lethality of pkc-3(ts) but only at a semipermissive temperature when there is still residual PKC-3 activity (Calvi et al., 2022; Fievet et al, 2013). As our aim was to identify the regulator of GSP-2, we tested the potential regulators by RNAi in the pkc-3(ts), with the assumptions that a regulator, similar to GSP-2, would rescue the pkc-3(ts) polarity defects and lethality. As it turns out, SDS-22 is not a canonical regulator of GSP-2. The partial rescue of the polarity defects is most likely the result of the fact that SDS-22 lowers the level of GSP-2. However, SDS-22 is probably involved in many other functions that involve GSP-1 and GSP-2 (as shown for example:(Beacham et al, 2022; Peel et al., 2017)) and it is embryonic lethal. We do not know, however, whether the embryonic lethality is the results of the sum of the various functions of SDS-22 or it is due to a specific function.

      To clarify it better, we have now explained the connection between polarity and lethality in the text,

      From Result Line 111-114, page 5:

      We first asked whether depletion of any of these three regulators suppress the embryonic lethality of pkc-3(ne4246); gfp::par-2 embryos at the semi-permissive temperature of 24°C (in which PKC-3 is partially active, temperature used in all experiments with the pkc-3(ne4246) mutant, unless otherwise stated), similar to depletion of the catalytic subunit GSP-2.

      To Results Line 111-117, page 5:

      *When the temperature sensitive mutant pkc-3(ne4246) is grown at semi-permissive temperature, the residual PKC-3 activity is not sufficient to exclude PAR-2 from the anterior cortex. These embryos cannot establish polarity and die. Depletion of the catalytic subunit GSP-2 in this strain suppresses PAR-2 mislocalization and the resulting polarity defects, thereby rescuing embryonic lethality. We first asked whether depletion of any of these three identified regulators suppresses the embryonic lethality of pkc-3(ne4246); gfp::par-2 embryos at the semi-permissive temperature of 24°C (temperature used in all experiments with the pkc-3(ne4246) mutant, unless otherwise stated) , similar to depletion of GSP-2. *

      From Result Line 241-242, page 10:

      We next asked whether sds-22(E153A) was able to rescue the lethality and the polarity defects of pkc-3(ne4246) embryos.

      To Results Line 223-224, page 9:

      Because of this, we decided to test whether sds-22(E153A) was able to rescue the lethality and the polarity defects of pkc-3(ne4246) embryos.

      • Formally, the conclusion that reduced GSP-1/2 in SDS-22 depletion conditions is due to increased proteasomal degradation is not shown directly as there is no data on rates just steady-state levels. We agree that the genetic data is strongly suggestive of this model and it is consistent with work of other labs. Thus this is the most likely scenario, but could in principle reflect reduced expression that is balanced by reduced degradation.

      We agree with the reviewer. To address this point, we will perform RT-PCR analysis to measure the gene expression levels of gsp-1 and gsp-2 from control, SDS-22 depletion and sds-22(E153A) embryos.

      • It is interesting that sds-22(E153A) caused a stronger decrease in oocyte GSP-1 levels than sds-22(RNAi) (Fig 7). The authors may want to comment on this result.

      As we performed depletion of SDS-22 by RNAi feeding from L4 stage, we might not see strong reduction of GSP-1 in oocytes compared to that in sds-22(E153A) mutant, which carries an endogenous mutation of SDS-22 throughout the life cycle.

      Left, Representative images of gfp::gsp-1 germlines in ctrl(RNAi) and sds-22(RNAi), comparing to gfp::gsp-1; sds-22(E153A); ctrl(RNAi). __Right, __Quantification of GFP::GSP-1 intensity levels in the cytoplasm and nucleus of -1 and -2 oocytes. N = 1.

      To address this point we have performed an experiment where we have depleted SDS-22 starting from L1s. As shown above, RNAi feeding of SDS-22 from L1 stage showed a similar reduction of GSP-1 (16.1% in the cytoplasm; 24.6% in the nucleus) as in gfp::gsp-1; sds-22(E153A), which was stronger comparing to feeding from L4 (8.8% in the cytoplasm; 17.4% in the nucleus, Fig 7D-E). This supports our hypothesis that the difference shown in Fig 7D-I might result from a relative short RNAi depletion of SDS-22 from L4 stage comparing to endogenous SDS-22(E153A) mutation. This experiment was done only once and will be repeated. If confirmed, we will add a sentence in the text. As RNAi feeding of SDS-22 from L1 stage impairs the formation of germlines, we will keep the protocol using SDS-22 RNAi feeding in L4 worms for other experiments in this study.

      • "At polarity establishment, the PP1 phosphatases GSP-1/-2 dephosphorylate PAR-2 allowing its cortical posterior accumulation." This statement, possibly inadvertently, implies temporal regulation, which has not been shown.

      We have changed the sentence, as suggested by the reviewer:

      To Introduction Line 59-60, page 3:

      The PP1 phosphatases GSP-1/-2 dephosphorylate PAR 2 allowing its cortical posterior accumulation and embryo polarization.

      • It would be ideal if the authors could explicitly state how they define pronuclear meeting. For example in Figure 1B, the embryos look like they are a few minutes past pronuclear meeting (e.g. compared to Figure 3), but maybe the pronuclei tend to meet more centrally in these conditions? Given that PAR-2 clearance is changing in time in some of these cases (based on looking at the movies), staging needs to be very accurate to get the best comparisons.

      We apologize for the lack of clarity. Pronuclear meeting is defined when the two pronuclei first contact each other.

      As noted by Reviewer 1, it is true that the pronuclei in pkc-3ts mutant tend to meet more centrally compared to control embryos. The same finding was also observed on PKC-3 inhibition (through depletion, mutation or inhibitor treatment) by Rodriguez et al (Rodriguez et al., 2017). In addition, Kirby et al reported that mutations in the anterior PAR complex lead to the mislocalization of the pronuclei, causing them to meet more in the center (Kirby et al., 1990). We now specify this in the Material and Methods.

      Add in Material and Methods Line 633-635, page 22:

      *The stage of pronuclear meeting is defined when the two pronuclei first contact each other. In pkc-3(ne4246) embryos, the two pronuclei exhibited a tendency to meet more centrally compared to controls (Fig 1B, Movie EV1), as shown in (Kirby et al, 1990; Rodriguez et al, 2017). *

      As Reviewer 1 mentioned, accurate staging is crucial, as PAR-2 clearance can vary over time. The measurements were done in the first frame where pronuclei touch each other. However, in Fig. 1B we had shown one pkc-3ts; sds-22(RNAi) embryo one frame (10 seconds) later. We have now corrected this (see the updated Figure 1B).

      • In the interests of data-availability, upon publication the authors would deposit the raw mass spec data underlying Figure EV1.

      The reviewer is right, this was forgotten. We have now added as supplementary material the Dataset EV1 and EV2.

      Reviewer 3

      Minor comments: important issues that can confidently be addressed

      In the introduction (line 83), it's unclear what reconciles the contradictory data. I also have difficulty understanding this point in the discussion (line 435).

      We apologize for the lack of clarity and have now modified the text:

      From Introduction Line 82-84, page 4:

      This underscores the complex roles of SDS22 in regulating PP1 function and reconciling the contradictory data obtained in vivo and in vitro (Cao et al., 2024; Cao et al, 2022; Kueck et al., 2024; Lesage et al, 2007).

      To Introduction Line 81-85, page 4:

      These two recent findings suggest that while SDS-22 is required for the biogenesis of PP1 holoenzymes, its removal is essential to have an active PP1. This dual role of SDS-22 explains how SDS22 behaves as an inhibitor in biochemical assays in vitro but as an activator in vivo (Cao et al., 2024; Cao et al, 2022; Kueck et al., 2024; Lesage et al, 2007).

      From Discussion Line 435-436, page 17:

      These data reconcile the contradictory in vivo and in vitro observations.

      To Discussion Line 447-451, page 17:

      Given that SDS-22 both stabilizes PP1 levels and inhibits its activity, this dual role clarifies the apparent contradiction: while SDS-22 is essential for PP1 activity in vivo (because it is essential for the biogenesis/stability), it inhibits PP1 activity in vitro (as it needs to be removed to have an active PP1), while in vivo it is removed by p97/Valosin resulting in active PP1.

      Additionally, in the results section (line 389), it's not clear why the gonads cannot be studied in the strain with dead embryos. Are the gonads also altered in a way that prevents their observation?

      We explained this in the material and methods part (Line 583-584, 588-592), page 21.

      To clarify it better in the main text, we have now modified

      Results Line 377-378, page 15:

      Since depletion of these subunits results in worms with very little to no progeny (Fernando et al., 2022)

      Results Line 396-401, page 15:

      *Since we use the embryonic lethality phenotype of the mNG::gsp-2; sds-22(E153A) strain to recognize the homozygote sds-22(E153A), this precluded the possibility to analyze the germlines of homozygote mNG::gsp-2; sds-22(E153A) worms depleted of RNP-6.1 or RPN-7, as these worms do not have progenies (Fernando et al., 2022) and we therefore cannot distinguish the sds-22(E153A) homozygote from the sds-22(E153A) heterozygote (see material and methods for details). *

      3. Description of the revisions that have already been incorporated in the transferred manuscript

      Please insert a point-by-point reply describing the revisions that were already carried out and included in the transferred manuscript. If no revisions have been carried out yet, please leave this section empty.

      • *

      We have re-quantified the data in Fig 1B and displayed as in Fig 1C.

      We have double checked our data and corrected Fig 3G.

      We have modified the text to address many of the comments of the reviewer about clarity and rigor.

      We have added supplementary information Fig EV2C and Dataset EV1 and EV2.

      Other experiments performed are still preliminary and only shown in this revision letter.

      4. Description of analyses that authors prefer not to carry out

      Please include a point-by-point response explaining why some of the requested data or additional analyses might not be necessary or cannot be provided within the scope of a revision. This can be due to time or resource limitations or in case of disagreement about the necessity of such additional data given the scope of the study. Please leave empty if not applicable.

      • *

      We believe with the reply, the text changes and the experiments that we have proposed and started, we will address all comments of the reiewers.

      • *

      References

      Beacham GM, Wei DT, Beyrent E, Zhang Y, Zheng J, Camacho MMK, Florens L, Hollopeter G (2022) The Caenorhabditis elegans ASPP homolog APE-1 is a junctional protein phosphatase 1 modulator. Genetics 222

      Calvi I, Schwager F, Gotta M (2022) PP1 phosphatases control PAR-2 localization and polarity establishment in C. elegans embryos. J Cell Biol 221

      Chartier NT, Salazar Ospina DP, Benkemoun L, Mayer M, Grill SW, Maddox AS, Labbe JC (2011) PAR-4/LKB1 mobilizes nonmuscle myosin through anillin to regulate C. elegans embryonic polarization and cytokinesis. Curr Biol 21: 259-269

      Fernando LM, Quesada-Candela C, Murray M, Ugoaru C, Yanowitz JL, Allen AK (2022) Proteasomal subunit depletions differentially affect germline integrity in C. elegans. Front Cell Dev Biol 10: 901320

      Fievet BT, Rodriguez J, Naganathan S, Lee C, Zeiser E, Ishidate T, Shirayama M, Grill S, Ahringer J (2013) Systematic genetic interaction screens uncover cell polarity regulators and functional redundancy. Nat Cell Biol 15: 103-112

      Hao Y, Boyd L, Seydoux G (2006) Stabilization of cell polarity by the C. elegans RING protein PAR-2. Dev Cell 10: 199-208

      Hubatsch L, Peglion F, Reich JD, Rodrigues NT, Hirani N, Illukkumbura R, Goehring NW (2019) A cell size threshold limits cell polarity and asymmetric division potential. Nat Phys 15: 1075-1085

      Kemphues KJ, Priess JR, Morton DG, Cheng NS (1988) Identification of genes required for cytoplasmic localization in early C. elegans embryos. Cell 52: 311-320

      Kirby C, Kusch M, Kemphues K (1990) Mutations in the par genes of Caenorhabditis elegans affect cytoplasmic reorganization during the first cell cycle. Dev Biol 142: 203-215

      Klinkert K, Levernier N, Gross P, Gentili C, von Tobel L, Pierron M, Busso C, Herrman S, Grill SW, Kruse K et al (2018) Aurora A depletion reveals centrosome-independent polarization mechanism in C.elegans. bioRxiv: 388918

      Morton DG, Roos JM, Kemphues KJ (1992) par-4, a gene required for cytoplasmic localization and determination of specific cell types in Caenorhabditis elegans embryogenesis. Genetics 130: 771-790

      Park SH, Cheong C, Idoyaga J, Kim JY, Choi JH, Do Y, Lee H, Jo JH, Oh YS, Im W et al (2008) Generation and application of new rat monoclonal antibodies against synthetic FLAG and OLLAS tags for improved immunodetection. J Immunol Methods 331: 27-38

      Peel N, Iyer J, Naik A, Dougherty MP, Decker M, O'Connell KF (2017) Protein Phosphatase 1 Down Regulates ZYG-1 Levels to Limit Centriole Duplication. PLoS Genet 13: e1006543

      Rodriguez J, Peglion F, Martin J, Hubatsch L, Reich J, Hirani N, Gubieda AG, Roffey J, Fernandes AR, St Johnston D et al (2017) aPKC Cycles between Functionally Distinct PAR Protein Assemblies to Drive Cell Polarity. Dev Cell 42: 400-415 e409

      Shimada M, Kanematsu K, Tanaka K, Yokosawa H, Kawahara H (2006) Proteasomal ubiquitin receptor RPN-10 controls sex determination in Caenorhabditis elegans. Mol Biol Cell 17: 5356-5371

      Tzur YB, Egydio de Carvalho C, Nadarajan S, Van Bostelen I, Gu Y, Chu DS, Cheeseman IM, Colaiacovo MP (2012) LAB-1 targets PP1 and restricts Aurora B kinase upon entrance into meiosis to promote sister chromatid cohesion. PLoS Biol 10: e1001378

    1. Overview & Motivation

      Repeatedly failed to write a post, realizing it should be a talk:

      “It turns out that I wasn’t really writing a post; I was actually preparing a talk.”

      Central Topic: React Server Components and distributed computations between two machines using React concepts.

      “It’s about everyone’s favorite topic, React Server Components.”


      Act 1: Recipes (Imperative) vs. Blueprints (Declarative)

      Tags vs. Function Calls:

      Visual and structural differences:

      “< and > are hard and spiky and ( and ) are soft and round.”

      Similarities:

      Both reference named operations (functions or tags) and accept arguments.

      Both allow nesting.

      “Clearly, function calls and tags are very similar...they let us elaborate by nesting further.”

      Differences:

      Tags (declarative):

      Often nouns; represent timeless structures (blueprints).

      Convenient for deep nesting, clearly marking structure.

      Time-independent, passive descriptions.

      “Tags tend to be nouns rather than verbs... nouns are easier to decompose.”

      Function calls (imperative):

      Often verbs; represent sequential actions (recipes).

      Execution order critical.

      “A recipe prescribes a sequence of steps to be performed in order.”


      Remote Procedure Calls (RPC) and Async/Await

      Problem: Calling Functions Across Computers

      RPC concept introduced: Functions across network boundaries.

      async/await: Simplifies asynchronous calls but still has limitations (coupling, losing direct references).

      “An async function...may pause execution...async and await propagate upwards.”

      Import RPC idea: Extends importing to remote function calls while maintaining references and type-checking.

      “Let’s invent a special syntax...import rpc because what we’ve described here has been known for decades as RPC.”


      Potential Calls (Tags as Deferred RPCs)

      "Potential function calls": Represented by tags; calls that might happen in the future.

      “It’s a blueprint of a function call.”

      Nested tags: Express dependencies naturally.

      “Dependencies between potential calls...should be expressed by embedding these calls inside each other.”


      Splitting Computation in Time and Space

      Computation split in time: Returning partial functions that capture necessary data (closures).

      Computation split across space (client-server): Splitting execution between two computers, handling data passing explicitly.

      “It’s an interesting shape—a program returning the rest of itself...closure over the network.”


      Two Types of Operations: Components vs. Primitives

      Components (Capitalized): "Brains" of a program; flexible, timeless, and declarative, embedding tags without introspection.

      “Components are truly timeless...they accept tags as arguments.”

      Primitives (lowercase): "Muscles"; introspect arguments, execution order sensitive, imperative, execute last.

      “Primitives introspect arguments...they must know all their arguments.”

      Execution Phases:

      1. Interpret (thinking): Processes Components freely without strict order.

      2. Perform (doing): Executes Primitives strictly inside-out.

      “First, you need to think...then you need to do.”


      Act 2: Reflections and Dialog

      Meta-dialog: Reflection on the writing process itself; writer and reader dialogue, acknowledging uncertainty and experimental nature of content.

      “The Writer: I have a rough idea, but truthfully, I’m pretty much winging it.”


      Core Conceptual Innovations

      Tags as code/data pairs: Potential function calls represented explicitly as data (tags), allowing deferred execution across contexts.

      Program as distributed computation: A single conceptual function spanning multiple runtime environments (Early and Late worlds).

      Timelessness and Flexibility: Components allow arbitrary computation ordering; Primitives enforce execution order.


      Key Quotes & Ideas:

      Blueprints vs. Recipes:

      “A blueprint describes what nouns a thing is made of...a recipe prescribes a sequence of steps to be performed.”

      RPC and Potential Calls:

      “A tag is like a function call but passive, inert, open to interpretation.”

      Components and Primitives Separation:

      “Components are the ‘brains’...Primitives are the ‘muscles’.”

      Importance of Introspection vs. Embedding:

      “If a function only embeds an argument without introspection, you can delay computing it.”


      Conclusion (Conceptual Breakthroughs)

      Distributed React Model: Redefining client-server interaction as React component structures.

      Future implications: Suggests moving common primitives into lower-level implementations to optimize distributed computation.

      “If many programs used the same Primitives...move their implementation to Rust or C++.”


    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public review):

      This a comprehensive study that sheds light on how Wag31 functions and localises in mycobacterial cells. A clear link to interactions with CL is shown using a combination of microscopy in combination with fusion fluorescent constructs, and lipid specific dyes. Furthermore, studies using mutant versions of Wag31 shed light on the functionalities of each domain in the protein. My concerns/suggestions for the manuscript are minor:

      (1) Ln 130. A better clarification/discussion is required here. It is clear that both depletion and overexpression have an effect on levels of various lipids, but subsequent descriptions show that they affect different classes of lipids.

      We thank the reviewer for the comment. We have added a better clarification on this in the discussion of revised manuscript. The lipid classes that get impacted by the depletion of Wag31 vs overexpression are different. Wag31 is an adaptor protein that interacts with proteins of the ACCase complex (Meniche et al., 2014; Xu et al., 2014) that synthesize fatty acid precursors and regulate their activity (Habibi Arejan et al., 2022).

      The varied response on lipid homeostasis could be attributed to a change in the stoichiometry of these interactions of Wag31. While Wag31 depletion would prevent such interactions from occurring and might affect lipid synthesis that directly depends on Wag31-protein partner interactions, its overexpression would lead to promiscuous interactions and a change in the stoichiometry of native interactions that would ultimately modulate lipid synthesis pathways.

      (2) The pulldown assays results are interesting, but links are tentative.

      We thank the reviewer for the comment. The interactome of Wag31 was identified through the immunoprecipitation of FLAG-Wag31 complemented at an integrative locus in Wag31 mutant background to avoid overexpression artifacts. We used Msm::gfp expressing an integrative copy (at L5 locus) of FLAG-GFP as a control to subtract non-specific interactions. The experiment was performed in biological triplicates, and interactors that appeared in all replicates but not in the control were selected for further analysis. Although we identified more than 100 interactors of Wag31, we analyzed only the top 25 hits, with a PSM cut-off 18 and unique peptides5. Additionally, two of Wag31's established interactors, AccD5 and Rne, were among the top five hits, thus validating our data.

      As mentioned in line 139 of the previous version of the manuscript, we agree that the interactions can either be direct or through a third partner. The fact that we obtained known interactors of Wag31 makes us believe these interactions are genuine. Moreover, for validation, we performed pulldown experiments by mixing E. coli lysates expressing His-Wag31 full-length or truncated protein with M. smegmatis lysates expressing FLAG-tagged interacting proteins. The wash conditions used were quite stringent for these pull-down assays—the wash buffer contained 1% Triton X100 that eliminates all non-specific and indirect interactions. However, we agree that we cannot conclusively state that the interactions are direct without purifying the proteins and performing the experiment. As mentioned above, this caveat was stated in the previous version of the manuscript.

      (3) The authors may perhaps like to rephrase claims of effects lipid homeostasis, as my understanding is that lipid localisation rather than catabolism/breakdown is affected.

      We thank the reviewer for the comment. In this manuscript, we are trying to convey that Wag31 is a spatiotemporal regulator of lipid metabolism. It is a peripheral protein that is hooked to the membrane via Cardiolipin and forms a scaffold at the poles, which helps localize several enzymes involved in lipid metabolism.

      Homeostasis is the process by which an organism maintains a steady-state of balance and stability in response to changes. Depletion of Wag31 not only results in delocalisation of lipids in intracellular lipid inclusions but also leads to changes in the levels of various lipid classes. Advancement in the field of spatial biology underscores the importance of native localization of various biological molecules crucial for maintaining a steady-cell of the cell. Hence, we have used the word “homeostasis” to describe both the changes observed in lipid metabolism.

      Reviewer #2 (Public review):

      Summary:

      Kapoor et. al. investigated the role of the mycobacterial protein Wag31 in lipid and peptidoglycan synthesis and sought to delineate the role of the N- and C- terminal domains of Wag31. They demonstrated that modulating Wag31 levels influences lipid homeostasis in M. smegmatis and cardiolipin (CL) localisation in cells. Wag31 was found to preferentially bind CL-containing liposomes, and deleting the N-terminus of the protein significantly decreased this interaction. Novel interactions between Wag31 and proteins involved in lipid metabolism and cell wall synthesis were identified, suggesting that Wag31 recruits proteins to the intracellular membrane domain by direct interaction.

      Strengths:

      (1) The importance of Wag31 in maintaining lipid homeostasis is supported by several lines of evidence. (2) The interaction between Wag31 and cardiolipin, and the role of the N-terminus in this interaction was convincingly demonstrated.

      Weaknesses:

      (1) MS experiments provide some evidence for novel protein-protein interactions. However, the pulldown experiments lack a valid negative control.

      We thank the reviewer for the comment. We have included two non-interactors of Wag31 i.e. MmpL4 and MmpS5 which were not identified in our interactome database as negative controls in the experiment. As shown in Figure S3, we performed His pull-down experiments with both of them independently twice, each time with a positive control (known interactor of Wag31 (Msm2092)). Fig. S3b revised shows E. coli lysate expressing His-Wag31 which was incubated with Msm lysates expressing either FLAG tagged-MmpL4 or -MmpS5 or Msm2092 (revised Fig. S3c). The mixed lysates were pulled down with Cobalt beads that bind to the His-tagged protein and analysed using Western blot analysis by probing with anti-FLAG antibody (revised Fig. S3d.). The data presented confirms that the interactions validated through the pull down assay were indeed specific.

      (2) The role of the N-terminus in the protein-protein interaction has not been ruled out.

      We thank the reviewer for the comment. Wag31<sub>Msm</sub> is a 272 amino acids long protein. The Nterminal of Wag31, which houses the DivIVA-domain, comprises the first 60 amino acids. Previously, we attempted to express the N-terminal (60 aa long) and the C-terminal (212 aa long) truncated proteins in various mycobacterial shuttle vectors to perform MS/MS experiments. Despite numerous efforts, neither expressed with the N/C-terminal FLAG tag or no tag in episomal or integrative vectors due to instability of the protein. Eventually, we successfully expressed the C-terminal Wag31 with an N and Cterminal hexa-His tag. However, this expression was not sufficient or stable enough for us to perform Ni<sup>2+</sup>-affinity pull-down experiments for mass spectrometry. N-terminal of Wag31 could not be expressed in M. smegmatis even with N and C-terminal Hexa-His tags.

      To rule out the role of the N-terminal in mediating protein-protein interactions, we cloned the N-terminal of Wag31 that comprises the DivIVA-domain in pET28b vector (Fig. 7a revised). Subsequently, the truncated protein, hereafter called  Wag31<sub>∆C</sub>  flanked by 6X His tags at both the termini was expressed in E. coli and mixed with Msm lysates expressing interactors of Wag31 (Fig. 7b-c revised). Earlier experiments with Wag31<sub>∆1-60</sub or Wag31<sub>∆N</sub> (in the revised manuscript) were performed with MurG, SepIVA, Msm2092 and AccA3 (Fig. 7e-g). Thus, we used the same set of interactors to test our hypothesis. Briefly, His-  Wag31<sub>∆C</sub>  was mixed with Msm lysates expressing either FLAG-MurG, -SepIVA, -Msm2092 or -AccA3 and pull down experiments were performed as described previously. FLAGMmpS5, a non-interactor of Wag31 was used as a negative control. As shown in Fig. 7d revised, His-Wag31 could bind to all the four interactors whereas His- Wag31<sub>∆C</sub>  couldn’t, strengthening the conclusion that interactions of Wag31 with other proteins are mediated by its Cterminal. However, we can’t ignore the possibility of other interactors binding to the N-terminal of Wag31. Unfortunately, due to poor expression/instability of  Wag31<sub>∆C</sub>  in mycobacterial shuttle vectors, we are unable to perform a global interactome analysis of  Wag31<sub>∆C</sub>

      Reviewer #3 (Public review):

      Summary:

      This manuscript describes the characterization of mycobacterial cytoskeleton protein Wag31, examining its role in orchestrating protein-lipid and protein-protein interactions essential for mycobacterial survival. The most significant finding is that Wag31, which directs polar elongation and maintains the intracellular membrane domain, was revealed to have membrane tethering capabilities.

      Strengths:

      The authors provided a detailed analysis of Wag31 domain architecture, revealing distinct functional roles: the N-terminal domain facilitates lipid binding and membrane tethering, while the C-terminal domain mediates protein-protein interactions. Overall, this study offers a robust and new understanding of Wag31 function.

      Weaknesses:

      The following major concerns should be addressed.

      • Authors use 10-N-Nonyl-acridine orange (NAO) as a marker for cardiolipin localization. However, given that NAO is known to bind to various anionic phospholipids, how do the authors know that what they are seeing is specifically visualizing cardiolipin and not a different anionic phospholipid? For example, phosphatidylinositol is another abundant anionic phospholipid in mycobacterial plasma membrane.

      We thank the reviewer for the comment. Despite its promiscuous binding to other anionic phospholipids, 10-N-Nonyl-acridine orange is widely used to stain Cardiolipin and determine its localisation in bacterial cells and mitochondria of eukaryotes (Garcia Fernandez et al., 2004; Mileykovskaya & Dowhan, 2000; Renner & Weibel, 2011). This is because it has a stronger affinity for Cardiolipin than other anionic phospholipids with the affinity constant being 2 × 10<sup>6</sup> M−<sup>1</sup> for Cardiolipin association and 7 × 10<sup>4</sup> M−<sup>1</sup> for that of phosphatidylserine and phosphatidylinositol association (Petit et al., 1992). Additionally, there is not yet another stain available for detecting Cardiolipin. Our proteinlipid binding assays suggest that Wag31 preferentially binds to Cardiolipin over other anionic phospholipids (Fig. 4b), hence it is likely that the majority of redistribution of NAO fluorescence that we observe might be contributed by Cardiolipin mislocalization due to altered Wag31 levels, with smaller degree of NAO redistribution intensity coming indirectly from other anionic phospholipids displaced from the membrane due to the loss of membrane integrity and cell shape changes due to Wag31.

      • Authors' data show that the N-terminal region of Wag31 is important for membrane tethering. The authors' data also show that the N-terminal region is important for sustaining mycobacterial morphology. However, the authors' statement in Line 256 "These results highlight the importance of tethering for sustaining mycobacterial morphology and survival" requires additional proof. It remains possible that the N-terminal region has another unknown activity, and this yet-unknown activity rather than the membrane tethering activity drives the morphological maintenance. Similarly, the N-terminal region is important for lipid homeostasis, but the statement in Line 270, "the maintenance of lipid homeostasis by Wag31 is a consequence of its tethering activity" requires additional proof. The authors should tone down these overstatements or provide additional data to support their claims.

      We agree with the reviewer that there exists a possibility for another function of the N-terminal that may contribute to sustaining mycobacterial physiology and survival. We would revise our statements in the paper to reflect the data. Results shown suggest that the tethering activity of the Nterminal region may contribute to mycobacterial morphology and survival. However, additional functions of this region can’t be ruled out. Similarly, the maintenance of lipid homeostasis by Wag31 may be associated with its tethering activity, although other mechanisms could also contribute to this process.

      • Authors suggest that Wag31 acts as a scaffold for the IMD (Fig. 8). However, Meniche et. al. has shown that MurG as well as GlfT2, two well-characterized IMD proteins, do not colocalize with Wag31 (DivIVA) (https://doi.org/10.1073/pnas.1402158111). IMD proteins are always slightly subpolar while Wag31 is located to the tip of the cell. Therefore, the authors' biochemical data cannot be easily reconciled with microscopic observations in the literature. This raises a question regarding the validity of protein-protein interaction shown in Figure 7. Since this pull-down assay was conducted by mixing E. coli lysate expressing Wag31 and Msm lysate expression Wag31 interactors like MurG, it is possible that the interactions are not direct. Authors should interpret their data more cautiously. If authors cannot provide additional data and sufficient justifications, they should avoid proposing a confusing model like Figure 8 that contradicts published observations.

      In the literature, MurG and GlfT2 have been shown to have polar localisation (Freeman et al., 2023; Hayashi et al., 2016; Kado et al., 2023) and two groups have shown slightly sub-polar localisation of MurG (García-Heredia et al., 2021; Meniche et al., 2014). Additionally, (Freeman et al., 2023) showed SepIVA to be a spatio-temporal regulator of MurG. MS/MS analysis of Wag31 immunoprecipitation data yielded both MurG and SepIVA to be interactors of Wag31 (Fig. 3). Given Wag31 also displays polar localisation, it is likely that it associates with the polar MurG. However, since a sub-polar localisation of MurG has also been reported, it is possible that they do not interact directly and another protein mediates their interaction. Based on the above, we will modify the model proposed in Fig. 8.

      We agree that for validation of interaction, we performed pulldown experiments by mixing E. coli lysates expressing His-Wag31 full-length or truncated protein with M. smegmatis lysates expressing FLAG-tagged interacting proteins. The wash conditions used were quite stringent for these pull-down assays—the wash buffer contained 1% Triton X100 that eliminates all non-specific and indirect interactions. However, we agree that we cannot conclusively state that the interactions are direct without purifying the proteins and performing the experiment. We will describe this caveat in the revised manuscript and propose a model that reflects the results we obtained.

      References:

      Freeman, A. H., Tembiwa, K., Brenner, J. R., Chase, M. R., Fortune, S. M., Morita, Y. S., & Boutte, C. C. (2023). Arginine methylation sites on SepIVA help balance elongation and septation in Mycobacterium smegmatis. Mol Microbiol, 119(2), 208-223. https://doi.org/10.1111/mmi.15006

      Garcia Fernandez, M. I., Ceccarelli, D., & Muscatello, U. (2004). Use of the fluorescent dye 10-N-nonyl acridine orange in quantitative and location assays of cardiolipin: a study on different experimental models. Anal Biochem, 328(2), 174-180. https://doi.org/10.1016/j.ab.2004.01.020

      García-Heredia, A., Kado, T., Sein, C. E., Puffal, J., Osman, S. H., Judd, J., Gray, T. A., Morita, Y. S., & Siegrist, M. S. (2021). Membrane-partitioned cell wall synthesis in mycobacteria. eLife, 10. https://doi.org/10.7554/eLife.60263

      Habibi Arejan, N., Ensinck, D., Diacovich, L., Patel, P. B., Quintanilla, S. Y., Emami Saleh, A., Gramajo, H., & Boutte, C. C. (2022). Polar protein Wag31 both activates and inhibits cell wall metabolism at the poles and septum. Front Microbiol, 13, 1085918. https://doi.org/10.3389/fmicb.2022.1085918

      Hayashi, J. M., Luo, C. Y., Mayfield, J. A., Hsu, T., Fukuda, T., Walfield, A. L., Giffen, S. R., Leszyk, J. D., Baer, C. E., Bennion, O. T., Madduri, A., Shaffer, S. A., Aldridge, B. B., Sassetti, C. M., Sandler, S. J., Kinoshita, T., Moody, D. B., & Morita, Y. S. (2016). Spatially distinct and metabolically active membrane domain in mycobacteria. Proc Natl Acad Sci U S A, 113(19), 5400-5405. https://doi.org/10.1073/pnas.1525165113

      Kado, T., Akbary, Z., Motooka, D., Sparks, I. L., Melzer, E. S., Nakamura, S., Rojas, E. R., Morita, Y. S., & Siegrist, M. S. (2023). A cell wall synthase accelerates plasma membrane partitioning in mycobacteria. eLife, 12, e81924. https://doi.org/10.7554/eLife.81924

      Meniche, X., Otten, R., Siegrist, M. S., Baer, C. E., Murphy, K. C., Bertozzi, C. R., & Sassetti, C. M. (2014). Subpolar addition of new cell wall is directed by DivIVA in mycobacteria. Proc Natl Acad Sci U S A, 111(31), E32433251. https://doi.org/10.1073/pnas.1402158111

      Mileykovskaya, E., & Dowhan, W. (2000). Visualization of phospholipid domains in Escherichia coli by using the cardiolipin-specific fluorescent dye 10-N-nonyl acridine orange. J Bacteriol, 182(4), 1172-1175. https://doi.org/10.1128/JB.182.4.1172-1175.2000

      Petit, J. M., Maftah, A., Ratinaud, M. H., & Julien, R. (1992). 10N-nonyl acridine orange interacts with cardiolipin and allows the quantification of this phospholipid in isolated mitochondria. Eur J Biochem, 209(1), 267273. https://doi.org/10.1111/j.1432-1033.1992.tb17285.x

      Renner, L. D., & Weibel, D. B. (2011). Cardiolipin microdomains localize to negatively curved regions of Escherichia coli membranes. Proc Natl Acad Sci U S A, 108(15), 6264-6269. https://doi.org/10.1073/pnas.1015757108

      Schägger, H. (2006). Tricine-SDS-PAGE. Nat Protoc, 1(1), 16-22. https://doi.org/10.1038/nprot.2006.4

      Xu, W. X., Zhang, L., Mai, J. T., Peng, R. C., Yang, E. Z., Peng, C., & Wang, H. H. (2014). The Wag31 protein interacts with AccA3 and coordinates cell wall lipid permeability and lipophilic drug resistance in Mycobacterium smegmatis. Biochem Biophys Res Commun, 448(3), 255-260. https://doi.org/10.1016/j.bbrc.2014.04.116

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      (1) Ln 130. A better clarification/discussion is required here. It is clear that both depletion and overexpression have an effect in levels of various lipids, but subsequent descriptions show that they affect different classes of lipids.

      We thank the reviewer for the comment. We have included a clarification for this in the discussion section.

      (2) The pulldown assays results are interesting, but the links are tentative.

      We thank the reviewer for the comment. The interactome of Wag31 was identified through the immunoprecipitation of Flag-tagged Wag31 complemented at an integrative locus in Wag31 mutant background to avoid overexpression artifacts. We used Msm::gfp expressing an integrative copy (at L5 locus) of FLAG-GFP as a control to subtract non-specific interactions. The experiment was performed in biological triplicates, and interactors that appeared in all replicates were selected for further analysis. Although we identified more than 100 interactors of Wag31, we analyzed only the top 25 hits, with a PSM cut-off 18 and unique peptides5. Additionally, two of Wag31's established interactors, AccD5 and Rne, were among the top five hits, thus validating our data.

      Though we agree that the interactions can either be direct or through a third partner, the fact that we obtained known interactors of Wag31 makes us believe these interactions are genuine. Moreover, for validation, we performed pulldown experiments by mixing E. coli lysates expressing HisWag31 full-length or truncated protein with M. smegmatis lysates expressing FLAG-tagged interacting proteins. The wash conditions used were quite stringent for these pull-down assays—the wash buffer contained 1% Triton X100 that eliminates all non-specific and indirect interactions. However, we agree that we cannot conclusively state that the interactions are direct without purifying the proteins and performing the experiment. We will describe this caveat in the revised manuscript.

      (3) The authors may perhaps like to rephrase claims of effects lipid homeostasis, as my understanding is that lipid localisation rather than catabolism/breakdown is affected.

      We thank the reviewer for the comment. In this manuscript, we are trying to convey that Wag31 is a spatiotemporal regulator of lipid metabolism. It is a peripheral protein that is hooked to the membrane via Cardiolipin and forms a scaffold at the poles, which helps localize several enzymes involved in lipid metabolism.

      Homeostasis is the process by which an organism maintains a steady-state of balance and stability in response to changes. Depletion of Wag31 not only results in delocalisation of lipids in intracellular lipid inclusions but also leads to changes in the levels of various lipid classes. Advancement in the field of spatial biology underscores the importance of native localization of various biological molecules crucial for maintaining a steady-cell of the cell. Hence, we have used the word “homeostasis” to describe both the changes observed in lipid metabolism.

      Reviewer #2 (Recommendations for the authors):

      I recommend the following experiments to strengthen the data presented:

      (1) Include a non-interacting FLAG-tagged protein as a negative control in the pull-down experiment to strengthen this data.

      We thank the reviewer for the comment. As suggested, we have included non-interacting FLAGtagged proteins as negative controls in the pulldown experiment. We chose MmpL4 and MmpS5 which were not found in the Wag31 interactome data. We performed pull-down experiments with both of them and included an interactor of Wag31 i.e. Msm2092 as a positive control. Fig. S3b revised shows E. coli lysate expressing His-Wag31 which was incubated with Msm lysates expressing either FLAG taggedMmpL4 or -MmpS5 or -Msm2092 (Fig. S3c revised). The mixed lysates were pulled down with Cobalt beads that bind to the His-tagged protein and analysed using Western blot analysis by probing with anti-FLAG antibody. The pull down experiments were performed independently twice, every time with Msm2092 as the positive control (Fig. S3d. revised).

      (2) Perform the pull-down experiments using only the Wag31 N-terminus to rule out any role that it may have in the protein-protein interactions.

      We thank the reviewer for the comment. To rule out the possibility of N-terminal of Wag31 in mediating protein-protein interactions, we cloned the N-terminal of Wag31 that comprises the DivIVAdomain in pET28b vector (Fig. 7a revised). Subsequently, the truncated protein, hereafter called Wag31<sub>∆C</sub> flanked by 6X His tags at both the termini was expressed in E. coli and subsequently mixed with Msm lysates expressing interactors of Wag31 (Fig. 7b-c revised). Earlier experiments with Wag31<sub>∆1-60</sub> or Wag31<sub>∆N</sub>  were performed with MurG, SepIVA, Msm2092 and AccA3 (Fig. 7 previous) so we used the same set of interactors to test our hypothesis. Briefly, His-Wag31<sub>∆C</sub>was mixed with Msm lysates expressing either FLAG-MurG, -SepIVA, -Msm2092 or -AccA3 and pull down experiments were performed as described previously. FLAG-MmpS5, a non-interactor of Wag31 was used as a negative control. As shown in Fig. 7d revised, His-Wag31 could bind to all the four interactors whereas His-Wag31<sub>∆C</sub> couldn’t, strengthening the conclusion that interactions of Wag31 with other proteins are mediated by its C-terminal. However, we can’t ignore the possibility of other proteins binding to the Nterminal of Wag31. Unfortunately, due to poor expression/instability of Wag31<sub>∆C</sub> in mycobacterial shuttle vectors, we couldn’t perform a global interactome analysis of Wag31<sub>∆C</sub>.

      Minor comments:

      - Please check the legend of Fig. 1g, it appears to be labelled incorrectly.

      We have checked it. It is correct. From Fig. 1g we are trying to reflect on the percentages of cells of the three strains i.e. Msm+ATc, Δwag31-ATc, and Δwag31+ATc displaying rod, round or bulged morphology.

      - For MS/MS analysis, a GFP control is mentioned but it is not indicated how this was incorporated in the data analysis. This information should be added.

      We have incorporated that in the revised methodology.

      - The information presented in Fig. 3a, e and f could be combined in one table.

      We appreciate the idea of the reviewer but we prefer a pictorial representation of the data. It allows readers to consume the information in parts, make quicker comparisons and understand trends easily.

      - Fig. 4c Wag31K20A appears smaller in size than the wild-type protein - why is this the case? Is this not a single amino acid substitution?

      Though K20A is a single amino acid substitution, it alters the mobility of Wag31 on SDS-PAGE gel. The sequence analysis of the plasmid expressing Wag31<sub>K20A</sub> doesn’t show additional mutations other than the desired K20A. The change in mobility could be due to a change in the conformation of Wag31<sub>K20A</sub> or its ability to bind to SDS or both that modify its mobility under the influence of electric field.

      - Please clarify what is contained in the first panel of fig 4e. compared to what is in the second panel.

      The first panel represents CL-Dil-Liposomes before incubation with Wag31-GFP and the second panel shows CL-Dil-Liposomes after incubation with Wag31-GFP. The third panel shows the mixture as observed in the green channel to investigate the localisation of Wag31-GFP in the liposome-protein mix. Fourth panel shows the merged of second and third.

      - The data in Fig 6d suggests higher levels of CL in the ∆wag31 compared to wild-type - how do the authors reconcile this with the MS data in Fig. 2g showing lower CL levels?

      Fig. 6d represents the distribution of CL localisation in the tested strains of mycobacteria whereas Fig. 2g shows the absolute levels of CL in various strains. We attribute greater confidence on the lipidomics data which suggests down regulation of CL species. The NAO staining and microscopy is merely for studying localization of the CL along the cell, and cannot be used to reliably quantify or equate it to CL levels. The staining using a probe such as NAO is dependent on factors such as hydrophobicity and permeability of the cell wall, which we expect to be severely altered in a Wag31 mutant. Therefore, the increased staining of NAO seen in Wag31 mutant could just be reflective of the increased uptake of the dye rather than absolute levels of CL. The specificity of staining and localization however can be expected to be unaltered.

      Reviewer #3 (Recommendations for the authors):

      Following are suggestions for improving the writing and presentation.

      • Figure 1, the meaning of the yellow arrows present in f and h should be mentioned in the figure legend.

      We have incorporated that in the revised legend. In Fig.1f, the yellow arrowhead represents the bulged pole morphology whereas in Fig. 1h, it indicates intracellular lipid inclusions.

      • Figure 7 legend refers to panels g, h, and i. However, Figure 7 only has panels a-c. The legend lacks a description of panel c.

      We have corrected the typos and the legend.

      • Figure S1, F2-R2 and F3-R3 expected sizes should be stated in the legend of the figure.

      We have updated the legends.

      • Figure S5, is this the same figure as 5e? If so, there is no need for this figure.

      We have removed Fig. S5.

      • Methods need to be written more carefully with enough details. I listed some of the concerns below.

      Detailed methodology was previously provided in the supplementary material and now we have moved it to the materials and methods in the revised manuscript.

      • Line 392, provide more details on western blotting. What is the secondary antibody? What image documentation system was used?

      We have updated the methodology.

      • Line 400, while the methods may be the same as the reference 64, authors should still provide key details such as the way samples were fixed and processed for SEM and TEM.

      We have provided a detailed description of the same in methodology in the revised version.

      • Line 437, how do authors calculate the concentration of liposome to be 10 µM? Do they possibly mean the concentration of phospholipids used to make the liposomes?

      Yes, this is the concentration of total lipids used to make liposomes. 1 μM of Wag31 or its mutants were mixed with 100 nm extruded liposomes containing 10 μm total lipid in separate Eppendorf tubes.

      • Supplemental Line 9, "turns of" should read "turns off".

      We have edited this.

      • Supplemental Line 13, define LHS and RHS.

      LHS or left hand sequence and RHS or right hand sequence refers to the upstream and downstream flanking regions of the gene of interest.

      • Supplemental Line 20, indicate the manufacturer of the microscope and type of the objective lens.

      We have added these details now.

      • Supplemental Line 31, define MeOH, or use a chemical formula like chloroform.

      MeOH is methanol. We have provided a chemical formula in the revised version.

      • Supplemental Line 53, indicate the concentration of trypsin.

      We have included that in the revised version.

      • Supplemental Line 72, g is not a unit. "30,000 g" should be "30,000x g".

      We have revised this in the manuscript.

      • Supplemental Line 114, provide more details on western blotting. What is the manufacturer of antiFLAG antibody? What is the secondary antibody? How was the antibody binding visualized? What image documentation system was used?

      We have provided these details in the revised version.

    1. eLife Assessment

      The authors provide valuable insights into the candidate upstream transcriptional regulatory factors that control the spatiotemporal expression of selector genes and their targets for GABAergic vs glutamatergic neuron fate in the anterior brainstem. The computational analysis of single-cell RNA-seq and single-cell ATAC-seq datasets to predict TF binding combined with cut and tag-seq to find TF binding represents a solid approach to support the findings in the study, although the display and discussion of the datasets could be strengthened. This study will be of interest to neurobiologists who study transcriptional mechanisms of neuronal differentiation.

    2. Reviewer #1 (Public review):

      Summary:

      The objective of this research is to understand how the expression of key selector transcription factors, Tal1, Gata2, Gata3, involved in GABAergic vs glutamatergic neuron fate from a single anterior hindbrain progenitor domain is transcriptionally controlled. With suitable scRNAseq, scATAC-seq, CUT&TAG, and footprinting datasets, the authors use an extensive set of computational approaches to identify putative regulatory elements and upstream transcription factors that may control selector TF expression. This data-rich study will be a valuable resource for future hypothesis testing, through perturbation approaches, of the many putative regulators identified in the study. The data are displayed in some of the main and supplemental figures in a way that makes it difficult to appreciate and understand the authors' presentation and interpretation of the data in the Results narrative. Primary images used for studying the timing and coexpression of putative upstream regulators, Insm1, E2f1, Ebf1, and Tead2 with Tal1 are difficult to interpret and do not convincingly support the authors' conclusions. There appears to be little overlap in the fluorescent labeling, and it is not clear whether the signals are located in the cell soma nucleus.

      Strengths:

      The main strength is that it is a data-rich compilation of putative upstream regulators of selector TFs that control GABAergic vs glutamatergic neuron fates in the brainstem. This resource now enables future perturbation-based hypothesis testing of the gene regulatory networks that help to build brain circuitry.

      Weaknesses:

      Some of the findings could be better displayed and discussed.

    3. Author response:

      Reviewer #1 (Public review):

      Summary:

      The objective of this research is to understand how the expression of key selector transcription factors, Tal1, Gata2, Gata3, involved in GABAergic vs glutamatergic neuron fate from a single anterior hindbrain progenitor domain is transcriptionally controlled. With suitable scRNAseq, scATAC-seq, CUT&TAG, and footprinting datasets, the authors use an extensive set of computational approaches to identify putative regulatory elements and upstream transcription factors that may control selector TF expression. This data-rich study will be a valuable resource for future hypothesis testing, through perturbation approaches, of the many putative regulators identified in the study. The data are displayed in some of the main and supplemental figures in a way that makes it difficult to appreciate and understand the authors' presentation and interpretation of the data in the Results narrative. Primary images used for studying the timing and coexpression of putative upstream regulators, Insm1, E2f1, Ebf1, and Tead2 with Tal1 are difficult to interpret and do not convincingly support the authors' conclusions. There appears to be little overlap in the fluorescent labeling, and it is not clear whether the signals are located in the cell soma nucleus.

      Strengths:

      The main strength is that it is a data-rich compilation of putative upstream regulators of selector TFs that control GABAergic vs glutamatergic neuron fates in the brainstem. This resource now enables future perturbation-based hypothesis testing of the gene regulatory networks that help to build brain circuitry.

      We thank Reviewer #1 for the thoughtful assessment and recognition of the extensive datasets and computational approaches employed in our study. We appreciate the acknowledgment that our efforts in compiling data-rich resources for identifying putative regulators of key selector transcription factors (TFs)—Tal1, Gata2, and Gata3—are valuable for future hypothesis-driven research.

      Weaknesses:

      Some of the findings could be better displayed and discussed.

      We acknowledge the concerns raised regarding the clarity and interpretability of certain figures, particularly those related to expression analyses of candidate upstream regulators such as Insm1, E2f1, Ebf1, and Tead2 in relation to Tal1. We agree that clearer visualization and improved annotation of fluorescence signals are crucial to accurately support our conclusions. In our revised manuscript, we will enhance image clarity and clearly indicate sites of co-expression for Tal1 and its putative regulators, ensuring the results are more readily interpretable. Additionally, we will expand explanatory narratives within the figure legends to better align the figures with the results section.

      Reviewer #2 (Public review):

      Summary:

      In the manuscript, the authors seek to discover putative gene regulatory interactions underlying the lineage bifurcation process of neural progenitor cells in the embryonic mouse anterior brainstem into GABAergic and glutamatergic neuronal subtypes. The authors analyze single-cell RNA-seq and single-cell ATAC-seq datasets derived from the ventral rhombomere 1 of embryonic mouse brainstems to annotate cell types and make predictions or where TFs bind upstream and downstream of the effector TFs using computational methods. They add data on the genomic distributions of some of the key transcription factors and layer these onto the single-cell data to get a sense of the transcriptional dynamics.

      Strengths:

      The authors use a well-defined fate decision point from brainstem progenitors that can make two very different kinds of neurons. They already know the key TFs for selecting the neuronal type from genetic studies, so they focus their gene regulatory analysis squarely on the mechanisms that are immediately upstream and downstream of these key factors. The authors use a combination of single-cell and bulk sequencing data, prediction and validation, and computation.

      We also appreciate the thoughtful comments from Reviewer #2, highlighting the strengths of our approach in elucidating gene regulatory interactions that govern neuronal fate decisions in the embryonic mouse brainstem. We are pleased that our focus on a critical cell-fate decision point and the integration of diverse data modalities, combined with computational analyses, has been recognized as a key strength.

      Weaknesses:

      The study generates a lot of data about transcription factor binding sites, both predicted and validated, but the data are substantially descriptive. It remains challenging to understand how the integration of all these different TFs works together to switch terminal programs on and off.

      Reviewer #2 correctly points out that while our study provides extensive data on predicted and validated transcription factor binding sites, clearly illustrating how these factors collectively interact to regulate terminal neuronal differentiation programs remains challenging. We acknowledge the inherently descriptive nature of the current interpretation of our combined datasets.

      In our revision, we will clarify how the different data types support and corroborate one another, highlighting what we consider the most reliable observations of TF activity. Additionally, we will revise the discussion to address the challenges associated with interpreting the highly complex networks of interactions within the gene regulatory landscape.

      We sincerely thank both reviewers for their constructive feedback, which we believe will significantly enhance the quality and accessibility of our manuscript.

  10. social-media-ethics-automation.github.io social-media-ethics-automation.github.io
    1. W3Schools. Introduction to HTML. URL: https://www.w3schools.com/html/html_intro.asp (visited on 2023-11-24).

      The W3Schools HTML Introduction page explains that HTML is the basic language used to build web pages. It talks about how HTML uses tags (like labels) to mark things like titles, headings, and paragraphs. For example, you use one tag type to create a heading and another for a paragraph. It even shows a simple example of what a basic web page looks like in code. It also mentions that your web browser (like Chrome or Safari) reads this code and turns it into the websites you see. And there’s a special line at the top of the page that helps the browser understand it’s working with HTML.